Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Animal models of obesity and diabetes mellitus

Key Points

  • Development of safe and potent therapeutics is required to combat the obesity and diabetes mellitus pandemic

  • Animal models remain indispensable for discovering, validating and optimizing novel therapeutics for their safe use in humans

  • To improve the transition from bench to bedside, researchers must select the appropriate models, beware a myriad of confounding factors and draw appropriate conclusions

  • Experimental procedures and conditions should be accurately detailed to improve the reproducibility and translation of findings in preclinical animal models

  • Different animal models, ranging from non-mammalian models to non-human primates, each have distinct advantages and limitations

Abstract

More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Key advantages and disadvantages of different classes of animal models used in obesity and diabetes research.
Figure 2: Important experimental parameters and potential confounders of experimental outcomes in obesity and diabetes research and their interrelatedness.

References

  1. 1

    Finkelstein, E. A. et al. Obesity and severe obesity forecasts through 2030. Am. J. Preventive Med. 42, 563–570 (2012).

    Google Scholar 

  2. 2

    Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

    PubMed  Google Scholar 

  3. 3

    Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    CAS  Google Scholar 

  4. 4

    El-Sayed Moustafa, J. S. & Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 9, 402–413 (2013).

    CAS  PubMed  Google Scholar 

  5. 5

    Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141–146 (1922).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hill, J. O., Wyatt, H. R. & Peters, J. C. Energy balance and obesity. Circulation 126, 126–132 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Klil-Drori, A. J., Azoulay, L. & Pollak, M. N. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nat. Rev. Clin. Oncol. 14, 85–99 (2017).

    CAS  PubMed  Google Scholar 

  10. 10

    Redline, S. et al. Risk factors for sleep-disordered breathing in children. Am. J. Respir. Crit. Care Med. 159, 1527–1532 (1999).

    CAS  PubMed  Google Scholar 

  11. 11

    Becerra, M. B., Becerra, B. J. & Teodorescu, M. Healthcare burden of obstructive sleep apnea and obesity among asthma hospitalizations: results from the U. S.-based Nationwide Inpatient Sample. Respiratory Med. 117, 230–236 (2016).

    Google Scholar 

  12. 12

    Figueroa-Munoz, J., Chinn, S. & Rona, R. Association between obesity and asthma in 4–11 year old children in the UK. Thorax 56, 133–137 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Muc, M., Mota-Pinto, A. & Padez, C. Association between obesity and asthma — epidemiology, pathophysiology and clinical profile. Nutr. Res. Rev. 29, 194–201 (2016).

    CAS  PubMed  Google Scholar 

  14. 14

    Stenius-Aarniala, B. et al. Immediate and long term effects of weight reduction in obese people with asthma: randomised controlled study. BMJ 320, 827–832 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Stampfer, M. J., Maclure, K. M., Colditz, G. A., Manson, J. E. & Willett, W. C. Risk of symptomatic gallstones in women with severe obesity. Am. J. Clin. Nutr. 55, 652–658 (1992).

    CAS  PubMed  Google Scholar 

  16. 16

    Tilg, H. & Hotamisligil, G. S. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 131, 934–945 (2006).

    CAS  PubMed  Google Scholar 

  17. 17

    D'Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    CAS  PubMed  Google Scholar 

  18. 18

    Ebbeling, C. B., Pawlak, D. B. & Ludwig, D. S. Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473–482 (2002).

    PubMed  Google Scholar 

  19. 19

    Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  20. 20

    Bournat, J. C. & Brown, C. W. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 17, 446–452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  Google Scholar 

  24. 24

    Feldstein, A. E. et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology 40, 185–194 (2004).

    CAS  PubMed  Google Scholar 

  25. 25

    Unger, R. H. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol. Metab. 14, 398–403 (2003).

    CAS  PubMed  Google Scholar 

  26. 26

    Fasshauer, M. & Blüher, M. Adipokines in health and disease. Trends Pharmacol Sci. 36, 461–470 (2015).

    CAS  PubMed  Google Scholar 

  27. 27

    Hotamisligil, G. S. & Bernlohr, D. A. Metabolic functions of FABPs[mdash]mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 11, 592–605 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Fosbol, M. O. & Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imag. 35, 81–97 (2015).

    Google Scholar 

  29. 29

    Brommage, R. Validation and calibration of DEXA body composition in mice. Am. J. Physiol. Endocrinol. Metab. 285, E454–E459 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Nixon, J. P. et al. Evaluation of a quantitative magnetic resonance imaging system for whole body composition analysis in rodents. Obesity 18, 1652–1659 (2010).

    PubMed  Google Scholar 

  31. 31

    James, J. R. et al. Fat and water 1H MRI to investigate effects of leptin in obese mice. Obesity 17, 2089–2093 (2009).

    CAS  PubMed  Google Scholar 

  32. 32

    Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjostrom, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–161 (2003).

    Google Scholar 

  33. 33

    Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    CAS  Google Scholar 

  34. 34

    Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    PubMed  Google Scholar 

  35. 35

    Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    CAS  PubMed  Google Scholar 

  36. 36

    Tschöp, M. H. et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell. Metab. 24, 51–62 (2016).

    PubMed  Google Scholar 

  37. 37

    Henderson, S. J. et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes. Metab. 18, 1176–1190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02692781 (2016).

  41. 41

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02119819 (2015).

  42. 42

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02205528 (2017).

  43. 43

    Watts, J. L. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab. 20, 58–65 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Trinh, I. & Boulianne, G. L. Modeling obesity and its associated disorders in Drosophila. Physiology 28, 117–124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    CAS  PubMed  Google Scholar 

  46. 46

    Pospisilik, J. A. et al. Drosophila genome-wide obesity screen reveals Hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148–160 (2010).

    CAS  PubMed  Google Scholar 

  47. 47

    Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell. Metab. 6, 280–293 (2007).

    CAS  PubMed  Google Scholar 

  48. 48

    Leopold, P. & Perrimon, N. Drosophila and the genetics of the internal milieu. Nature 450, 186–188 (2007).

    CAS  PubMed  Google Scholar 

  49. 49

    Oka, T. et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21–34 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Mair, W., Piper, M. D. W. & Partridge, L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, 1305–1311 (2005).

    CAS  Google Scholar 

  51. 51

    Skorupa, D. A., Dervisefendic, A., Zwiener, J. & Pletcher, S. D. Dietary composition specifies consumption, obesity and lifespan in Drosophila melanogaster. Aging Cell 7, 478–490 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Gumienny, T. L. & Savage-Dunn, C. in WormBook (ed The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.22.2 (2005).

    Google Scholar 

  53. 53

    Mansfeld, J. et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat. Commun. 6, 10043 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Yan, J. et al. Obesity- and aging-induced excess of central transforming growth factor-beta potentiates diabetic development via an RNA stress response. Nat. Med. 20, 1001–1008 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Al-Anzi, B. et al. Obesity-blocking neurons in Drosophila. Neuron 63, 329–341 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Cruz, S. A., Tseng, Y. C., Kaiya, H. & Hwang, P. P. Ghrelin affects carbohydrate-glycogen metabolism via insulin inhibition and glucagon stimulation in the zebrafish (Danio rerio) brain. Comp Biochem Physiol A Mol Integr Physiol. 156, 190–200 (2010).

    PubMed  Google Scholar 

  57. 57

    Gorissen, M., Bernier, N. J., Nabuurs, S. B., Flik, G. & Huising, M. O. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J. Endocrinol. 201, 329–339 (2009).

    CAS  PubMed  Google Scholar 

  58. 58

    Song, Y. & Cone, R. D. Creation of a genetic model of obesity in a teleost. FASEB J. 21, 2042–2049 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    Bharucha, K. N., Tarr, P. & Zipursky, S. L. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 211, 3103–3110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Polakof, S., Panserat, S., Soengas, J. L. & Moon, T. W. Glucose metabolism in fish: a review. J. Comp. Physiol. B 182, 1015–1045 (2012).

    CAS  PubMed  Google Scholar 

  61. 61

    Pierce, S. B. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 15, 672–686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001).

    CAS  PubMed  Google Scholar 

  63. 63

    Papasani, M. R., Robison, B. D., Hardy, R. W. & Hill, R. A. Early developmental expression of two insulins in zebrafish (Danio rerio). Physiol. Genom. 27, 79–85 (2006).

    CAS  Google Scholar 

  64. 64

    Luong, N. et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell. Metab. 4, 133–142 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    Morris, S. N. S. et al. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim. Biophys. Acta 1822, 1230–1237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Olsen, A. S., Sarras, M. P. & Intine, R. V. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen 18, 532–542 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Wang, Y., Rovira, M., Yusuff, S. & Parsons, M. J. Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing β-cells. Development 138, 609–617 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Parsons, M. J. et al. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev. 126, 898–912 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Moro, E., Gnügge, L., Braghetta, P., Bortolussi, M. & Argenton, F. Analysis of beta cell proliferation dynamics in zebrafish. Dev. Biol. 332, 299–308 (2009).

    CAS  PubMed  Google Scholar 

  70. 70

    Lin, J. W. et al. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev. Biol. 270, 474–486 (2004).

    CAS  PubMed  Google Scholar 

  71. 71

    Rovira, M. et al. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc. Natl Acad. Sci. USA 108, 19264–19269 (2011).

    CAS  PubMed  Google Scholar 

  72. 72

    Hill, J. H., Franzosa, E. A., Huttenhower, C. & Guillemin, K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 5, e20145 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002).

    CAS  PubMed  Google Scholar 

  74. 74

    Schlotterer, A. et al. C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes 58, 2450–2456 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Birse, R. T. et al. High fat diet-induced obesity and heart dysfunction is regulated by the TOR pathway in Drosophila. Cell Metab. 12, 533–544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Capiotti, K. M. et al. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behav. Brain Res. 274, 319–325 (2014).

    CAS  PubMed  Google Scholar 

  77. 77

    Rees, D. A. & Alcolado, J. C. Animal models of diabetes mellitus. Diabet. Med. 22, 359–370 (2005).

    CAS  PubMed  Google Scholar 

  78. 78

    Bray, G. A. & York, D. A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 59, 719–809 (1979).

    CAS  PubMed  Google Scholar 

  79. 79

    Herberg, L. & Coleman, D. L. Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26, 59–99 (1977).

    CAS  PubMed  Google Scholar 

  80. 80

    Pickup, J. C. in Textbook of Diabetes (eds Pickup, J. C. & Williams, G.) 23.1–23.25 (Blackwell Science, 1997).

    Google Scholar 

  81. 81

    European Commission. Seventh Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union (European Commission, 2013).

  82. 82

    Nilsson, C., Raun, K., Yan, F. f., Larsen, M. O. & Tang-Christensen, M. Laboratory animals as surrogate models of human obesity. Acta Pharmacol. Sin. 33, 173–181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167 (1988).

    CAS  PubMed  Google Scholar 

  84. 84

    Winzell, M. S. & Ahren, B. The high-fat diet-fed mouse. Diabetes 53, S215–S219 (2004).

    PubMed  Google Scholar 

  85. 85

    Leibowitz, S. F. et al. Phenotypic profile of SWR/J and A/J mice compared to control strains: possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Res. 1047, 137–147 (2005).

    CAS  PubMed  Google Scholar 

  86. 86

    Surwit, R. S. et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and AJ mice. Metabolism 44, 645–651 (1995).

    CAS  PubMed  Google Scholar 

  87. 87

    West, D. B., Boozer, C. N., Moody, D. L. & Atkinson, R. L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. Regul. Integr. Comp. Physiol. 262, R1025–R1032 (1992).

    CAS  Google Scholar 

  88. 88

    Parks, B. W. et al. Genetic architecture of insulin resistance in the mouse. Cell Metab. 21, 334–346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Attie, A. D. & Keller, M. P. in Gene Co-Expression Modules and Type 2 Diabetes (eds Meyerhof, W., Beisiegel, U. & Joost, H. G.) 47–56 (Springer, 2010).

    Google Scholar 

  90. 90

    Leiter, E. H. Mice with targeted gene disruptions or gene insertions for diabetes research: problems, pitfalls, and potential solutions. Diabetologia 45, 296–308 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Mekada, K. et al. Genetic differences among C57BL/6 substrains. Exp. Animals 58, 141–149 (2009).

    CAS  Google Scholar 

  92. 92

    Kahle, M. et al. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol. Metab. 2, 435–446 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Schemmel, R., Mickelsen, O. & Gill, J. L. Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J. Nutr. 100, 1041–1048 (1970).

    CAS  PubMed  Google Scholar 

  94. 94

    Levin, B. E., Dunn-Meynell, A. A., Balkan, B. & Keesey, R. E. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273, R725–R730 (1997).

    CAS  Google Scholar 

  95. 95

    The International Mouse Knockout Consortium. A mouse for all reasons. Cell 128, 9–13 (2007).

  96. 96

    Karp, N. A. et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 8, 15475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    International Mouse Phenotyping Consortium. http://www.mousephenotype.org/ (2017).

  98. 98

    Pi, J. et al. Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic β-cell function. Endocrinology 150, 3040–3048 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Wolfer, D. P., Crusio, W. E. & Lipp, H. P. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 25, 336–340 (2002).

    CAS  PubMed  Google Scholar 

  100. 100

    Attane, C. et al. Differential insulin secretion of high-fat diet-fed C57BL/6NN and C57BL/6NJ mice: implications of mixed genetic background in metabolic studies. PLoS ONE 11, e0159165 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. 101

    Fontaine, D. A. & Davis, D. B. Attention to background strain is essential for metabolic research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 65, 25–33 (2016).

    CAS  PubMed  Google Scholar 

  102. 102

    Hong, J., Stubbins, R. E., Smith, R. R., Harvey, A. E. & Nunez, N. P. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 8, 11–16 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Stubbins, R. E., Holcomb, V. B., Hong, J. & Nunez, N. P. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur. J. Nutr. 51, 861–870 (2012).

    CAS  PubMed  Google Scholar 

  104. 104

    Yang, Y., Smith, D. L., Keating, K. D., Allison, D. B. & Nagy, T. R. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity 22, 2147–2155 (2014).

    CAS  PubMed  Google Scholar 

  105. 105

    Nadal-Casellas, A., Proenza, A. M., Llado, I. & Gianotti, M. Sex-dependent differences in rat hepatic lipid accumulation and insulin sensitivity in response to diet-induced obesity. Biochem. Cell Biol. 90, 164–172 (2012).

    CAS  PubMed  Google Scholar 

  106. 106

    Garg, N., Thakur, S., Alex McMahan, C. & Adamo, M. L. High fat diet induced insulin resistance and glucose intolerance are gender-specific in IGF-1R heterozygous mice. Biochem. Biophys. Res. Commun. 413, 476–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Hevener, A., Reichart, D., Janez, A. & Olefsky, J. Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes 51, 1907–1912 (2002).

    CAS  PubMed  Google Scholar 

  108. 108

    Medrikova, D. et al. Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int. J. Obes. 36, 262–272 (2012).

    CAS  Google Scholar 

  109. 109

    Pettersson, U. S., Walden, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7, e46057 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Geer, E. B. & Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 6, 60–75 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. 111

    Hoeg, L. D. et al. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 60, 64–73 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Logue, J. et al. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia 54, 3003–3006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    ter Horst, K. W. et al. Sexual dimorphism in hepatic, adipose tissue, and peripheral tissue insulin sensitivity in obese humans. Front. Endocrinol. 6, 182–188 (2015).

    Google Scholar 

  114. 114

    Kautzky-Willer, A., Harreiter, J. & Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 37, 278–316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in, N. R. F. 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

  116. 116

    Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med. 34, 1–11 (2013).

    CAS  PubMed  Google Scholar 

  117. 117

    Clegg, D. J., Riedy, C. A., Smith, K. A. B., Benoit, S. C. & Woods, S. C. Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 52, 682–687 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Macotela, Y., Boucher, J., Tran, T. T. & Kahn, C. R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58, 803–812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Jeffery, E. et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell. Metab. 24, 142–150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Clegg, D. J., Brown, L. M., Woods, S. C. & Benoit, S. C. Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 55, 978–987 (2006).

    CAS  PubMed  Google Scholar 

  121. 121

    Chen, X. et al. The number of X chromosomes causes sex differences in adiposity in mice. PLoS Genet. 8, e1002709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Link, J. C. et al. Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics 18, 89–100 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Link, J. C., Chen, X., Arnold, A. P. & Reue, K. Metabolic impact of sex chromosomes. Adipocyte 2, 74–79 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Mauvais-Jarvis, F., Arnold, A. P. & Reue, K. A. Guide for the design of pre-clinical studies on sex differences in metabolism. Cell. Metab. 25, 1216–1230 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Wang, S. et al. Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet. 2, e15 (2006).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    McCullough, L. D. et al. NIH initiative to balance sex of animals in preclinical studies: generative questions to guide policy, implementation, and metrics. Biol. Sex. Differ. 5, 15–22 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. 127

    Klein, S. L. et al. Opinion: Sex inclusion in basic research drives discovery. Proc. Natl Acad. Sci. USA 112, 5257–5258 (2015).

    CAS  PubMed  Google Scholar 

  128. 128

    Becker, J. B., Prendergast, B. J. & Liang, J. W. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol. Sex. Differ. 7, 34–41 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. 129

    Villareal, D. T., Apovian, C. M., Kushner, R. F. & Klein, S. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am. J. Clin. Nutr. 82, 923–934 (2005).

    CAS  PubMed  Google Scholar 

  130. 130

    Cree, M. G. et al. Intramuscular and liver triglycerides are increased in the elderly. J. Clin. Endocrinol. Metab. 89, 3864–3871 (2004).

    CAS  PubMed  Google Scholar 

  131. 131

    Shimokata, H. et al. Age as independent determinant of glucose tolerance. Diabetes 40, 44–51 (1991).

    CAS  PubMed  Google Scholar 

  132. 132

    Jackson, R. A. Mechanisms of age-related glucose intolerance. Diabetes Care 13, 9 (1990).

    Google Scholar 

  133. 133

    van der Heijden, R. A. et al. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis. Sci. Rep. 5, 16474–16489 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. 134

    Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134–145 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Nadiv, O., Cohen, O. & Zick, Y. Defects of insulin's signal transduction in old rat livers. Endocrinology 130, 1515–1524 (1992).

    CAS  PubMed  Google Scholar 

  136. 136

    Elahi, D., Muller, D. C., Andersen, D. K., Tobin, J. D. & Andres, R. The effect of age and glucose concentration on insulin secretion by the isolated perfused rat pancreas. Endocrinology 116, 11–16 (1985).

    CAS  PubMed  Google Scholar 

  137. 137

    Perfetti, R., Rafizadeh, C. M., Liotta, A. S. & Egan, J. M. Age-dependent reduction in insulin secretion and insulin mRNA in isolated islets from rats. Am. J. Physiol. Endocrinol. Metab. 269, E983 (1995).

    CAS  Google Scholar 

  138. 138

    Leiter, E. H., Premdas, F., Harrison, D. E. & Lipson, L. G. Aging and glucose homeostasis in C57BL/6J male mice. FASEB J. 2, 2807–2811 (1988).

    CAS  PubMed  Google Scholar 

  139. 139

    Klimas, J. E. Oral glucose tolerance during the life-span of a colony of rats. J. Gerontol. 23, 31–34 (1968).

    CAS  PubMed  Google Scholar 

  140. 140

    Lamming, D. W. et al. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell 12, 712–718 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Nishikawa, S., Yasoshima, A., Doi, K., Nakayama, H. & Uetsuka, K. Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp. Animals 56, 263–272 (2007).

    CAS  Google Scholar 

  142. 142

    Kubant, R. et al. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats. Nutr. Diabetes 5, e188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Timmers, S. et al. Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice. Nutr. Diabetes 1, e11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Lucas, F., Ackroff, K. & Sclafani, A. Dietary fat-induced hyperphagia in rats as a function of fat type and physical form. Physiol. Behav. 45, 937–946 (1989).

    CAS  PubMed  Google Scholar 

  145. 145

    Sclafani, A. Carbohydrate-induced hyperphagia and obesity in the rat: effects of saccharide type, form, and taste. Neurosci. Biobehav. Rev. 11, 155–162 (1987).

    CAS  PubMed  Google Scholar 

  146. 146

    Kübeck, R. et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol. Metab. 5, 1162–1174 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. 147

    Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    CAS  Google Scholar 

  148. 148

    Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    PubMed  Google Scholar 

  149. 149

    Desmarchelier, C. et al. Diet-induced obesity in ad libitum-fed mice: food texture overrides the effect of macronutrient composition. Br. J. Nutr. 109, 1518–1527 (2013).

    CAS  PubMed  Google Scholar 

  150. 150

    Warden, C. H. & Fisler, J. S. Comparisons of diets used in animal models of high fat feeding. Cell Metab. 7, 277–280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Chassaing, B. et al. Lack of soluble fiber drives diet-induced adiposity in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G528–G541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Lephart, E. D., Setchell, K. D. R., Handa, R. J. & Lund, T. D. Behavioral effects of endocrine-disrupting substances: phytoestrogens. ILAR J. 45, 443–454 (2004).

    CAS  PubMed  Google Scholar 

  153. 153

    Vadiveloo, M., Scott, M., Quatromoni, P., Jacques, P. & Parekh, N. Trends in dietary fat intake and high-fat foods from 1991–2008 in the Framingham Heart Study participants. Br. J. Nutr. 111, 724–734 (2014).

    CAS  PubMed  Google Scholar 

  154. 154

    Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  Google Scholar 

  155. 155

    Kless, C. et al. Diet-induced obesity causes metabolic impairment independent of alterations in gut barrier integrity. Mol. Nutr. Food Res. 59, 968–978 (2015).

    CAS  PubMed  Google Scholar 

  156. 156

    Müller, V. M. et al. Gut barrier impairment by high-fat diet in mice depends on housing conditions. Mol. Nutr. Food Res. 60, 897–908 (2016).

    PubMed  Google Scholar 

  157. 157

    Bray, G. A., Nielsen, S. J. & Popkin, B. M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79, 537–543 (2004).

    CAS  PubMed  Google Scholar 

  158. 158

    Powell, E. S., Smith-Taillie, L. P. & Popkin, B. M. Added sugars intake across the distribution of US children and adult consumers: 1977–2012. J. Acad. Nutr. Dietet. 116, 1543–1550 (2016).

    Google Scholar 

  159. 159

    Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Lim, J. S., Mietus-Snyder, M., Valente, A., Schwarz, J. M. & Lustig, R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 7, 251–264 (2010).

    CAS  PubMed  Google Scholar 

  161. 161

    Jurgens, H. et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes. Res. 13, 1146–1156 (2005).

    PubMed  Google Scholar 

  162. 162

    Sumiyoshi, M., Sakanaka, M. & Kimura, Y. Chronic intake of high-fat and high-sucrose diets differentially affects glucose intolerance in mice. J. Nutr. 136, 582–587 (2006).

    CAS  PubMed  Google Scholar 

  163. 163

    Lozano, I. et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr. Metab. 13, 15 (2016).

    Google Scholar 

  164. 164

    Avena, N. M., Rada, P. & Hoebel, B. G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 32, 20–39 (2008).

    CAS  PubMed  Google Scholar 

  165. 165

    la Fleur, S. E., Luijendijk, M. C. M., van der Zwaal, E. M., Brans, M. A. D. & Adan, R. A. H. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int. J. Obes. 38, 643–649 (2014).

    CAS  Google Scholar 

  166. 166

    Kless, C., Rink, N., Rozman, J. & Klingenspor, M. Proximate causes for diet-induced obesity in laboratory mice: a case study. Eur. J. Clin. Nutr. 71, 306–317 (2017).

    CAS  PubMed  Google Scholar 

  167. 167

    Sampey, B. P. et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity 19, 1109–1117 (2011).

    CAS  PubMed  Google Scholar 

  168. 168

    Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Berg, C. et al. Eating patterns and portion size associated with obesity in a Swedish population. Appetite 52, 21–26 (2009).

    PubMed  Google Scholar 

  170. 170

    Beckers, J., Wurst, W. & de Angelis, M. H. Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat. Rev. Genet. 10, 371–380 (2009).

    CAS  PubMed  Google Scholar 

  171. 171

    Patten, B. C. Network Orientors: Steps Toward a Cosmography of Ecosystems: Orientors for Directional Development, Self-Organization, and Autoevolution in Eco Targets, Goal Functions, and Orientors (eds Müller, F. & Leupelt, M.) 137–160 (Springer, 1998).

    Google Scholar 

  172. 172

    Schaefer, S. & Nadeau, J. H. The genetics of epigenetic inheritance: modes, molecules, and mechanisms. Q. Rev. Biol. 90, 381–415 (2015).

    PubMed  Google Scholar 

  173. 173

    Sasson, I. E., Vitins, A. P., Mainigi, M. A., Moley, K. H. & Simmons, R. A. Pre-gestational versus gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 58, 615–624 (2015).

    CAS  PubMed  Google Scholar 

  174. 174

    Borengasser, S. J. et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154, 4113–4125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Shankar, K. et al. Maternal overweight programs insulin and adiponectin signaling in the offspring. Endocrinology 151, 2577–2589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Shankar, K. et al. Maternal obesity at conception programs obesity in the offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R528–R538 (2008).

    CAS  PubMed  Google Scholar 

  177. 177

    Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Ng, S. F. et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    CAS  Google Scholar 

  179. 179

    Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016).

    CAS  PubMed  Google Scholar 

  181. 181

    Kivimaki, M. et al. Substantial intergenerational increases in body mass index are not explained by the fetal overnutrition hypothesis: the Cardiovascular Risk in Young Finns Study. Am. J. Clin. Nutr. 86, 1509–1514 (2007).

    CAS  PubMed  Google Scholar 

  182. 182

    Fox, C. S. et al. Trends in the association of parental history of obesity over 60 years. Obesity 22, 919–924 (2014).

    PubMed  Google Scholar 

  183. 183

    Lake, J. K., Power, C. & Cole, T. J. Child to adult body mass index in the 1958 British birth cohort: associations with parental obesity. Arch. Dis. Child. 77, 376–380 (1997).

    CAS  PubMed  Google Scholar 

  184. 184

    Meigs, J. B., Cupples, L. A. & Wilson, P. W. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49, 2201–2207 (2000).

    CAS  PubMed  Google Scholar 

  185. 185

    Grandjean, V. et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193–18202 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    CAS  PubMed  Google Scholar 

  187. 187

    Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    CAS  PubMed  Google Scholar 

  188. 188

    Vickers, M. & Sloboda, D. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front. Physiol. 3, 242–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Masuyama, H., Mitsui, T., Nobumoto, E. & Hiramatsu, Y. The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156, 2482–2491 (2015).

    CAS  PubMed  Google Scholar 

  190. 190

    Hervey, G. R. The effects of lesions in the hypothalamus in parabiotic rats. J. Physiol. 145, 336–352 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Coleman, D. L. & Hummel, K. P. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217, 1298–1304 (1969).

    CAS  PubMed  Google Scholar 

  192. 192

    Coleman, D. L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298 (1973).

    CAS  PubMed  Google Scholar 

  193. 193

    Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367–378 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Farooqi, I. S. & O'Rahilly, S. Genetics of obesity in humans. Endocr. Rev. 27, 710–718 (2006).

    CAS  PubMed  Google Scholar 

  195. 195

    Coleman, D. L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    CAS  PubMed  Google Scholar 

  196. 196

    Trayhurn, P. & Thurlby, P. L., & James, W. P. T. Thermogenic defect in pre-obese ob/ob mice. Nature 266, 60–62 (1977).

    CAS  PubMed  Google Scholar 

  197. 197

    Himms-Hagen, J. & Desautels, M. A mitochondrial defect in brown adipose tissue of the obese (obob) mouse: reduced binding of purine nucleotides and a failure to respond to cold by an increase in binding. Biochem. Biophys. Res. Commun. 83, 628–634 (1978).

    CAS  PubMed  Google Scholar 

  198. 198

    Thurlby, P. L. & Trayhurn, P. Regional blood flow in genetically obese (ob/ob) mice. Pflügers Arch. 385, 193–201 (1980).

    CAS  PubMed  Google Scholar 

  199. 199

    Swerdloff, R. S., Batt, R. A. & Bray, G. A. Reproductive hormonal function in the genetically obese (ob/ob) mouse. Endocrinology 98, 1359–1364 (1976).

    CAS  PubMed  Google Scholar 

  200. 200

    Dubuc, P. U. Basal corticosterone levels of young ob/ob mice. Horm. Metab. Res. 9, 95–97 (1977).

    CAS  PubMed  Google Scholar 

  201. 201

    Gat-Yablonski, G. & Phillip, M. Leptin and regulation of linear growth. Curr. Opin. Clin. Nutr. Metab. Care 11, 303–308 (2008).

    CAS  PubMed  Google Scholar 

  202. 202

    Coleman, D. L. & Hummel, K. P. The influence of genetic background on the expression of the obese (ob) gene in the mouse. Diabetologia 9, 287–293 (1973).

    CAS  PubMed  Google Scholar 

  203. 203

    Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    CAS  PubMed  Google Scholar 

  204. 204

    Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205

    Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    CAS  PubMed  Google Scholar 

  206. 206

    Phillips, M. S. et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet. 13, 18–19 (1996).

    CAS  PubMed  Google Scholar 

  207. 207

    Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P. & Baskin, D. G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Wu-Peng, X. S. et al. Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46, 513–518 (1997).

    CAS  PubMed  Google Scholar 

  209. 209

    Chua, S. C. et al. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 45, 1141–1143 (1996).

    CAS  PubMed  Google Scholar 

  210. 210

    Friedman, J. E. et al. Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am. J. Physiol. Endocrinol. Metab. 273, E1014–E1023 (1997).

    CAS  Google Scholar 

  211. 211

    Koletsky, S. Obese spontaneously hypertensive rats — a model for study of atherosclerosis. Exp. Mol. Pathol. 19, 53–60 (1973).

    CAS  PubMed  Google Scholar 

  212. 212

    Peterson, R. G., Shaw, W. N., Neel, M. A., Little, L. A. & Eichberg, J. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J. 32, 16–19 (1990).

    Google Scholar 

  213. 213

    Kawano, K. et al. Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422–1428 (1992).

    CAS  PubMed  Google Scholar 

  214. 214

    Moran, T. H. Unraveling the obesity of OLETF rats. Physiol. Behav. 94, 71–78 (2008).

    CAS  PubMed  Google Scholar 

  215. 215

    Dockray, G. J. Cholecystokinin and gut-brain signalling. Regul. Pept. 155, 6–10 (2009).

    CAS  PubMed  Google Scholar 

  216. 216

    Bi, S., Scott, K. A., Hyun, J., Ladenheim, E. E. & Moran, T. H. Running wheel activity prevents hyperphagia and obesity in Otsuka Long-Evans Tokushima Fatty rats: role of hypothalamic signaling. Endocrinology 146, 1676–1685 (2005).

    CAS  PubMed  Google Scholar 

  217. 217

    Clemmensen, C. et al. Gut-brain cross-talk in metabolic control. Cell 168, 758–774 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218

    Day, C. & Bailey, C. J. Effect of the antiobesity agent sibutramine in obese-diabetic ob/ob mice. Int. J. Obes. 22, 619–623 (1998).

    CAS  Google Scholar 

  219. 219

    Liu, J., Lee, J., Hernandez, M. A. S., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220

    Scrocchi, L. A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996).

    CAS  PubMed  Google Scholar 

  221. 221

    Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117, 143–152 (2007).

    CAS  PubMed  Google Scholar 

  222. 222

    Finan, B., Clemmensen, C. & Müller, T. D. Emerging opportunities for the treatment of metabolic diseases: glucagon-like peptide-1 based multi-agonists. Mol. Cell. Endocrinol. 418, 42–54 (2015).

    CAS  PubMed  Google Scholar 

  223. 223

    Edwards, A. M. et al. Too many roads not taken. Nature 470, 163–165 (2011).

    CAS  PubMed  Google Scholar 

  224. 224

    de Angelis, M. H. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 47, 969–978 (2015).

    PubMed  PubMed Central  Google Scholar 

  225. 225

    Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226

    Schwartz, M. W. & Porte, D. Diabetes, obesity, and the brain. Science 307, 375–379 (2005).

    CAS  PubMed  Google Scholar 

  227. 227

    Baumeier, C. et al. Hepatic DPP4 DNA methylation associates with fatty liver. Diabetes 66, 25–35 (2017).

    CAS  PubMed  Google Scholar 

  228. 228

    Kammel, A. et al. Early hypermethylation of hepatic Igfbp2 results in its reduced expression preceding fatty liver in mice. Hum. Mol. Genet. 25, 2588–2599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229

    Levin, B. E., Triscari, J., Hogan, S. & Sullivan, A. C. Resistance to diet-induced obesity: food intake, pancreatic sympathetic tone, and insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 252, R471–R478 (1987).

    CAS  Google Scholar 

  230. 230

    Clegg, D. J. et al. Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R981–R986 (2005).

    CAS  PubMed  Google Scholar 

  231. 231

    Levin, B. E. & Dunn-Meynell, A. A. Reduced central leptin sensitivity in rats with diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R941–R948 (2002).

    PubMed  Google Scholar 

  232. 232

    Levin, B. E., Dunn-Meynell, A. A. & Banks, W. A. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R143–R150 (2003).

    PubMed  Google Scholar 

  233. 233

    Kaiser, N. et al. Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 54, S137–S144 (2005).

    CAS  PubMed  Google Scholar 

  234. 234

    Walder, K. R., Fahey, R. P., Morton, G. J., Zimmet, P. Z. & Collier, G. R. Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Int. J. Exp. Diabetes Res. 1, 177–184 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235

    Scherzer, P. et al. Psammomys obesus, a particularly important animal model for the study of the human diabetic nephropathy. Anat. Cell Biol. 44, 176–185 (2011).

    PubMed  PubMed Central  Google Scholar 

  236. 236

    Spolding, B. et al. Rapid development of non-alcoholic steatohepatitis in Psammomys obesus (Israeli sand rat). PLoS ONE 9, e92656 (2014).

    PubMed  PubMed Central  Google Scholar 

  237. 237

    Leiter, E. H. & Reifsnyder, P. C. Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. Diabetes 53, S4–S11 (2004).

    CAS  PubMed  Google Scholar 

  238. 238

    Kluge, R., Scherneck, S., Schürmann, A. & Joost, H. G. in Animal Models in Diabetes Research (Joost, H. G., Al-Hasani, H. & Schürmann, A.) 59–73 (Humana Press, 2012).

    Google Scholar 

  239. 239

    Veroni, M. C., Proietto, J. & Larkins, R. G. Evolution of insulin resistance in New Zealand obese mice. Diabetes 40, 1480–1487 (1991).

    CAS  PubMed  Google Scholar 

  240. 240

    Mirhashemi, F. et al. Diet dependence of diabetes in the New Zealand Obese (NZO) mouse: total fat, but not fat quality or sucrose accelerates and aggravates diabetes. Exp. Clin. Endocrinol. Diabetes 119, 167–171 (2011).

    CAS  PubMed  Google Scholar 

  241. 241

    Jurgens, H. S. et al. Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Diabetologia 50, 1481–1489 (2007).

    CAS  PubMed  Google Scholar 

  242. 242

    Kluth, O. et al. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia 54, 605–616 (2011).

    CAS  PubMed  Google Scholar 

  243. 243

    Schwenk, R. W. et al. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia 58, 604–614 (2015).

    CAS  PubMed  Google Scholar 

  244. 244

    Lubura, M. et al. Diabetes prevalence in NZO females depends on estrogen action on liver fat content. Am. J. Physiol. Endocrinol. Metab. 309, E968–E980 (2015).

    CAS  PubMed  Google Scholar 

  245. 245

    Baumeier, C. et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 1851, 566–576 (2015).

    CAS  PubMed  Google Scholar 

  246. 246

    Kim, J. H. & Saxton, A. M. in Animal Models in Diabetes Research (Joost, H. G., Al-Hasani, H. & Schürmann, A.) 75–87 (Humana Press, 2012).

    Google Scholar 

  247. 247

    Kim, J. H. et al. Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J. Endocrinol. 191, 437–446 (2006).

    CAS  PubMed  Google Scholar 

  248. 248

    Wang, Y., Nishina, P. M. & Naggert, J. K. Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. J. Endocrinol. 203, 65–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249

    Devlin, M. J. et al. Early-Onset Type 2 Diabetes Impairs Skeletal Acquisition in the Male TALLYHO/JngJ Mouse. Endocrinology 155, 3806–3816 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. 250

    Cummings, B. P. et al. Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1782–R1793 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. 251

    Fields, A. J. et al. Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes. J. Orthop. Res. 33, 738–746 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. 252

    Agrawal, R. et al. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes. Biochim. Biophys. Acta 1842, 1313–1323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. 253

    Cummings, B. P. et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc. Natl Acad. Sci. USA 108, 14670–14675 (2011).

    CAS  PubMed  Google Scholar 

  254. 254

    Cummings, B. P. et al. Chronic administration of the glucagon-like peptide-1 analog, liraglutide, delays the onset of diabetes and lowers triglycerides in UCD-T2DM rats. Diabetes 59, 2653–2661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. 255

    Cummings, B. P. et al. Administration of pioglitazone alone or with alogliptin delays diabetes onset in UCD-T2DM rats. J. Endocrinol. 221, 133–144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. 256

    Cummings, B. P. et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology 138, 2437–2446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. 257

    Cummings, B. P. et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology 153, 3620–3632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. 258

    Halban, P. A. et al. β-Cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J. Clin. Endocrinol. Metab. 99, 1983–1992 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. 259

    Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β-cell dedifferentiation as mechanism of diabetic β-cell failure. Cell 150, 1223–1234 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. 260

    Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. 261

    Goto, Y., Kakizaki, M. & Masaki, N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J. Exp. Med. 119, 85–90 (1976).

    CAS  PubMed  Google Scholar 

  262. 262

    Movassat, J., Saulnier, C. & Portha, B. Beta-cell mass depletion precedes the onset of hyperglycaemia in the GK rat, a genetic model of non-insulin-dependent diabetes mellitus. Diabete Metab. 21, 365–370 (1995).

    CAS  PubMed  Google Scholar 

  263. 263

    Portha, B. Programmed disorders of β-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diabetes Metab. Res. Rev. 21, 495–504 (2005).

    CAS  PubMed  Google Scholar 

  264. 264

    Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265

    Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest. 103, 27–37 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. 266

    Yoshioka, M., Kayo, T., Ikeda, T. & Koizuni, A. A. Novel locus, Mody4, Distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) nutant mice. Diabetes 46, 887–894 (1997).

    CAS  PubMed  Google Scholar 

  267. 267

    Hattersley, A. T. & Pearson, E. R. Minireview: Pharmacogenetics and beyond: the interaction of therapeutic response, β-cell physiology, and genetics in diabetes. Endocrinology 147, 2657–2663 (2006).

    CAS  PubMed  Google Scholar 

  268. 268

    Wang, Z., York, N. W., Nichols, C. G. & Remedi, M. S. Pancreatic β-cell dedifferentiation in diabetes and re-differentiation following insulin therapy. Cell Metab. 19, 872–882 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. 269

    Brereton, M. F. et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat. Commun. 5, 4639–4650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. 270

    Koster, J. C., Marshall, B. A., Ensor, N., Corbett, J. A. & Nichols, C. G. Targeted overactivity of β cell KATP channels induces profound neonatal diabetes. Cell 100, 645–654 (2000).

    CAS  PubMed  Google Scholar 

  271. 271

    Remedi, M. S. et al. Secondary consequences of β-cell inexcitability: identification and prevention in a murine model of KATP-induced neonatal diabetes mellitus. Cell Metab. 9, 140–151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. 272

    Dukes, I. D. et al. Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1α-deficient mice. J. Biol. Chem. 273, 24457–24464 (1998).

    CAS  PubMed  Google Scholar 

  273. 273

    Toye, A. A. et al. A new mouse model of type 2 diabetes, produced by N-ethyl-nitrosourea mutagenesis, is the result of a missense mutation in the glucokinase gene. Diabetes 53, 1577–1583 (2004).

    CAS  PubMed  Google Scholar 

  274. 274

    Froguel, P. et al. Familial hyperglycemia due to mutations in glucokinase — definition of a subtype of diabetes mellitus. N. Engl. J. Med. 328, 697–702 (1993).

    CAS  PubMed  Google Scholar 

  275. 275

    Vionnet, N. et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 356, 721–722 (1992).

    CAS  PubMed  Google Scholar 

  276. 276

    McDonald, T. J. & Ellard, S. Maturity onset diabetes of the young: identification and diagnosis. Ann. Clin. Biochem. 50, 403–415 (2013).

    PubMed  Google Scholar 

  277. 277

    Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. β-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. 278

    Brissova, M. et al. Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J. Biol. Chem. 277, 11225–11232 (2002).

    CAS  PubMed  Google Scholar 

  279. 279

    Bastidas-Ponce, A. et al. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Mol. Metab. 6, 524–534 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. 280

    King, B. M. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav. 87, 221–244 (2006).

    CAS  PubMed  Google Scholar 

  281. 281

    Mitchel, J. S. & Keesey, R. E. Defense of a lowered weight maintenance level by lateral hypothamically lesioned rats: evidence from a restriction-refeeding regimen. Physiol. Behav. 18, 1121–1125 (1977).

    CAS  PubMed  Google Scholar 

  282. 282

    Bonner-Weir, S., Trent, D. F. & Weir, G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Invest. 71, 1544–1553 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. 283

    Skovso, S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J. Diabetes Investig. 5, 349–358 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. 284

    Gilbert, E. R., Fu, Z. & Liu, D. Development of a nongenetic mouse model of type 2 diabetes. Exp. Diabetes Res. 2011, 416254 (2011).

    PubMed  PubMed Central  Google Scholar 

  285. 285

    Reed, M. J. et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49, 1390–1394 (2000).

    CAS  PubMed  Google Scholar 

  286. 286

    Levine, J. A. Measurement of energy expenditure. Public Health Nutr. 8, 1123–1132 (2005).

    PubMed  Google Scholar 

  287. 287

    Tschöp, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2011).

    PubMed  PubMed Central  Google Scholar 

  288. 288

    Butler, A. A. & Kozak, L. P. A. Recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 59, 323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. 289

    Speakman, J. R. Measuring energy metabolism in the mouse — theoretical, practical, and analytical considerations. Front. Physiol. 4, 34 (2013).

    PubMed  PubMed Central  Google Scholar 

  290. 290

    Speakman, J. R., Fletcher, Q. & Vaanholt, L. The '39 steps': an algorithm for performing statistical analysis of data on energy intake and expenditure. Dis. Model. Mech. 6, 293–301 (2013).

    PubMed  PubMed Central  Google Scholar 

  291. 291

    McMurray, F. et al. Adult onset global loss of the Fto gene alters body composition and metabolism in the mouse. PLoS Genet. 9, e1003166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. 292

    Sorge, R. E. et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 11, 629–632 (2014).

    CAS  PubMed  Google Scholar 

  293. 293

    Ussar, S. et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 22, 516–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. 294

    Razzoli, M., Carboni, L., Andreoli, M., Ballottari, A. & Arban, R. Different susceptibility to social defeat stress of BalbC and C57BL6/J mice. Behav. Brain Res. 216, 100–108 (2011).

    PubMed  Google Scholar 

  295. 295

    Ergang, P. et al. Differential impact of stress on hypothalamic-pituitary-adrenal axis: gene expression changes in Lewis and Fisher rats. Psychoneuroendocrinology 53, 49–59 (2015).

    CAS  PubMed  Google Scholar 

  296. 296

    Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. 297

    Martin, B., Ji, S., Maudsley, S. & Mattson, M. P. “Control” laboratory rodents are metabolically morbid: Why it matters. Proc. Natl Acad. Sci. USA 107, 6127–6133 (2010).

    CAS  PubMed  Google Scholar 

  298. 298

    Basterfield, L., Lumley, L. K. & Mathers, J. C. Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. Int. J. Obes. 33, 212–218 (2009).

    CAS  Google Scholar 

  299. 299

    Garrett, L., Lie, D. C., Hrabe de Angelis, M., Wurst, W. & Holter, S. M. Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neurosci. 13, 61 (2012).

    PubMed  PubMed Central  Google Scholar 

  300. 300

    Sylow, L., Kleinert, M., Richter, E. A. & Jensen, T. E. Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 13, 133–148 (2017).

    CAS  PubMed  Google Scholar 

  301. 301

    Bradley, R. L., Jeon, J. Y., Liu, F. F. & Maratos-Flier, E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 295, E586–E594 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. 302

    Dumke, C. L. et al. Genetic selection of mice for high voluntary wheel running: effect on skeletal muscle glucose uptake. J. Appl. Physiol. 91, 1289–1297 (2001).

    CAS  PubMed  Google Scholar 

  303. 303

    Barres, R. & Zierath, J. R. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat. Rev. Endocrinol. 12, 441–451 (2016).

    CAS  PubMed  Google Scholar 

  304. 304

    Cao, L. et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142, 52–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. 305

    Cao, L. et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 14, 324–338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. 306

    Beura, L. K. et al. Recapitulating adult human immune traits in laboratory mice by normalizing environment. Nature 532, 512–516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. 307

    Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    CAS  PubMed  Google Scholar 

  308. 308

    Schwartz, M. W. et al. Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. J. Clin. Invest. 88, 1272–1281 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. 309

    Chen, M., Woods, S. C. & Porte, D. Effect of cerebral intraventricular insulin on pancreatic insulin secretion in the dog. Diabetes 24, 910–914 (1975).

    CAS  PubMed  Google Scholar 

  310. 310

    Woods, S. C. & Porte, D. Effect of intracisternal insulin on plasma glucose and insulin in the dog. Diabetes 24, 905–909 (1975).

    CAS  PubMed  Google Scholar 

  311. 311

    Coate, K. C. et al. Portal vein glucose entry triggers a coordinated cellular response that potentiates hepatic glucose uptake and storage in normal but not high-fat/high-fructose-fed dogs. Diabetes 62, 392–400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. 312

    Coate, K. C. et al. A high-fat, high-fructose diet accelerates nutrient absorption and impairs net hepatic glucose uptake in response to a mixed meal in partially pancreatectomized dogs. J. Nutr. 141, 1643–1651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  313. 313

    Ionut, V. et al. Novel canine models of obese prediabetes and mild type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 298, E38–E48 (2010).

    CAS  PubMed  Google Scholar 

  314. 314

    Coate, K. C. et al. Chronic overeating impairs hepatic glucose uptake and disposition. Am. J. Physiol. Endocrinol. Metab. 308, E860–E867 (2015).

    PubMed  PubMed Central  Google Scholar 

  315. 315

    Ellmerer, M. et al. Reduced access to insulin-sensitive tissues in dogs with obesity secondary to increased fat intake. Diabetes 55, 1769–1775 (2006).

    CAS  PubMed  Google Scholar 

  316. 316

    Kaiyala, K. J., Prigeon, R. L., Kahn, S. E., Woods, S. C. & Schwartz, M. W. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 49, 1525–1533 (2000).

    CAS  PubMed  Google Scholar 

  317. 317

    Coate, K. C. et al. Hepatic glucose uptake and disposition during short-term high-fat versus high-fructose feeding. Am. J. Physiol. Endocrinol. Metab. 307, E151–E160 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. 318

    Gifford, A. et al. Canine body composition quantification using 3 tesla fat-water MRI. J. Magn. Reson. Imag. 39, 485–491 (2014).

    Google Scholar 

  319. 319

    Begg, D. P. et al. Insulin detemir is transported from blood to cerebrospinal fluid and has prolonged central anorectic action relative to NPH insulin. Diabetes 64, 2457–2466 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  320. 320

    Coate, K. C. et al. Chronic consumption of a high-fat/high-fructose diet renders the liver incapable of net hepatic glucose uptake. Am. J. Physiol. Endocrinol. Metab. 299, E887–E898 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  321. 321

    Verkest, K. R., Rand, J. S., Fleeman, L. M. & Morton, J. M. Spontaneously obese dogs exhibit greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs. Domest. Animal Endocrinol. 42, 103–112 (2012).

    CAS  Google Scholar 

  322. 322

    Verkest, K. R., Fleeman, L. M., Morton, J. M., Ishioka, K. & Rand, J. S. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis. Domest. Animal Endocrinol. 41, 24–34 (2011).

    CAS  Google Scholar 

  323. 323

    Banfield Pet Hospital. Banfield Pet Hospital's state of pet health 2016 report https://www.banfield.com/Banfield/media/PDF/Downloads/soph/Banfield-State-of-Pet-Health-Report-2016.pdf (2016).

  324. 324

    Stevenson, R. W., Williams, P. E. & Cherrington, A. D. Role of glucagon suppression on gluconeogenesis during insulin treatment of the conscious diabetic dog. Diabetologia 30, 782–790 (1987).

    CAS  PubMed  Google Scholar 

  325. 325

    Keller, U., Cherrington, A. D. & Liljenquist, J. E. Ketone body turnover and net hepatic ketone production in fasted and diabetic dogs. Am. J. Physiol. Endocrinol. Metab. 235, E238–E248 (1978).

    CAS  Google Scholar 

  326. 326

    Edgerton, D. S. & Cherrington, A. D. Glucagon as a critical factor in the pathology of diabetes. Diabetes 60, 377–380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. 327

    Moore, M. C. et al. Diet-induced impaired glucose tolerance and gestational diabetes in the dog. J. Appl. Physiol. 110, 458–467 (2011).

    CAS  PubMed  Google Scholar 

  328. 328

    Coate, K. C. et al. Hepatic glucose metabolism in late pregnancy: normal versus high-fat and -fructose diet. Diabetes 62, 753–761 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  329. 329

    Hwang, J. H. et al. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J. Clin. Invest. 95, 783–787 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. 330

    Davis, M. A., Williams, P. E. & Cherrington, A. D. Effect of a mixed meal on hepatic lactate and gluconeogenic precursor metabolism in dogs. Am. J. Physiol. Endocrinol. Metab. 247, E362–E369 (1984).

    CAS  Google Scholar 

  331. 331

    Koopmans, S. J. & Schuurman, T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: from food intake to metabolic disease. Eur. J. Pharmacol. 759, 231–239 (2015).

    CAS  PubMed  Google Scholar 

  332. 332

    Renner, S. et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86, 406–421 (2016).

    CAS  PubMed  Google Scholar 

  333. 333

    Whitelaw, C. B., Sheets, T. P., Lillico, S. G. & Telugu, B. P. Engineering large animal models of human disease. J. Pathol. 238, 247–256 (2016).

    PubMed  Google Scholar 

  334. 334

    Renner, S. et al. Glucose intolerance and reduced proliferation of pancreatic β-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59, 1228–1238 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. 335

    Renner, S. et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62, 1505–1511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. 336

    Umeyama, K. et al. Dominant-negative mutant hepatocyte nuclear factor 1α induces diabetes in transgenic-cloned pigs. Transgen. Res. 18, 697–706 (2009).

    CAS  Google Scholar 

  337. 337

    Shim, J., Al-Mashhadi, R. H., Sorensen, C. B. & Bentzon, J. F. Large animal models of atherosclerosis — new tools for persistent problems in cardiovascular medicine. J. Pathol. 238, 257–266 (2016).

    CAS  PubMed  Google Scholar 

  338. 338

    Klymiuk, N. et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61, 1527–1532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  339. 339

    Klymiuk, N., Ludwig, B., Seissler, J., Reichart, B. & Wolf, E. Current concepts of using pigs as a source for beta-cell replacement therapy of type 1 diabetes. Curr. Mol. Biol. Rep. 2, 73–82 (2016).

    Google Scholar 

  340. 340

    Kemter, E. et al. INS-eGFP transgenic pigs: a novel reporter system for studying maturation, growth and vascularisation of neonatal islet-like cell clusters. Diabetologia 60, 1152–1156 (2017).

    CAS  PubMed  Google Scholar 

  341. 341

    Pound, L. D., Kievit, P. & Grove, K. L. The nonhuman primate as a model for type 2 diabetes. Curr. Opin. Endocrinol., Diabetes Obes. 21, 89–94 (2014).

    CAS  Google Scholar 

  342. 342

    Scott, K. A. & Moran, T. H. The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R983–R987 (2007).

    CAS  PubMed  Google Scholar 

  343. 343

    Moran, T. H. et al. Peptide YY(3–36) inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R384–R388 (2005).

    CAS  PubMed  Google Scholar 

  344. 344

    Ahren, B., Baldwin, R. M. & Havel, P. J. Pharmacokinetics of human leptin in mice and rhesus monkeys. Int. J. Obes. 24, 1579–1585 (2000).

    CAS  Google Scholar 

  345. 345

    Tang-Christensen, M., Havel, P. J., Jacobs, R. R., Larsen, P. J. & Cameron, J. L. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J. Clin. Endocrinol. Metab. 84, 711–717 (1999).

    CAS  PubMed  Google Scholar 

  346. 346

    D'Alessio, D. A., Kieffer, T. J., Taborsky, J. & Havel, P. J. Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J. Clin. Endocrinol. Metab. 86, 1253–1259 (2001).

    CAS  PubMed  Google Scholar 

  347. 347

    Havel, P. J. & Valverde, C. Autonomic mediation of glucagon secretion during insulin-induced hypoglycemia in rhesus monkeys. Diabetes 45, 960–966 (1996).

    PubMed  Google Scholar 

  348. 348

    Cummings, B. P., Bremer, A. A., Kieffer, T. J., D'Alessio, D. & Havel, P. J. Investigation of the mechanisms contributing to the compensatory increase in insulin secretion during dexamethasone-induced insulin resistance in rhesus macaques. J. Endocrinol. 216, 207–215 (2013).

    CAS  PubMed  Google Scholar 

  349. 349

    Havel, P. J. & Ahren, B. Activation of autonomic nerves and the adrenal medulla contributes to increased glucagon secretion during moderate insulin-induced hypoglycemia in women. Diabetes 46, 801–807 (1997).

    CAS  PubMed  Google Scholar 

  350. 350

    Ahren, B. & Holst, J. J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 50, 1030–1038 (2001).

    CAS  PubMed  Google Scholar 

  351. 351

    Ramsey, J. J. et al. Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp. Gerontol. 35, 1131–1149 (2000).

    CAS  PubMed  Google Scholar 

  352. 352

    Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys: the NIA study. Nature 489, 10–21 (2012).

    PubMed Central  Google Scholar 

  353. 353

    Kemnitz, J. W. Calorie restriction and aging in nonhuman primates. ILAR J. 52, 66–77 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  354. 354

    Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063–14075 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  355. 355

    Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  356. 356

    Howard, C. F. Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia 29, 301–306 (1986).

    PubMed  Google Scholar 

  357. 357

    Hansen, B. C. in Diabetes Mellitus: A Fundamental and Clinical Text (LeRoith, D., Taylor, S. I. & Olefsky, J. M.) 595–603 (Lippincott-Raven,1996).

    Google Scholar 

  358. 358

    Hansen, B. C. Pathophysiology of obesity-associated type II diabetes (NIDDM): implications from longitudinal studies of non-human primates. Nutrition 5, 48–50 (1989).

    CAS  PubMed  Google Scholar 

  359. 359

    de Koning, E. J. P., Bodkin, N. L., Hansen, B. C. & Clark, A. Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta-cell population. Diabetologia 36, 378–384 (1993).

    CAS  PubMed  Google Scholar 

  360. 360

    McCulloch, D. K., Kahn, S. E., Schwartz, M. W., Koerker, D. J. & Palmer, J. P. Effect of nicotinic acid-induced insulin resistance on pancreatic B cell function in normal and streptozocin-treated baboons. J. Clin. Invest. 87, 1395–1401 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  361. 361

    Higgins, P. B. et al. Eight week exposure to a high sugar high fat diet results in adiposity gain and alterations in metabolic biomarkers in baboons (Papio hamadryas sp.). Cardiovasc. Diabetol 9, 71–77 (2010).

    PubMed  PubMed Central  Google Scholar 

  362. 362

    Wachtman, L. M. et al. Differential contribution of dietary fat and monosaccharide to metabolic syndrome in the common marmoset (Callithrix jacchus). Obesity 19, 1145–1156 (2011).

    CAS  PubMed  Google Scholar 

  363. 363

    Aagaard-Tillery, K. M. et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J. Mol. Endocrinol. 41, 91–102 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  364. 364

    Grant, W. F. et al. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques. PLoS ONE 7, e48119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  365. 365

    Bremer, A. A. et al. Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin. Transl Sci. 4, 243–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  366. 366

    Bremer, A. A. et al. Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques. J. Nutr. 144, 5–11 (2014).

    CAS  PubMed  Google Scholar 

  367. 367

    Kavanagh, K. et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am. J. Clin. Nutr. 98, 349–357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  368. 368

    Bose, T. et al. Identification of a QTL for adipocyte volume and of shared genetic effects between adipocyte volume with aspartate aminotransferase. Biochem. Genet. 48, 538–547 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  369. 369

    Kamath, S. et al. Coordinated defects in hepatic long chain fatty acid metabolism and triglyceride accumulation contribute to insulin resistance in non-human primates. PLoS ONE 6, e27617 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  370. 370

    Kramer, J. A. et al. The common marmoset as a model for the study of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Vet. Pathol. 52, 404–413 (2014).

    PubMed  Google Scholar 

  371. 371

    Swarbrick, M. M. et al. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 150, 1670–1679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  372. 372

    Adams, A. C. et al. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS ONE 8, e65763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  373. 373

    Kharitonenkov, A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007).

    CAS  PubMed  Google Scholar 

  374. 374

    Nyborg, N. C., Molck, A. M., Madsen, L. W. & Bjerre Knudsen, L. The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes 61, 1243–1249 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  375. 375

    Kievit, P. et al. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 62, 490–497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  376. 376

    Lin, J. C. et al. Appetite enhancement and weight gain by peripheral administration of TrkB agonists in non-human primates. PLoS ONE 3, e1900 (2008).

    PubMed  PubMed Central  Google Scholar 

  377. 377

    Blevins, J. E. et al. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R431–R438 (2015).

    CAS  PubMed  Google Scholar 

  378. 378

    Eberling, J. L., Roberts, J. A., Rapp, P. R., Tuszynski, M. H. & Jagust, W. J. Cerebral glucose metabolism and memory in aged rhesus macaques. Neurobiol. Aging 18, 437–443 (1997).

    CAS  PubMed  Google Scholar 

  379. 379

    Peters, A. et al. Neurobiological bases of age-related cognitive decline in the rhesus monkey. J. Neuropathol. Exp. Neurol. 55, 861–874 (1996).

    CAS  PubMed  Google Scholar 

  380. 380

    Moss, M. B. & Jonak, E. Cerebrovascular disease and dementia: A primate model of hypertension and cognition. Alzheimers Dementia 3, S6–S15 (2007).

    Google Scholar 

  381. 381

    Bernier, M. et al. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet. Aging 8, 899–914 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  382. 382

    Renner, S. et al. Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced β-cell mass. Diabetes 61, 2166–2175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  383. 383

    Streckel, E. et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide in juvenile transgenic pigs modeling a pre-diabetic condition. J. Transl Med. 13, 73–86 (2015).

    PubMed  PubMed Central  Google Scholar 

  384. 384

    Hinkel, R. et al. Diabetes mellitus-induced microvascular destabilization in the myocardium. J. Am. Coll. Cardiol. 69, 131–143 (2017).

    CAS  PubMed  Google Scholar 

  385. 385

    Kleinwort, K. J. H. et al. Retinopathy with central oedema in an INS C94Y transgenic pig model of long-term diabetes. Diabetologia 60, 1541–1549 (2017).

    CAS  PubMed  Google Scholar 

  386. 386

    Renner, S., Blutke, A., Streckel, E., Wanke, R. & Wolf, E. Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models. J. Pathol. 238, 345–358 (2016).

    CAS  PubMed  Google Scholar 

  387. 387

    Blutke, A. et al. The Munich MIDY Pig Biobank — a unique resource for studying organ crosstalk in diabetes. Mol. Metab. 6, 931–940 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  388. 388

    Hara, S., Umeyama, K., Yokoo, T., Nagashima, H. & Nagata, M. Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans. PLoS ONE 9, e92219 (2014).

    PubMed  PubMed Central  Google Scholar 

  389. 389

    Al-Mashhadi, R. H. et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med. 5, 166ra1 (2013).

    PubMed  Google Scholar 

  390. 390

    Al-Mashhadi, R. H. et al. Diabetes with poor glycaemic control does not promote atherosclerosis in genetically modified hypercholesterolaemic minipigs. Diabetologia 58, 1926–1936 (2015).

    CAS  PubMed  Google Scholar 

  391. 391

    Wei, J. et al. Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J. 279, 91–99 (2012).

    CAS  PubMed  Google Scholar 

  392. 392

    Shimatsu, Y. et al. Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer. Exp. Anim. 65, 37–43 (2016).

    CAS  PubMed  Google Scholar 

  393. 393

    Ozawa, M. et al. Production of cloned miniature pigs expressing high levels of human apolipoprotein(a) in plasma. PLoS ONE 10, e0132155 (2015).

    PubMed  PubMed Central  Google Scholar 

  394. 394

    Li, Y. et al. Development of human-like advanced coronary plaques in low-density lipoprotein receptor knockout pigs and justification for statin treatment before formation of atherosclerotic plaques. J. Am. Heart Assoc. 5, e002779 (2016).

    PubMed  PubMed Central  Google Scholar 

  395. 395

    Davis, B. T. et al. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in yucatan miniature pigs. PLoS ONE 9, e93457 (2014).

    PubMed  PubMed Central  Google Scholar 

  396. 396

    Amuzie, C. et al. A translational model for diet-related atherosclerosis: effect of statins on hypercholesterolemia and atherosclerosis in a minipig. Toxicol. Pathol. 44, 442–449 (2016).

    CAS  PubMed  Google Scholar 

  397. 397

    Tang, X. et al. Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochem. Biophys. Res. Commun. 465, 507–511 (2015).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

M.Kle. and M.H.T conceptualized the review. All authors wrote parts of the review article, contributed to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthias H. Tschöp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Amphid neuron

Sensory neurons found in the anterior head region of the nematode Caenorhabditis elegans.

Four core genotypes

A mouse model system that dissociates the effects of the gonadal sex (testes or ovaries) from the effects of the sex chromosomes (XX or XY)121.

Envirotype

Factors that are exogenous to an organism.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleinert, M., Clemmensen, C., Hofmann, S. et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14, 140–162 (2018). https://doi.org/10.1038/nrendo.2017.161

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing