Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The special relationship: glia–neuron interactions in the neuroendocrine hypothalamus

Key Points

  • The hypothalamus is the single most important integrator of vegetative and endocrine regulation in the body

  • Neuroendocrine secretory neurons establish a permanent dialogue with hypothalamic glial cells to maintain body homeostasis

  • Hypothalamic astrocytes control the extracellular levels of neurotransmitters and neuromodulators in the neuroendocrine networks regulating body homeostasis

  • Hypothalamic tanycytes control both neuroendocrine secretions and the access of key peripheral homeostatic signals into the brain

  • The recognition of the clinical relevance of glia–neuron interactions in the hypothalamus might pave the way for the development of new treatment strategies in the central loss of body homeostasis in human syndromes

Abstract

Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron–glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The adult neuroendocrine axes.
Figure 2: The effects of the structural plasticity of astrocytes in the magnocellular neurosecretory system on the extracellular concentration and diffusion of transmitters.
Figure 3: Gliotransmission in the magnocellular neurosecretory system.
Figure 4: Prostaglandin E2 as a gliotransmitter in the gonadotropin-releasing hormone (GnRH) system.
Figure 5: Coordinated glial–endothelial–neuronal interactions that regulate the neurosecretion of gonadotropin-releasing hormone (GnRH).

References

  1. 1

    Farmer, W. T. et al. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351, 849–854 (2016).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  3. 3

    Ben Haim, L. & Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18, 31–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Prevot, V. et al. Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions. Front. Neuroendocrinol. 31, 241–258 (2010).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Prevot, V. et al. GnRH nerve terminals, tanycytes and neurohaemal junction remodeling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J. Neuroendocrinol. 22, 639–649 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. 6

    Clasadonte, J., Sharif, A., Baroncini, M. & Prevot, V. Gliotransmission by prostaglandin E2: a prerequisite for GnRH neuronal function. Front. Endocrinol. 2, 1–12 (2011).

    Article  Google Scholar 

  7. 7

    Panatier, A. Glial cells: indispensable partners of hypothalamic magnocellular neurones. J. Neuroendocrinol. 21, 665–672 (2009).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Oliet, S. H. R. in Neuroglia 3rd edn Ch. 41 (eds Kettenmann, H. & Ranson, B. R.) (Oxford Univ. Press, 2012).

    Google Scholar 

  9. 9

    Tasker, J. G., Oliet, S. H., Bains, J. S., Brown, C. H. & Stern, J. E. Glial regulation of neuronal function: from synapse to systems physiology. J. Neuroendocrinol. 24, 566–576 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  10. 10

    Stern, J. E. & Filosa, J. A. Bidirectional neuro-glial signaling modalities in the hypothalamus: role in neurohumoral regulation. Auton. Neurosci. 175, 51–60 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  11. 11

    Sharif, A., Baroncini, M. & Prevot, V. Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 98, 1–15 (2013).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Swanson, L. W. & Sawchenko, P. E. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269–324 (1983).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Brown, C. H., Bains, J. S., Ludwig, M. & Stern, J. E. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J. Neuroendocrinol. 25, 678–710 (2013).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Israel, J. M., Oliet, S. H. & Ciofi, P. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices. Front. Neurosci. 10, 109 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Verbalis, J. G., Mangione, M. P. & Stricker, E. M. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128, 1317–1322 (1991).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  16. 16

    Israel, J. M., Cabelguen, J. M., Le Masson, G., Oliet, S. H. & Ciofi, P. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction. Nat. Commun. 5, 3285 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Bonfanti, L., Poulain, D. A. & Theodosis, D. T. Radial glia-like cells in the supraoptic nucleus of the adult rat. J. Neuroendocrinol. 5, 1–5 (1993).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Israel, J. M., Schipke, C. G., Ohlemeyer, C., Theodosis, D. T. & Kettenmann, H. GABAA receptor-expressing astrocytes in the supraoptic nucleus lack glutamate uptake and receptor currents. Glia 44, 102–110 (2003).

    Article  PubMed  Google Scholar 

  19. 19

    Tweedle, C. D. & Hatton, G. I. Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res. 181, 59–72 (1977).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Theodosis, D. T. & Poulain, D. A. Evidence that oxytocin-secreting neurones are involved in the ultrastructural reorganisation of the rat supraoptic nucleus apparent at lactation. Cell Tissue Res. 235, 217–219 (1984).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Tweedle, C. D. & Hatton, G. I. Evidence for dynamic interactions between pituicytes and neurosecretory axons in the rat. Neuroscience 5, 661–671 (1980).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Theodosis, D. T., Poulain, D. A. & Oliet, S. H. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008 (2008).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Theodosis, D. T., Poulain, D. A. & Vincent, J. D. Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 6, 919–929 (1981).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Catheline, G., Touquet, B., Lombard, M. C., Poulain, D. A. & Theodosis, D. T. A study of the role of neuro-glial remodeling in the oxytocin system at lactation. Neuroscience 137, 309–316 (2006).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Pow, D. V. & Morris, J. F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32, 435–439 (1989).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Ludwig, M., Callahan, M. F., Neumann, I., Landgraf, R. & Morris, M. Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J. Neuroendocrinol. 6, 369–373 (1994).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Meddle, S. L., Bishop, V. R., Gkoumassi, E., van Leeuwen, F. W. & Douglas, A. J. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology 148, 5095–5104 (2007).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Moos, F. et al. Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp. Brain Res. 76, 593–602 (1989).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Moos, F. & Richard, P. Paraventricular and supraoptic bursting oxytocin cells in rat are locally regulated by oxytocin and functionally related. J. Physiol. 408, 1–18 (1989).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  30. 30

    Brussaard, A. B., Kits, K. S. & de Vlieger, T. A. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J. Physiol. 497, 495–507 (1996).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  31. 31

    Kombian, S. B., Mouginot, D. & Pittman, Q. J. Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro. Neuron 19, 903–912 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Hirasawa, M. et al. Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. J. Physiol. 559, 611–624 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  33. 33

    Piet, R., Vargova, L., Sykova, E., Poulain, D. A. & Oliet, S. H. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl Acad. Sci. USA 101, 2151–2155 (2004).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Anderson, C. M. & Swanson, R. A. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1–14 (2000).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Oliet, S. H., Piet, R. & Poulain, D. A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Boudaba, C., Linn, D. M., Halmos, K. C. & Tasker, J. G. Increased tonic activation of presynaptic metabotropic glutamate receptors in the rat supraoptic nucleus following chronic dehydration. J. Physiol. 551, 815–823 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  37. 37

    Fleming, T. M. et al. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons. J. Physiol. 589, 3929–3941 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  38. 38

    Potapenko, E. S., Biancardi, V. C., Zhou, Y. & Stern, J. E. Astrocytes modulate a postsynaptic NMDA-GABAA-receptor crosstalk in hypothalamic neurosecretory neurons. J. Neurosci. 33, 631–640 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  39. 39

    Joe, N., Scott, V. & Brown, C. H. Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration. J. Neuroendocrinol. 26, 35–42 (2014).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Bonfardin, V. D., Fossat, P., Theodosis, D. T. & Oliet, S. H. Glia-dependent switch of kainate receptor presynaptic action. J. Neurosci. 30, 985–995 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  41. 41

    Jourdain, P. et al. Evidence for a hypothalamic oxytocin-sensitive pattern-generating network governing oxytocin neurons in vitro. J. Neurosci. 18, 6641–6649 (1998).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Park, J. B., Skalska, S. & Stern, J. E. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia. Endocrinology 147, 3746–3760 (2006).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Naskar, K. & Stern, J. E. A functional coupling between extrasynaptic NMDA receptors and A-type K+ channels under astrocyte control regulates hypothalamic neurosecretory neuronal activity. J. Physiol. 592, 2813–2827 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44

    Park, J. B., Jo, J. Y., Zheng, H., Patel, K. P. & Stern, J. E. Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J. Physiol. 587, 4645–4660 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  45. 45

    Wang, Y. F., Sun, M. Y., Hou, Q. & Hamilton, K. A. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur. J. Neurosci. 37, 1260–1269 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Pasantes-Morales, H., Alavez, S., Sanchez Olea, R. & Moran, J. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem. Res. 18, 445–452 (1993).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Castillo, P. E., Younts, T. J., Chavez, A. E. & Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron 76, 70–81 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  50. 50

    Di, S., Popescu, I. R. & Tasker, J. G. Glial control of endocannabinoid heterosynaptic modulation in hypothalamic magnocellular neuroendocrine cells. J. Neurosci. 33, 18331–18342 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  51. 51

    Di, S., Malcher-Lopes, R., Halmos, K. C. & Tasker, J. G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci. 23, 4850–4857 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  52. 52

    Di, S., Malcher-Lopes, R., Marcheselli, V. L., Bazan, N. G. & Tasker, J. G. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 146, 4292–4301 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. 53

    Di, S. & Tasker, J. G. Dehydration-induced synaptic plasticity in magnocellular neurons of the hypothalamic supraoptic nucleus. Endocrinology 145, 5141–5149 (2004).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Panatier, A. et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784 (2006).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Gundersen, V., Storm-Mathisen, J. & Bergersen, L. H. Neuroglial transmission. Physiol. Rev. 95, 695–726 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Mothet, J. P. et al. D-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Mothet, J. P. et al. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc. Natl Acad. Sci. USA 102, 5606–5611 (2005).

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Poulain, D. A. & Wakerley, J. B. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7, 773–808 (1982).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Choe, K. Y., Olson, J. E. & Bourque, C. W. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J. Neurosci. 32, 12518–12527 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  60. 60

    Olson, J. E. & Li, G. Z. Osmotic sensitivity of taurine release from hippocampal neuronal and glial cells. Adv. Exp. Med. Biol. 483, 213–218 (2000).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051–1095 (2004).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Bres, V. et al. Pharmacological characterization of volume-sensitive, taurine permeable anion channels in rat supraoptic glial cells. Br. J. Pharmacol. 130, 1976–1982 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  63. 63

    Hussy, N., Deleuze, C., Pantaloni, A., Desarmenien, M. G. & Moos, F. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J. Physiol. 502, 609–621 (1997).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  64. 64

    Deleuze, C., Alonso, G., Lefevre, I. A., Duvoid-Guillou, A. & Hussy, N. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication. Neuroscience 133, 175–183 (2005).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  66. 66

    Blutstein, T. & Haydon, P. G. The Importance of astrocyte-derived purines in the modulation of sleep. Glia 61, 129–139 (2013).

    Article  PubMed  Google Scholar 

  67. 67

    Gordon, G. R. et al. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64, 391–403 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  68. 68

    Gordon, G. R. et al. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat. Neurosci. 8, 1078–1086 (2005).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Haam, J., Halmos, K. C., Di, S. & Tasker, J. G. Nutritional state-dependent ghrelin activation of vasopressin neurons via retrograde trans-neuronal-glial stimulation of excitatory GABA circuits. J. Neurosci. 34, 6201–6213 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  70. 70

    Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Sugino, T. et al. A transient ghrelin surge occurs just before feeding in a scheduled meal-fed sheep. Biochem. Biophys. Res. Commun. 295, 255–260 (2002).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Ishizaki, S. et al. Role of ghrelin in the regulation of vasopressin release in conscious rats. Endocrinology 143, 1589–1593 (2002).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Mietlicki, E. G., Nowak, E. L. & Daniels, D. The effect of ghrelin on water intake during dipsogenic conditions. Physiol. Behav. 96, 37–43 (2009).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Haam, J. et al. GABA is excitatory in adult vasopressinergic neuroendocrine cells. J. Neurosci. 32, 572–582 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  77. 77

    Cabral, A., De Francesco, P. N. & Perello, M. Brain circuits mediating the orexigenic action of peripheral ghrelin: narrow gates for a vast kingdom. Front. Endocrinol. (Lausanne) 6, 44 (2015).

    Article  Google Scholar 

  78. 78

    Jhamandas, J. H. & Renaud, L. P. A gamma-aminobutyric-acid-mediated baroreceptor input to supraoptic vasopressin neurones in the rat. J. Physiol. 381, 595–606 (1986).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  79. 79

    Arnauld, E., Cirino, M., Layton, B. S. & Renaud, L. P. Contrasting actions of amino acids, acetylcholine, noradrenaline and leucine enkephalin on the excitability of supraoptic vasopressin-secreting neurons. A microiontophoretic study in the rat. Neuroendocrinology 36, 187–196 (1983).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Choe, K. Y. et al. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron 85, 549–560 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. 81

    Clasadonte, J. & Haydon, P. G. in Jasper's Basic Mechanisms of the Epilepsies (eds Noebels, J. L. et al.) (Oxford Univ. Press, 2012).

    Google Scholar 

  82. 82

    Fredholm, B. B., Chen, J. F., Cunha, R. A., Svenningsson, P. & Vaugeois, J. M. Adenosine and brain function. Int. Rev. Neurobiol. 63, 191–270 (2005).

    CAS  Article  Google Scholar 

  83. 83

    Ponzio, T. A. & Hatton, G. I. Adenosine postsynaptically modulates supraoptic neuronal excitability. J. Neurophysiol. 93, 535–547 (2005).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Ponzio, T. A., Wang, Y. F. & Hatton, G. I. Activation of adenosine A2A receptors alters postsynaptic currents and depolarizes neurons of the supraoptic nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R359–R366 (2006).

    CAS  Article  PubMed  Google Scholar 

  85. 85

    Noguchi, J. & Yamashita, H. Adenosine inhibits voltage-dependent Ca2+ currents in rat dissociated supraoptic neurones via A1 receptors. J. Physiol. 526 Pt. 2, 313–326 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. 86

    Bull, P. M., Brown, C. H., Russell, J. A. & Ludwig, M. Activity-dependent feedback modulation of spike patterning of supraoptic nucleus neurons by endogenous adenosine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R83–R90 (2006).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Ruan, M. & Brown, C. H. Feedback inhibition of action potential discharge by endogenous adenosine enhancement of the medium afterhyperpolarization. J. Physiol. 587, 1043–1056 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  88. 88

    Oliet, S. H. & Poulain, D. A. Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones. J. Physiol. 520, 815–825 (1999).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  89. 89

    Clasadonte, J. & Haydon, P. G. in Homeostatic control of brain function (eds Boison, D. & Masino, S. A.) 75–97 (Oxford Univ. Press, 2015).

    Book  Google Scholar 

  90. 90

    Pannasch, U. et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci. 17, 549–558 (2014).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Clasadonte, J. & Haydon, P. G. Connexin 30 controls the extension of astrocytic processes into the synaptic cleft through an unconventional non-channel function. Neurosci. Bull. 30, 1045–1048 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Markakis, E. A. & Swanson, L. W. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res. Brain Res. Rev. 24, 255–291 (1997).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Biag, J. et al. Cyto- and chemoarchitecture of the hypothalamic paraventricular nucleus in the C57BL/6J male mouse: a study of immunostaining and multiple fluorescent tract tracing. J. Comp. Neurol. 520, 6–33 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Jais, A. & Bruning, J. C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24–32 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Bolborea, M. & Dale, N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 36, 91–100 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  96. 96

    Goodman, T. & Hajihosseini, M. K. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front. Neurosci. 9, 387 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Argente-Arizon, P., Guerra-Cantera, S., Garcia-Segura, L. M., Argente, J. & Chowen, J. A. Glial cells and energy balance. J. Mol. Endocrinol. 58, R59–R71 (2017).

    CAS  Article  PubMed  Google Scholar 

  98. 98

    Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    CAS  Article  Google Scholar 

  100. 100

    Fuente-Martin, E. et al. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Clin. Invest. 122, 3900–3913 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  101. 101

    Zhang, Y., Reichel, J. M., Han, C., Zuniga-Hertz, J. & Cai, D. Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure and body weight. Cell. Metabolism 25, 1091–1102 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. 102

    Sharif, A. & Prevot, V. When size matters: how astrocytic processes shape metabolism. Cell Metab. 25, 995–996 (2017).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Clasadonte, J., Scemes, E., Wang, Z., Boison, D. & Haydon, P. G. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95, 1365–1380 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  104. 104

    Langlet, F. et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  105. 105

    Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  106. 106

    Collden, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol. Metab. 4, 15–24 (2015).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Joseph-Bravo, P., Jaimes-Hoy, L., Uribe, R. M. & Charli, J. L. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J. Endocrinol. 227, X3 http://dx.doi.org/10.1530/JOE-15-0124e (2015).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Fekete, C. & Lechan, R. M. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr. Rev. 35, 159–194 (2014).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Gereben, B., McAninch, E. A., Ribeiro, M. O. & Bianco, A. C. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat. Rev. Endocrinol. 11, 642–652 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  110. 110

    Lechan, R. M. & Fekete, C. Central mechanisms for thyroid hormone regulation. Am. J. Psychiatry 163, 1492 (2006).

    Article  PubMed  Google Scholar 

  111. 111

    Sanchez, E. et al. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology 151, 3827–3835 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  112. 112

    Sanchez, E. et al. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology 150, 2283–2291 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  113. 113

    Müller-Fielitz, H. et al. Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat. Commun. 8, 484 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114

    Diano, S., Leonard, J. L., Meli, R., Esposito, E. & Schiavo, L. Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Res. 976, 130–134 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Guadano-Ferraz, A., Obregon, M. J., St Germain, D. L. & Bernal, J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc. Natl Acad. Sci. USA 94, 10391–10396 (1997).

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Tu, H. M. et al. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138, 3359–3368 (1997).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  118. 118

    Serrano-Lozano, A., Montiel, M., Morell, M. & Morata, P. 5′ Deiodinase activity in brain regions of adult rats: modifications in different situations of experimental hypothyroidism. Brain Res. Bull. 30, 611–616 (1993).

    CAS  Article  PubMed  Google Scholar 

  119. 119

    Sugiyama, D. et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J. Biol. Chem. 278, 43489–43495 (2003).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Heuer, H. et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146, 1701–1706 (2005).

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Segerson, T. P. et al. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238, 78–80 (1987).

    CAS  Article  PubMed  Google Scholar 

  122. 122

    Sugrue, M. L., Vella, K. R., Morales, C., Lopez, M. E. & Hollenberg, A. N. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology 151, 793–801 (2010).

    CAS  Article  PubMed  Google Scholar 

  123. 123

    Dyess, E. M. et al. Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinology 123, 2291–2297 (1988).

    CAS  Article  PubMed  Google Scholar 

  124. 124

    Dratman, M. B., Crutchfield, F. L., Futaesaku, Y., Goldberger, M. E. & Murray, M. [125I] triiodothyronine in the rat brain: evidence for neural localization and axonal transport derived from thaw-mount film autoradiography. J. Comp. Neurol. 260, 392–408 (1987).

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Schwartz, M. W. et al. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Coppola, A. et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  127. 127

    Kong, W. M. et al. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology 145, 5252–5258 (2004).

    CAS  Article  PubMed  Google Scholar 

  128. 128

    Ebling, F. J. Hypothalamic control of seasonal changes in food intake and body weight. Front. Neuroendocrinol. 37, 97–107 (2015).

    CAS  Article  PubMed  Google Scholar 

  129. 129

    Watanabe, T. et al. Hypothalamic expression of thyroid hormone-activating and -inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R568–R572 (2007).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Hazlerigg, D. & Simonneaux, V. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1575–1604 (Elsevier, 2015)

    Book  Google Scholar 

  131. 131

    Saenz de Miera, C., Bothorel, B., Jaeger, C., Simonneaux, V. & Hazlerigg, D. Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland. Proc. Natl Acad. Sci. USA 114, 8408–8413 (2017).

    CAS  Article  PubMed  Google Scholar 

  132. 132

    Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

    CAS  Article  PubMed  Google Scholar 

  133. 133

    Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

    Article  PubMed  Google Scholar 

  134. 134

    Casoni, F. et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143, 3969–3981 (2016).

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Silverman, A. J. et al. The luteinizing hormone-releasing hormone pathways in rhesus (Macaca mulatta) and pigtailed (Macaca nemestrina) monkeys: new observations on thick, unembedded sections. J. Comp. Neurol. 211, 309–317 (1982).

    CAS  Article  PubMed  Google Scholar 

  136. 136

    Le Tissier, P. et al. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat. Rev. Endocrinol. 13, 257–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Clarke, I. J. Hypothalamus as an endocrine organ. Compr. Physiol. 5, 217–253 (2015).

    CAS  PubMed  Google Scholar 

  138. 138

    Witkin, J. W., Ferin, M., Popilskis, S. J. & Silverman, A. J. Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: synaptic input and glial apposition. Endocrinology 129, 1083–1092 (1991).

    CAS  Article  PubMed  Google Scholar 

  139. 139

    Baroncini, M. et al. Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J. Neuroendocrinol. 19, 691–702 (2007).

    CAS  Article  PubMed  Google Scholar 

  140. 140

    Baroncini, M. et al. Sex steroid hormones-related structural plasticity in the human hypothalamus. Neuroimage 50, 428–433 (2010).

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Acaz-Fonseca, E., Avila-Rodriguez, M., Garcia-Segura, L. M. & Barreto, G. E. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog. Neurobiol. 144, 5–26 (2016).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Ojeda, S. R., Jameson, H. E. & McCann, S. M. Hypothalamic areas involved in prostaglandin (PG)-induced gonadotropin release. I: effects of PGE2 and PGF2alpha implants on luteinizing hormone release. Endocrinology 100, 1585–1594 (1977).

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Ojeda, S. R., Harms, P. G. & McCann, S. M. Effect of inhibitors of prostaglandin synthesis on gonadotropin release in the rat. Endocrinology 97, 843–854 (1975).

    CAS  Article  PubMed  Google Scholar 

  144. 144

    Botting, J. H., Linton, E. A. & Whitehead, S. A. Blockade of ovulation in the rat by a prostaglandin antogonist (N-0164). J. Endocrinol. 75, 335–336 (1977).

    CAS  Article  PubMed  Google Scholar 

  145. 145

    Prevot, V. in Knobil and Neill's Physiology of Reproduction (eds Plant, T. M. & Zeleznik, J.) 1395–1439 (Elsevier, 2015).

    Book  Google Scholar 

  146. 146

    Ojeda, S. R. & Campbell, W. B. An increase in hypothalamic capacity to synthesize prostaglandin E2 precedes the first preovulatory surge of gonadotropins. Endocrinology 111, 1031–1037 (1982).

    CAS  Article  PubMed  Google Scholar 

  147. 147

    Smith, S. S., Neuringer, M. & Ojeda, S. R. Essential fatty acid deficiency delays the onset of puberty in the female rat. Endocrinology 125, 1650–1659 (1989).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Prevot, V. et al. Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  149. 149

    Sharif, A. et al. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. Glia 57, 362–379 (2009).

    Article  PubMed  Google Scholar 

  150. 150

    Dziedzic, B. et al. Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain. J. Neurosci. 23, 915–926 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  151. 151

    Prevot, V., Lomniczi, A., Corfas, G. & Ojeda, S. R. erbB-1 and erbB-4 receptors act in concert to facilitate female sexual development and mature reproductive function. Endocrinology 146, 1465–1472 (2005).

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Kuiri-Hanninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. 153

    Messina, A. & Prevot, V. Hypothalamic microRNAs flip the switch for fertility. Oncotarget 8, 8993–8994 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154

    Chachlaki, K., Garthwaite, J. & Prevot, V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat. Rev. Endocrinol. 13, 521–535 (2017).

    CAS  Article  PubMed  Google Scholar 

  155. 155

    Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

    CAS  Article  PubMed  Google Scholar 

  156. 156

    Ahmed, K. et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J. Clin. Invest. 127, 1061–1074 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  157. 157

    Crowley, W. F. & Balasubramanian, R. MicroRNA-7a2 suppression causes hypogonadotropism and uncovers signaling pathways in gonadotropes. J. Clin. Invest. 127, 796–797 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159

    Glanowska, K. M. & Moenter, S. M. Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits. J. Neurophysiol. 106, 3073–3081 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  160. 160

    Claypool, L. E., Kasuya, E., Saitoh, Y., Marzban, F. & Terasawa, E. N-Methyl D,L-aspartate induces the release of luteinizing hormone-releasing hormone in the prepubertal and pubertal female rhesus monkey as measured by in vivo push-pull perfusion in the stalk-median eminence. Endocrinology 141, 219–228 (2000).

    CAS  Article  PubMed  Google Scholar 

  161. 161

    Plant, T. M., Gay, V. L., Marshall, G. R. & Arslan, M. Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proc. Natl Acad. Sci. USA 86, 2506–2510 (1989).

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Urbanski, H. F. & Ojeda, S. R. A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126, 1774–1776 (1990).

    CAS  Article  PubMed  Google Scholar 

  163. 163

    Parent, A. S. et al. Oxytocin facilitates female sexual maturation through a glia-to-neuron signaling pathway. Endocrinology 149, 1358–1365 (2008).

    CAS  Article  PubMed  Google Scholar 

  164. 164

    de Seranno, S. et al. Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence. Endocrinology 151, 1760–1772 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  165. 165

    Ojeda, S. R. & Negro-Vilar, A. Prostaglandin E2-induced luteinizing hormone-releasing hormone release involves mobilization of intracellular Ca+2. Endocrinology 116, 1763–1770 (1985).

    CAS  Article  PubMed  Google Scholar 

  166. 166

    Rage, F., Lee, B. J., Ma, Y. J. & Ojeda, S. R. Estradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-to-neuron signaling pathway. J. Neurosci. 17, 9145–9156 (1997).

    CAS  Article  PubMed  Google Scholar 

  167. 167

    Sandau, U. S. et al. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus. Endocrinology 152, 2353–2363 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  168. 168

    Sandau, U. S. et al. SynCAM1, a synaptic adhesion molecule, is expressed in astrocytes and contributes to erbB4 receptor-mediated control of female sexual development. Endocrinology 152, 2364–2376 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  169. 169

    Roth, C. L. et al. Expression of a tumor-related gene network increases in the mammalian hypothalamus at the time of female puberty. Endocrinology 148, 5147–5161 (2007).

    CAS  Article  PubMed  Google Scholar 

  170. 170

    Clasadonte, J. et al. Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc. Natl Acad. Sci. USA 108, 16104–16109 (2011).

    CAS  Article  PubMed  Google Scholar 

  171. 171

    Jasoni, C. L., Todman, M. G., Han, S. K. & Herbison, A. E. Expression of mRNAs encoding receptors that mediate stress signals in gonadotropin-releasing hormone neurons of the mouse. Neuroendocrinology 82, 320–328 (2005).

    CAS  Article  PubMed  Google Scholar 

  172. 172

    Coleman, R. A., Smith, W. L. & Narumiya, S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46, 205–229 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Chu, Z. & Moenter, S. M. Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin-releasing hormone neurons and alters their firing rate: a possible local feedback circuit. J. Neurosci. 25, 5740–5749 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  174. 174

    Kozlowski, G. P. & Coates, P. W. Ependymoneuronal specializations between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res. 242, 301–311 (1985).

    CAS  Article  PubMed  Google Scholar 

  175. 175

    Meister, B. et al. DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein in tanycytes of the mediobasal hypothalamus: distribution and relation to dopamine and luteinizing hormone-releasing hormone neurons and other glial elements. Neuroscience 27, 607–622 (1988).

    CAS  Article  PubMed  Google Scholar 

  176. 176

    Coates, P. W. & Davis, S. L. Tanycytes in long-term ovariectomized ewes treated with estrogen exhibit ultrastructural features associated with increased cellular activity. Anat. Rec. 203, 179–187 (1982).

    CAS  Article  PubMed  Google Scholar 

  177. 177

    Mullier, A., Bouret, S. G., Prevot, V. & Dehouck, B. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. 518, 943–962 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  178. 178

    King, J. C. & Letourneau, R. J. Luteinizing hormone-releasing hormone terminals in the median eminence of rats undergo dramatic changes after gonadectomy, as revealed by electron microscopic image analysis. Endocrinology 134, 1340–1351 (1994).

    CAS  Article  PubMed  Google Scholar 

  179. 179

    Prevot, V. et al. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94, 809–819 (1999).

    CAS  Article  PubMed  Google Scholar 

  180. 180

    Prevot, V., Dutoit, S., Croix, D., Tramu, G. & Beauvillain, J. C. Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat. Neuroscience 84, 177–191 (1998).

    CAS  Article  PubMed  Google Scholar 

  181. 181

    Prevot, V., Cornea, A., Mungenast, A., Smiley, G. & Ojeda, S. R. Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor beta1 release via prostaglandin E2 production and induces cell plasticity. J. Neurosci. 23, 10622–10632 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  182. 182

    De Seranno, S. et al. Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J. Neurosci. 24, 10353–10363 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  183. 183

    Prevot, V. et al. Estradiol coupling to endothelial nitric oxide stimulates gonadotropin-releasing hormone release from rat median eminence via a membrane receptor. Endocrinology 140, 652–659 (1999).

    CAS  Article  PubMed  Google Scholar 

  184. 184

    Kenealy, B. P. et al. Neuroestradiol in the hypothalamus contributes to the regulation of gonadotropin releasing hormone release. J. Neurosci. 33, 19051–19059 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  185. 185

    Kenealy, B. P., Keen, K. L., Garcia, J. P., Richter, D. J. & Terasawa, E. Prolonged infusion of estradiol benzoate into the stalk median eminence stimulates release of GnRH and kisspeptin in ovariectomized female rhesus macaques. Endocrinology 156, 1804–1814 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  186. 186

    Ma, Y. J., Junier, M. P., Costa, M. E. & Ojeda, S. R. Transforming growth factor-alpha gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 9, 657–670 (1992).

    CAS  Article  PubMed  Google Scholar 

  187. 187

    Knauf, C. et al. Evidence for a spontaneous nitric oxide release from the rat median eminence: influence on gonadotropin-releasing hormone release. Endocrinology 142, 2343–2350 (2001).

    CAS  Article  PubMed  Google Scholar 

  188. 188

    Knauf, C. et al. Variation of endothelial nitric oxide synthase synthesis in the median eminence during the rat estrous cycle: an additional argument for the implication of vascular blood vessel in the control of GnRH release. Endocrinology 142, 4288–4294 (2001).

    CAS  Article  PubMed  Google Scholar 

  189. 189

    Yamamura, T., Hirunagi, K., Ebihara, S. & Yoshimura, T. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 145, 4264–4267 (2004).

    CAS  Article  PubMed  Google Scholar 

  190. 190

    Takagi, T. et al. Involvement of transforming growth factor alpha in the photoperiodic regulation of reproduction in birds. Endocrinology 148, 2788–2792 (2007).

    CAS  Article  PubMed  Google Scholar 

  191. 191

    Giacobini, P. et al. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A PLoS Biol. 12, e1001808 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  192. 192

    Parkash, J. et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat. Commun. 6, 6385 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  193. 193

    Giacobini, P. Shaping the reproductive system: role of semaphorins in gonadotropin-releasing hormone development and function. Neuroendocrinology 102, 200–215 (2015).

    CAS  Article  PubMed  Google Scholar 

  194. 194

    Hanchate, N. K. et al. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with kallmann syndrome. PLoS Genet. 8, e1002896 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  195. 195

    Pasterkamp, R. J. Getting neural circuits into shape with semaphorins. Nat. Rev. Neurosci. 13, 605–618 (2012).

    CAS  Article  PubMed  Google Scholar 

  196. 196

    Messina, A. & Giacobini, P. Semaphorin signaling in the development and function of the gonadotropin hormone-releasing hormone system. Front. Endocrinol. (Lausanne) 4, 133 (2013).

    Article  Google Scholar 

  197. 197

    Messina, A. et al. Dysregulation of Semaphorin7A/beta1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum. Mol. Genet. 20, 4759–4774 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  198. 198

    Parkash, J. et al. Suppression of beta1-Integrin in gonadotropin-releasing hormone cells disrupts migration and axonal extension resulting in severe reproductive alterations. J. Neurosci. 32, 16992–17002 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  199. 199

    Bouret, S., De Seranno, S., Beauvillain, J. C. & Prevot, V. Transforming growth factor beta1 may directly influence gonadotropin-releasing hormone gene expression in the rat hypothalamus. Endocrinology 145, 1794–1801 (2004).

    CAS  Article  PubMed  Google Scholar 

  200. 200

    Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 497, 211–216 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  201. 201

    Zhang, Y. et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548, 52–57 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  202. 202

    Zoli, M., Ferraguti, F., Frasoldati, A., Biagini, G. & Agnati, L. F. Age-related alterations in tanycytes of the mediobasal hypothalamus of the male rat. Neurobiol. Aging 16, 77–83 (1995).

    CAS  Article  PubMed  Google Scholar 

  203. 203

    Yin, W., Wu, D., Noel, M. L. & Gore, A. C. Gonadotropin-releasing hormone neuroterminals and their microenvironment in the median eminence: effects of aging and estradiol treatment. Endocrinology 150, 5498–5508 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  204. 204

    Yin, W. & Gore, A. C. The hypothalamic median eminence and its role in reproductive aging. Ann. N. Y. Acad. Sci. 1204, 113–122 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  205. 205

    Koopman, A., Taziaux, M. & Bakker, J. Age-related changes in the morphology of tanycytes in the human female infundibularnucleus/median eminence. J. Neuroendocrinol. http://dx.doi.org/10.1111/jne.12467 (2017).

  206. 206

    Naugle, M. M. et al. Age and long-term hormone treatment effects on the ultrastructural morphology of the median eminence of female rhesus macaques. Neuroendocrinology 103, 650–664 (2016).

    CAS  Article  PubMed  Google Scholar 

  207. 207

    Kansakoski, J. et al. Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism. Pediatr. Res. 75, 641–644 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  208. 208

    Sullivan, S. D. & Moenter, S. M. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc. Natl Acad. Sci. USA 101, 7129–7134 (2004).

    CAS  Article  PubMed  Google Scholar 

  209. 209

    Moore, A. M., Prescott, M., Marshall, C. J., Yip, S. H. & Campbell, R. E. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc. Natl Acad. Sci. USA 112, 596–601 (2015).

    CAS  Article  PubMed  Google Scholar 

  210. 210

    Cimino, I. et al. Novel role for anti-Mullerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 7, 10055 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  211. 211

    Prevot, V. et al. Evidence that members of the TGFbeta superfamily play a role in regulation of the GnRH neuroendocrine axis: expression of a type I serine-threonine kinase receptor for TGRbeta and activin in GnRH neurones and hypothalamic areas of the female rat. J. Neuroendocrinol. 12, 665–670 (2000).

    CAS  Article  PubMed  Google Scholar 

  212. 212

    Mirzadeh, Z. et al. Bi and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories. Nat. Commun. 8, 13759 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  213. 213

    Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  214. 214

    Watts, A. G. 60 years of neuroendocrinology: The structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geoffrey Harris. J. Endocrinol. 226, T25–T39 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  215. 215

    Bains, J. S., Wamsteeker Cusulin, J. I. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 16, 377–388 (2015).

    CAS  Article  PubMed  Google Scholar 

  216. 216

    Zuchero, J. B. & Barres, B. A. Glia in mammalian development and disease. Development 142, 3805–3809 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  217. 217

    Casano, A. M. & Peri, F. Microglia: multitasking specialists of the brain. Dev. Cell 32, 469–477 (2015).

    CAS  Article  PubMed  Google Scholar 

  218. 218

    Yi, C. X. et al. TNFalpha drives mitochondrial stress in POMC neurons in obesity. Nat. Commun. 8, 15143 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  219. 219

    Levin, B. E. & Lutz, T. A. Amylin and leptin: co-regulators of energy homeostasis and neuronal development. Trends Endocrinol. Metab. 28, 153–164 (2017).

    CAS  Article  PubMed  Google Scholar 

  220. 220

    Andre, C. et al. Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes 66, 908–919 (2017).

    CAS  Article  PubMed  Google Scholar 

  221. 221

    Lenz, K. M., Nugent, B. M., Haliyur, R. & McCarthy, M. M. Microglia are essential to masculinization of brain and behavior. J. Neurosci. 33, 2761–2772 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  222. 222

    Cohen, P. E., Zhu, L., Nishimura, K. & Pollard, J. W. Colony-stimulating factor 1 regulation of neuroendocrine pathways that control gonadal function in mice. Endocrinology 143, 1413–1422 (2002).

    CAS  Article  PubMed  Google Scholar 

  223. 223

    Pow, D. V., Perry, V. H., Morris, J. F. & Gordon, S. Microglia in the neurohypophysis associate with and endocytose terminal portions of neurosecretory neurons. Neuroscience 33, 567–578 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  224. 224

    Djogo, T. et al. Adult NG2-glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab. 23, 797–810 (2016).

    CAS  Article  PubMed  Google Scholar 

  225. 225

    Chiu, W. L., Boyle, J., Vincent, A., Teede, H. & Moran, L. J. Cardiometabolic risks in polycystic ovary syndrome: non-traditional risk factors and the impact of obesity. Neuroendocrinology 104, 412–424 (2017).

    CAS  Article  PubMed  Google Scholar 

  226. 226

    Chowen, J. A., Argente-Arizon, P., Freire-Regatillo, A. & Argente, J. Sex differences in the neuroendocrine control of metabolism and the implication of astrocytes. Front. Neuroendocrinol. http://dx.doi.org/10.1016/j.yfrne.2017.05.003 (2017).

  227. 227

    Kettenmann, H. & Ransom, B. R. The Concept of Neuroglia: A Historical Perspective. (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  228. 228

    Filosa, J. A., Morrison, H. W., Iddings, J. A., Du, W. & Kim, K. J. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323, 96–109 (2016).

    CAS  Article  PubMed  Google Scholar 

  229. 229

    Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  230. 230

    Hong, S., Dissing-Olesen, L. & Stevens, B. New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 36, 128–134 (2016).

    CAS  Article  PubMed  Google Scholar 

  231. 231

    Ffrench-Constant, C. & Raff, M. C. Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 319, 499–502 (1986).

    CAS  Article  PubMed  Google Scholar 

  232. 232

    Dimou, L. & Gotz, M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol. Rev. 94, 709–737 (2014).

    CAS  Article  PubMed  Google Scholar 

  233. 233

    Sun, W. & Dietrich, D. Synaptic integration by NG2 cells. Front. Cell Neurosci. 7, 255 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  234. 234

    Saab, A. S., Tzvetanova, I. D. & Nave, K. A. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr. Opin. Neurobiol. 23, 1065–1072 (2013).

    CAS  Article  PubMed  Google Scholar 

  235. 235

    Rinholm, J. E. & Bergersen, L. H. White matter lactate—does it matter? Neuroscience 276, 109–116 (2014).

    CAS  Article  PubMed  Google Scholar 

  236. 236

    Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  237. 237

    Sharif, A., Ojeda, S. R. & Prevot, V. in Endogenous Stem Cell-Based Brain Remodeling in Mammals, Stem Cell Biology and Regenerative Medicine (eds Junier, M. P. & Kernie, S. G.) Ch. 105–136 (Springer Science+Business Media, 2014).

    Book  Google Scholar 

  238. 238

    Barry, D. S., Pakan, J. M. & McDermott, K. W. Radial glial cells: key organisers in CNS development. Int. J. Biochem. Cell Biol. 46, 76–79 (2014).

    CAS  Article  PubMed  Google Scholar 

  239. 239

    Wittkowski, W. Tanycytes and pituicytes: morphological and functional aspects of neuroglial interaction. Microsc. Res. Tech. 41, 29–42 (1998).

    CAS  Article  PubMed  Google Scholar 

  240. 240

    Conductier, G. et al. Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat. Neurosci. 16, 845–847 (2013).

    CAS  Article  PubMed  Google Scholar 

  241. 241

    Prevot, V., Langlet, F. & Dehouck, B. Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain. Aging (Albany NY) 5, 332–334 (2013).

    CAS  Article  Google Scholar 

  242. 242

    Rodriguez, E. M. et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int. Rev. Cytol. 247, 89–164 (2005).

    CAS  Article  PubMed  Google Scholar 

  243. 243

    Hatton, G. I., Perlmutter, L. S., Salm, A. K. & Tweedle, C. D. Dynamic neuronal-glial interactions in hypothalamus and pituitary: implications for control of hormone synthesis and release. Peptides 5 (Suppl. 1), 121–138 (1984).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence National pour la Recherche (ANR) grant number ANR-15-CE14-0025. Jerome Clasadonte was supported by the Horizon 2020 Marie Skłodowska-Curie actions — European Research Fellowship (H2020-MSCA-IF-2014, ID656657). The authors are indebted to Dr Rasika for editing the manuscript and to the European consortium studying GnRH biology (COST Action BM1105) coordinated by Dr Nelly Pitteloud for insightful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jerome Clasadonte or Vincent Prevot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Neurohypophysis

Neural lobe (or posterior lobe) of the pituitary, where the unmyelinated axons of the magnocellular secretory neurons of the supraoptic and paraventricular hypothalamic nuclei project and release oxytocin and vasopressin directly into the general circulation for delivery to target tissues. In this protrusion of the brain, the neuroendocrine terminals of those secretory neurons interact closely with pituicytes that modulate their direct access to the pericapillary space.

Tonic activation

Persistent membrane receptor activation resulting from the random and sustained release of transmitters in the extracellular space. Tonic activation is opposed to phasic activation, a transient membrane receptor activation resulting from a more spatially and temporally discrete release of transmitters in the synaptic cleft.

Glial coverage

Degree of ensheathment (physical apposition) of a synapse or a soma by peripheral astrocytic processes.

GABA transporters

Transporters that are involved in the synaptic reuptake of GABA.

Vesicular GABA transporters

Transporters that are involved in the vesicular packaging of GABA.

Heterosynaptic crosstalk

Dialogue between two synapses of different natures, in which the activity of one influences the other.

Photoperiodic changes

Annual changes (homeostatic process) that occur in seasonal species based on day length in order to adapt to seasonal cycles.

En passant

Of synapses, contacts established with axons or cell bodies along the trajectory of neural cell processes targeting deeper tissue structures.

Semaphorins

Members of a family of secreted guidance molecules known to control the embryonic migration of neurons secreting gonadotropin-releasing hormone.

Parenchymatous basal lamina

Basement membrane delimitating the surface of the brain tissue. In the median eminence, the parenchymatous basal lamina delineates the pericapillary space the secretory neuroendocrine terminals about to release their neurohormone into the hypothalamic–pituitary portal blood system.

Vimentin-immunoreactive processes

Cellular extensions rich in vimentin, an intermediate filament protein that is selectively expressed in classical ependymal cells with beating cilia and tanycytes in vivo. Vimentin immunoreactivity heavily decorates the long and slender extensions sent by tanycytes towards the nervous parenchyma and hence is a good marker of tanycytic processes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clasadonte, J., Prevot, V. The special relationship: glia–neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14, 25–44 (2018). https://doi.org/10.1038/nrendo.2017.124

Download citation

Further reading

Search

Quick links