Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current pharmacotherapy for obesity

Key Points

  • Obesity is a chronic, debilitating disease with devastating overall health effects and a global burden of disease; weight loss can improve these outcomes

  • Anti-obesity drugs should be initiated promptly when appropriate criteria are met if a patient fails self-directed or professionally directed lifestyle treatment

  • Anti-obesity drugs are approved in patients with a BMI ≥27 kg/m2 with at least one obesity-related comorbidity such as diabetes mellitus, hypertension, hyperlipidaemia or sleep apnoea or in patients with a BMI ≥30 kg/m2

  • Currently, six major FDA-approved anti-obesity medications are available: phentermine, orlistat, phentermine/topiramate extended release (ER), lorcaserin, naltrexone sustained release (SR)/bupropion SR and liraglutide (the only injectable formulation)

  • Most of these anti-obesity drugs have an efficacy of 3–7% (estimated net weight loss)

  • Identifying the type of obesity on clinical presentation coupled with an understanding of anti-obesity drug safety, contraindications and adverse effect profiles can selectively increase weight loss through appropriate use of these drugs

Abstract

More than one-third of adults in the USA have obesity, which causes, exacerbates or adversely impacts numerous medical comorbidities, including diabetes mellitus and cardiovascular disease. Despite intensive lifestyle modifications, the disease severity warrants further aggressive intervention, including pharmacotherapy, medical devices and bariatric surgery. Noninvasive anti-obesity drugs have thus now resurfaced as targeted adjunctive therapeutic approaches to intensive lifestyle intervention, bridging the gap between lifestyle and bariatric surgery. In this Review, we discuss FDA-approved anti-obesity drugs in terms of safety and efficacy. As most of these drugs have a mean percentage weight loss reported in clinical trials but individual variations in response rates, a future direction of obesity pharmacotherapy research might include the potential for personalized medicine to target early responders to these anti-obesity drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal and hormonal pathways influencing food intake and satiety in the brain.
Figure 2: Efficacy of anti-obesity drugs.

Similar content being viewed by others

References

  1. Tremmel, M., Gerdtham, U. G., Nilsson, P. M. & Saha, S. Economic burden of obesity: a systematic literature review. Int. J. Environ. Res. Public Health 14, E435 (2017).

    Article  PubMed  Google Scholar 

  2. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

  3. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 2284–2291 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, H., Lenard, N. R., Shin, A. C. & Berthoud, H. R. Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals. Int. J. Obes. 33 (Suppl. 2), S8–S13 (2009).

    Article  CAS  Google Scholar 

  5. Lenard, N. R. & Berthoud, H. R. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring) 16 (Suppl. 3), S11–S22 (2008).

    Article  CAS  Google Scholar 

  6. Berthoud, H. R. Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol. Behav. 91, 486–498 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Vetter, M. L., Faulconbridge, L. F., Webb, V. L. & Wadden, T. A. Behavioral and pharmacologic therapies for obesity. Nat. Rev. Endocrinol. 6, 578–588 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Apovian, C. M. et al. Pharmacological management of obesity: an endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 342–362 (2015).

    CAS  PubMed  Google Scholar 

  9. Suzuki, K., Simpson, K. A., Minnion, J. S., Shillito, J. C. & Bloom, S. R. The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 57, 359–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Clemmensen, C. et al. Gut–brain cross-talk in metabolic control. Cell 168, 758–774 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yeo, G. S. & Heisler, L. K. Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez, A., Ezquerro, S., Mendez-Gimenez, L., Becerril, S. & Fruhbeck, G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am. J. Physiol. Endocrinol. Metab. 309, E691–E714 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Qian, S., Huang, H. & Tang, Q. Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front. Med. 9, 162–172 (2015).

    Article  PubMed  Google Scholar 

  14. Contreras, C., Nogueiras, R., Dieguez, C., Rahmouni, K. & Lopez, M. Traveling from the hypothalamus to the adipose tissue: the thermogenic pathway. Redox Biol. 12, 854–863 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mathur, R. & Barlow, G. M. Obesity and the microbiome. Exp. Rev. Gastroenterol. Hepatol. 9, 1087–1099 (2015).

    Article  CAS  Google Scholar 

  16. Bradlow, H. L. Obesity and the gut microbiome: pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 17, 53–61 (2014).

    CAS  PubMed  Google Scholar 

  17. Bhasin, S., Wallace, W., Lawrence, J. B. & Lesch, M. Sudden death associated with thyroid hormone abuse. Am. J. Med. 71, 887–890 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Grundlingh, J., Dargan, P. I., El-Zanfaly, M. & Wood, D. M. 2,4-Dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol. 7, 205–212 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kamour, A. et al. Increasing frequency of severe clinical toxicity after use of 2,4-dinitrophenol in the UK: a report from the National Poisons Information Service. Emerg. Med. J. 32, 383–386 (2015).

    Article  PubMed  Google Scholar 

  20. Gehring, P. J. & Buerge, J. F. The cataractogenic activity of 2,4-dinitrophenol in ducks and rabbits. Toxicol. Appl. Pharmacol. 14, 475–486 (1969).

    Article  CAS  PubMed  Google Scholar 

  21. Haslam, D. Weight management in obesity — past and present. Int. J. Clin. Pract. 70, 206–217 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bray, G. A. Medical treatment of obesity: the past, the present and the future. Best Pract. Res. Clin. Gastroenterol. 28, 665–684 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Weintraub, M. et al. Long-term weight control study. I (weeks 0 to 34). The enhancement of behavior modification, caloric restriction, and exercise by fenfluramine plus phentermine versus placebo. Clin. Pharmacol. Ther. 51, 586–594 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Weintraub, M. Long-term weight control study: conclusions. Clin. Pharmacol. Ther. 51, 642–646 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. McCann, U. et al. Dexfenfluramine and serotonin neurotoxicity: further preclinical evidence that clinical caution is indicated. J. Pharmacol. Exp. Ther. 269, 792–798 (1994).

    CAS  PubMed  Google Scholar 

  26. Kramer, M. S. & Lane, D. A. Aminorex, dexfenfluramine, and primary pulmonary hypertension. J. Clin. Epidemiol. 51, 361–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine–phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Araujo, J. R. & Martel, F. Sibutramine effects on central mechanisms regulating energy homeostasis. Curr. Neuropharmacol. 10, 49–52 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rucker, D., Padwal, R., Li, S. K., Curioni, C. & Lau, D. C. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335, 1194–1199 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. James, W. P. et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N. Engl. J. Med. 363, 905–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Caterson, I. D. et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial. Diabetes Obes. Metab. 14, 523–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Department of Health and Human Services, Food and Drug Administration & Center for Drug Evaluation and Research (CDER). Guidance for Industry: developing products for weight management. FDA https://www.fda.gov/downloads/Drugs/%E2%80%A6/Guidances/ucm071612.pdf (2007).

  33. Apovian, C. M., Aronne, L. & Powell, A. Clinical Management of Obesity 1st edn (Professional Communications, 2015).

    Google Scholar 

  34. Hampp, C., Kang, E. M. & Borders-Hemphill, V. Use of prescription antiobesity drugs in the United States. Pharmacotherapy 33, 1299–1307 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hendricks, E. J. et al. Addiction potential of phentermine prescribed during long-term treatment of obesity. Int. J. Obes. 38, 292–298 (2014).

    Article  CAS  Google Scholar 

  36. Samanin, R. & Garattini, S. Neurochemical mechanism of action of anorectic drugs. Pharmacol. Toxicol. 73, 63–68 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Munro, J. F., MacCuish, A. C., Wilson, E. M. & Duncan, L. J. Comparison of continuous and intermittent anorectic therapy in obesity. Br. Med. J. 1, 352–354 (1968).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Aronne, L. J. et al. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring) 21, 2163–2171 (2013).

    Article  CAS  Google Scholar 

  39. [No authors listed.] In brief: phentermine (Lomaira) for weight loss. Med. Lett. Drugs Ther. 58, 158 (2016).

  40. Yanovski, S. Z. & Yanovski, J. A. Long-term drug treatment for obesity: a systematic and clinical review. JAMA 311, 74–86 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Magnani, J. W., Hylek, E. M. & Apovian, C. M. Obesity begets atrial fibrillation: a contemporary summary. Circulation 128, 401–405 (2013).

    Article  PubMed  Google Scholar 

  42. Apovian, C. M. & Aronne, L. J. The 2013 American Heart Association/American College of Cardiology/The Obesity Society Guideline for the management of overweight and obesity in adults: what is new about diet, drugs, and surgery for obesity? Circulation 132, 1586–1591 (2015).

    Article  PubMed  Google Scholar 

  43. Apovian, C. M. & Gokce, N. Obesity and cardiovascular disease. Circulation 125, 1178–1182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hvizdos, K. M. & Markham, A. Orlistat: a review of its use in the management of obesity. Drugs 58, 743–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjostrom, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Muls, E., Kolanowski, J., Scheen, A. & Van Gaal, L. The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled, multicentre study. Int. J. Obes. Relat. Metabol. Disord. 25, 1713–1721 (2001).

    Article  CAS  Google Scholar 

  47. Heymsfield, S. B. et al. Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch. Intern. Med. 160, 1321–1326 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Weir, M. A. et al. Orlistat and acute kidney injury: an analysis of 953 patients. Arch. Intern. Med. 171, 703–704 (2011).

    Article  PubMed  Google Scholar 

  49. Xenical (Orlistat) package insert https://www.gene.com/download/pdf/xenical_prescribing.pdf (Genentech, 2016).

  50. Derosa, G., Mugellini, A., Ciccarelli, L. & Fogari, R. Randomized, double-blind, placebo-controlled comparison of the action of orlistat, fluvastatin, or both an anthropometric measurements, blood pressure, and lipid profile in obese patients with hypercholesterolemia prescribed a standardized diet. Clin. Ther. 25, 1107–1122 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Antel, J. & Hebebrand, J. Weight-reducing side effects of the antiepileptic agents topiramate and zonisamide. Handb. Exp. Pharmacol. 209, 433–466 (2012).

    Article  CAS  Google Scholar 

  52. Allison, D. B. et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity (Silver Spring) 20, 330–342 (2012).

    Article  CAS  Google Scholar 

  53. Gadde, K. M. et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 377, 1341–1352 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Garvey, W. T. et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am. J. Clin. Nutr. 95, 297–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Roberts, M. D. Clinical briefing document: Endocrinologic and Metabolic Drugs Advisory Committee Meeting (February 22, 2012). New Drug Application 22580: VI-0521 Qnexa (phentermine/topiramate). Sponsor: Vivus. FDA https://wayback.archive-it.org/7993/20170405220351/https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM292315.pdf (2017).

    Google Scholar 

  56. Mines, D. et al. Topiramate use in pregnancy and the birth prevalence of oral clefts. Pharmacoepidemiol. Drug Saf. 23, 1017–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Bialer, M. et al. Pharmacokinetic interactions of topiramate. Clin. Pharmacokinet. 43, 763–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Qsymia (phentermine and topiramate extended-release) package insert https://www.qsymia.com/pdf/prescribing-information.pdf (Vivus, 2014).

  59. Grilo, C. M., Reas, D. L. & Mitchell, J. E. Combining pharmacological and psychological treatments for binge eating disorder: current status, limitations, and future directions. Curr. Psychiatry Rep. 18, 55 (2016).

    Article  PubMed  Google Scholar 

  60. Stanford, F. C. et al. The utility of weight loss medications after bariatric surgery for weight regain or inadequate weight loss: a multi-center study. Surg. Obes. Relat. Dis. 13, 491–500 (2017).

    Article  PubMed  Google Scholar 

  61. Topamax (topiramate) package insert https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020844s041lbl.pdf (Janssen Pharmaceuticals, 2009).

  62. Ojemann, L. M. et al. Language disturbances as side effects of topiramate and zonisamide therapy. Epilepsy Behav. 2, 579–584 (2001).

    Article  PubMed  Google Scholar 

  63. Belviq (lorcaserin HCl) package insert https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022529lbl.pdf(Arena Pharmaceuticals, 2012).

  64. Thomsen, W. J. et al. Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 325, 577–587 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Lam, D. D., Garfield, A. S., Marston, O. J., Shaw, J. & Heisler, L. K. Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 97, 84–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Blundell, J. E., Lawton, C. L. & Halford, J. C. Serotonin, eating behavior, and fat intake. Obes. Res. 3 (Suppl. 4), 471S–476S (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Fidler, M. C. et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J. Clin. Endocrinol. Metab. 96, 3067–3077 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. O'Neil, P. M. et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring) 20, 1426–1436 (2012).

    Article  CAS  Google Scholar 

  70. Kelly, M. J., Loose, M. D. & Ronnekleiv, O. K. Opioids hyperpolarize beta-endorphin neurons via mu-receptor activation of a potassium conductance. Neuroendocrinology 52, 268–275 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Greenway, F. L. et al. Rational design of a combination medication for the treatment of obesity. Obesity (Silver Spring) 17, 30–39 (2009).

    Article  CAS  Google Scholar 

  72. Apovian, C. M. Naltrexone/bupropion for the treatment of obesity and obesity with type 2 diabetes. Future Cardiol. 12, 129–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Jain, A. K. et al. Bupropion SR versus placebo for weight loss in obese patients with depressive symptoms. Obes. Res. 10, 1049–1056 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Greenway, F. L. et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 376, 595–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Apovian, C. M. et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring) 21, 935–943 (2013).

    Article  CAS  Google Scholar 

  76. Wadden, T. A. et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity (Silver Spring) 19, 110–120 (2011).

    Article  CAS  Google Scholar 

  77. Hollander, P. et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care 36, 4022–4029 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Contrave package insert https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/200063s000lbl.pdf (Takeda Pharmaceuticals, 2014).

  79. McElroy, S. L., Guerdjikova, A. I., Mori, N., Munoz, M. R. & Keck, P. E. Overview of the treatment of binge eating disorder. CNS Spectr. 20, 546–556 (2015).

    Article  PubMed  Google Scholar 

  80. White, M. A. & Grilo, C. M. Bupropion for overweight women with binge-eating disorder: a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 74, 400–406 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yeomans, M. R. & Gray, R. W. Opioid peptides and the control of human ingestive behaviour. Neurosci. Biobehav. Rev. 26, 713–728 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Calderone, A. et al. Psychopathological behaviour and cognition in morbid obesity. Recent Pat. Endocr. Metab. Immune Drug Discov. 10, 112–118 (2016).

    Article  CAS  Google Scholar 

  83. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Astrup, A. et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int. J. Obes. 36, 843–854 (2012).

    Article  CAS  Google Scholar 

  85. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Davies, M. J. et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE Diabetes randomized clinical trial. JAMA 314, 687–699 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Wadden, T. A. et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int. J. Obes. 37, 1443–1451 (2013).

    Article  CAS  Google Scholar 

  88. le Roux, C. W. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389, 1399–1409 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Chalmer, T., Almdal, T. P., Vilsboll, T. & Knop, F. K. Adverse drug reactions associated with the use of liraglutide in patients with type 2 diabetes — focus on pancreatitis and pancreas cancer. Exp. Opin. Drug Saf. 14, 171–180 (2015).

    Article  CAS  Google Scholar 

  90. Funch, D., Gydesen, H., Tornoe, K., Major-Pedersen, A. & Chan, K. A. A prospective, claims-based assessment of the risk of pancreatitis and pancreatic cancer with liraglutide compared to other antidiabetic drugs. Diabetes Obes. Metab. 16, 273–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Saxenda [package insert]. Liraglutide (rDNA) injection https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206321Orig1s000lbl.pdf (Novo Nordisk, 2014).

  92. Gallo, M. Thyroid safety in patients treated with liraglutide. J. Endocrinol. Investig. 36, 140–145 (2013).

    Article  CAS  Google Scholar 

  93. Bjerre Knudsen, L. et al. Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 151, 1473–1486 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Tanaka, T. [Therapeutic gene clusters as drug action mechanisms] [Japanese]. Nihon Yakurigaku Zasshi 122 (Suppl.) 5P–7P (2003).

    PubMed  Google Scholar 

  95. Maslov, D. L., Balashova, E. E., Lokhov, P. G. & Archakov, A. I. [Pharmacometabonomics — the novel way to personalized drug therapy] [Russian]. Biomed. Khim. 63, 115–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Adkins, D. E. et al. Genotype-based ancestral background consistently predicts efficacy and side effects across treatments in CATIE and STAR*D. PLoS ONE 8, e55239 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang, D. et al. Large-scale candidate gene study to identify genetic risk factors predictive of paliperidone treatment response in patients with schizophrenia. Pharmacogenet. Genomics 25, 173–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Brauch, H., Murdter, T. E., Eichelbaum, M. & Schwab, M. Pharmacogenomics of tamoxifen therapy. Clin. Chem. 55, 1770–1782 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Blue Cross Blue Shield Association, Kaiser Foundation Health Plan & Southern California Permanente Medical Group. CYP2D6 pharmacogenomics of tamoxifen treatment. Technol. Eval. Cent. Assess. Program Exec. Summ. 28, 1–4 (2014).

  100. Zembutsu, H. Pharmacogenomics toward personalized tamoxifen therapy for breast cancer. Pharmacogenomics 16, 287–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Kiyotani, K., Mushiroda, T., Nakamura, Y. & Zembutsu, H. Pharmacogenomics of tamoxifen: roles of drug metabolizing enzymes and transporters. Drug Metab. Pharmacokinet. 27, 122–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Hendrick, V., Dasher, R., Gitlin, M. & Parsi, M. Minimizing weight gain for patients taking antipsychotic medications: the potential role for early use of metformin. Ann. Clin. Psychiatry 29, 120–124 (2017).

    PubMed  Google Scholar 

  103. Wu, R. R. et al. Lifestyle intervention and metformin for treatment of antipsychotic-induced weight gain: a randomized controlled trial. JAMA 299, 185–193 (2008).

    CAS  PubMed  Google Scholar 

  104. Anagnostou, E. et al. Metformin for treatment of overweight induced by atypical antipsychotic medication in young people with autism spectrum disorder: a randomized clinical trial. JAMA Psychiatry 73, 928–937 (2016).

    Article  PubMed  Google Scholar 

  105. Dansinger, M. L., Gleason, J. A., Griffith, J. L., Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293, 43–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Hatoum, I. J. & Kaplan, L. M. Advantages of percent weight loss as a method of reporting weight loss after Roux-en-Y gastric bypass. Obesity (Silver Spring) 21, 1519–1525 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. McCarthy for editorial and administrative assistance.

Author information

Authors and Affiliations

Authors

Contributions

G.S. and C.M.A. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Caroline M. Apovian.

Ethics declarations

Competing interests

G.S. declares no competing interests. C.M.A. has received personal fees from Gelesis, GI Dynamics, Johnson and Johnson, Merck, NovoNordisk, Nutrisystem, Orexigen, Sanofi-Aventis, Scientific Intake, Takeda and Zafgen; grants from Aspire Bariatrics, the Robert C. and Veronica Atkins Foundation, Coherence Lab, Energesis, Gelesis, GI Dynamics, Myos, Orexigen, PCORI, Takeda and Vela Foundation; and other forms of support from Science-Smart. No grant support or external funding was provided to G.S. or C.M.A. for the drafting of this manuscript.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, G., Apovian, C. Current pharmacotherapy for obesity. Nat Rev Endocrinol 14, 12–24 (2018). https://doi.org/10.1038/nrendo.2017.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing