Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Chronic endocrine consequences of traumatic brain injury — what is the evidence?

Abstract

Traumatic brain injury (TBI) is a major public health problem with potentially debilitating consequences for the individual. Hypopituitarism after TBI has received increasing attention over the past decade; development of the condition as a consequence of TBI was previously hardly mentioned in textbooks on the subject. Hypopituitarism has been reported in more than 25% of patients with TBI and is now thought to be one of the most important causes of treatable morbidity in TBI survivors. However, most clinicians dealing with neuroendocrine diseases and TBI generally do not see such a high incidence of hypopituitarism. This disproportion is not clearly explained, but recent data indicate that diagnostic testing, which is designed for high-risk populations and not for a cohort of patients with, for example, de novo isolated growth hormone deficiency (the predominant finding in TBI), might have overestimated the true risk and disease burden of hypopituitarism. In this Opinion article, we discuss current recommendations for post-traumatic hypopituitarism in light of recent evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of pituitary dysfunction after traumatic brain injury.

Similar content being viewed by others

References

  1. Roozenbeek, B., Maas, A. I. & Menon, D. K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 9, 231–236 (2013).

    Article  Google Scholar 

  2. Schneider, H. J., Kreitschmann-Andermahr, I., Ghigo, E., Stalla, G. K. & Agha, A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA 298, 1429–1438 (2007).

    Article  CAS  Google Scholar 

  3. Molitch, M. E., Clemmons, D. R., Malozowski, S., Merriam, G. R. & Vance, M. L. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 96, 1587–1609 (2011).

    Article  CAS  Google Scholar 

  4. Ho, K. K. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur. J. Endocrinol. 157, 695–700 (2007).

    Article  CAS  Google Scholar 

  5. Benvenga, S., Campenni, A., Ruggeri, R. M. & Trimarchi, F. Hypopituitarism secondary to head trauma. J. Clin. Endocrinol. Metab. 85, 1353–1361 (2000).

    Article  CAS  Google Scholar 

  6. Garrahy, A., Sherlock, M. & Thompson, C. J. Management of endocrine disease: Neuroendocrine surveillance and management of neurosurgical patients. Eur. J. Endocrinol. 176, R217–R233 (2017).

    Article  CAS  Google Scholar 

  7. Marina, D., Klose, M., Nordenbo, A., Liebach, A. & Feldt-Rasmussen, U. Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury. Eur. J. Endocrinol. 172, 813–822 (2015).

    Article  CAS  Google Scholar 

  8. Klose, M. et al. Acute and long-term pituitary insufficiency in traumatic brain injury: a prospective single-centre study. Clin. Endocrinol. (Oxf.) 67, 598–606 (2007).

    Article  CAS  Google Scholar 

  9. Hannon, M. J. et al. Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J. Clin. Endocrinol. Metab. 98, 3229–3237 (2013).

    Article  CAS  Google Scholar 

  10. Agha, A. et al. Anterior pituitary dysfunction in survivors of traumatic brain injury. J. Clin. Endocrinol. Metab. 89, 4929–4936 (2004).

    Article  CAS  Google Scholar 

  11. Leal-Cerro, A. et al. Prevalence of hypopituitarism and growth hormone deficiency in adults long-term after severe traumatic brain injury. Clin. Endocrinol. (Oxf.) 62, 525–532 (2005).

    Article  CAS  Google Scholar 

  12. Klose, M. et al. Prevalence of posttraumatic growth hormone deficiency is highly dependent on the diagnostic set-up: results from The Danish National Study on Posttraumatic Hypopituitarism. J. Clin. Endocrinol. Metab. 99, 101–110 (2014).

    Article  CAS  Google Scholar 

  13. Kelly, D. F. et al. Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J. Neurosurg. 93, 743–752 (2000).

    Article  CAS  Google Scholar 

  14. Klose, M. et al. Prevalence and predictive factors of post-traumatic hypopituitarism. Clin. Endocrinol. (Oxf.) 67, 193–201 (2007).

    Article  CAS  Google Scholar 

  15. Schneider, M. et al. Predictors of anterior pituitary insufficiency after traumatic brain injury. Clin. Endocrinol. (Oxf.) 68, 206–212 (2008).

    CAS  Google Scholar 

  16. Payne, T. H. & Desai, B. R. Examination of medication clinical decision support using Bayes' theorem. Am. J. Health Syst. Pharm. 73, 1876–1878 (2016).

    Article  Google Scholar 

  17. Rasmussen, M. H. et al. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. J. Clin. Endocrinol. Metab. 80, 1407–1415 (1995).

    CAS  PubMed  Google Scholar 

  18. Corneli, G. et al. The cut-off limits of the GH response to GH-releasing hormone–arginine test related to body mass index. Eur. J. Endocrinol. 153, 257–264 (2005).

    Article  CAS  Google Scholar 

  19. Yuen, K. C. et al. Clinical characteristics, timing of peak responses and safety aspects of two dosing regimens of the glucagon stimulation test in evaluating growth hormone and cortisol secretion in adults. Pituitary 16, 220–230 (2013).

    Article  CAS  Google Scholar 

  20. Silva, P. P. et al. Predictors of hypopituitarism in patients with traumatic brain injury. J. Neurotrauma 32, 1789–1795 (2015).

    Article  Google Scholar 

  21. Bhasin, S. et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 2536–2559 (2010).

    Article  CAS  Google Scholar 

  22. Morley, J. E. The endocrinology of the opiates and opioid peptides. Metabolism 30, 195–209 (1981).

    Article  CAS  Google Scholar 

  23. Persani, L. Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 97, 3068–3078 (2012).

    Article  CAS  Google Scholar 

  24. Persani, L., Ferretti, E., Borgato, S., Faglia, G. & Beck-Peccoz, P. Circulating thyrotropin bioactivity in sporadic central hypothyroidism. J. Clin. Endocrinol. Metab. 85, 3631–3635 (2000).

    CAS  Google Scholar 

  25. Feldt-Rasmussen, U., Hyltoft, P. P., Blaabjerg, O. & Horder, M. Long-term variability in serum thyroglobulin and thyroid related hormones in healthy subjects. Acta Endocrinol. (Copenh.) 95, 328–334 (1980).

    Article  CAS  Google Scholar 

  26. Welsh, K. J. & Soldin, S. J. Diagnosis of endocrine disease: How reliable are free thyroid and total T3 hormone assays? Eur. J. Endocrinol. 175, R255–R263 (2016).

    Article  CAS  Google Scholar 

  27. Clemmons, D. R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57, 555–559 (2011).

    Article  CAS  Google Scholar 

  28. Kline, G. A., Buse, J. & Krause, R. D. Clinical implications for biochemical diagnostic thresholds of adrenal sufficiency using a highly specific cortisol immunoassay. Clin. Biochem. 50, 475–480 (2017).

    Article  CAS  Google Scholar 

  29. El-Farhan, N., Rees, D. A. & Evans, C. Measuring cortisol in serum, urine and saliva — are our assays good enough? Ann. Clin. Biochem. 54, 308–322 (2017).

    Article  CAS  Google Scholar 

  30. Vestergaard, P., Hoeck, H. C., Jakobsen, P. E. & Laurberg, P. Reproducibility of growth hormone and cortisol responses to the insulin tolerance test and the short ACTH test in normal adults. Horm. Metab. Res. 29, 106–110 (1997).

    Article  CAS  Google Scholar 

  31. Yuen, K. C., Tritos, N. A., Samson, S. L., Hoffman, A. R. & Katznelson, L. American Associaton of Clinical Endocrinologists and American College of Endocrinology Disease State Clinical Review: Update on growth hormone stimulation testing and proposed revised cut-point for the glucagon stimulation test in the diagnosis of adult growth hormone deficiency. Endocr. Pract. 22, 1235–1244 (2016).

    Article  Google Scholar 

  32. Klose, M. et al. Patient reported outcome in posttraumatic pituitary deficiency: results from The Danish National Study on posttraumatic hypopituitarism. Eur. J. Endocrinol. 172, 753–762 (2015).

    Article  CAS  Google Scholar 

  33. Klose, M., Watt, T., Brennum, J. & Feldt-Rasmussen, U. Posttraumatic hypopituitarism is associated with an unfavorable body composition and lipid profile, and decreased quality of life 12 months after injury. J. Clin. Endocrinol. Metab. 92, 3861–3868 (2017).

    Article  Google Scholar 

  34. Mossberg, K. A., Masel, B. E., Gilkison, C. R. & Urban, R. J. Aerobic capacity and growth hormone deficiency after traumatic brain injury. J. Clin. Endocrinol. Metab. 93, 2581–2587 (2008).

    Article  CAS  Google Scholar 

  35. Heather, N. L. et al. Permanent hypopituitarism is rare after structural traumatic brain injury in early childhood. J. Clin. Endocrinol. Metab. 97, 599–604 (2012).

    Article  CAS  Google Scholar 

  36. Gardner, C. J. et al. GH deficiency after traumatic brain injury: improvement in quality of life with GH therapy: analysis of the KIMS database. Eur. J. Endocrinol. 172, 371–381 (2015).

    Article  CAS  Google Scholar 

  37. Maric, N. P. et al. Psychiatric and neuropsychological changes in growth hormone-deficient patients after traumatic brain injury in response to growth hormone therapy. J. Endocrinol. Invest. 33, 770–775 (2010).

    Article  CAS  Google Scholar 

  38. Neyeloff, J. L., Fuchs, S. C. & Moreira, L. B. Meta-analyses and Forest plots using a microsoft excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res. Notes 5, 52 (2012).

    Article  Google Scholar 

  39. Tanriverdi, F. et al. High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J. Clin. Endocrinol. Metab. 91, 2105–2111 (2006).

    Article  CAS  Google Scholar 

  40. Dimopoulou, I. et al. Endocrine abnormalities in critical care patients with moderate-to-severe head trauma: incidence, pattern and predisposing factors. Intensive Care Med. 30, 1051–1057 (2004).

    Article  Google Scholar 

  41. van der Eerden, A. W. et al. Should anterior pituitary function be tested during follow-up of all patients presenting at the emergency department because of traumatic brain injury? Eur. J. Endocrinol. 162, 19–28 (2010).

    Article  CAS  Google Scholar 

  42. Kokshoorn, N. E. et al. Low prevalence of hypopituitarism after traumatic brain injury: a multicenter study. Eur. J. Endocrinol. 165, 225–231 (2011).

    Article  CAS  Google Scholar 

  43. Krahulik, D., Zapletalova, J., Frysak, Z. & Vaverka, M. Dysfunction of hypothalamic–hypophysial axis after traumatic brain injury in adults. J. Neurosurg. 113, 581–584 (2010).

    Article  Google Scholar 

  44. Bavisetty, S. et al. Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery 62, 1080–1093 (2008).

    Article  Google Scholar 

  45. Aimaretti, G. et al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J. Clin. Endocrinol. Metab. 90, 6075–6092 (2005).

    Article  Google Scholar 

  46. Herrmann, B. L. et al. Hypopituitarism following severe traumatic brain injury. Exp. Clin. Endocrinol. Diabetes 114, 316–321 (2006).

    Article  CAS  Google Scholar 

  47. Wachter, D., Gundling, K., Oertel, M. F., Stracke, H. & Boker, D. K. Pituitary insufficiency after traumatic brain injury. J. Clin. Neurosci. 16, 202–208 (2009).

    Article  CAS  Google Scholar 

  48. Ulfarsson, T. et al. Pituitary function and functional outcome in adults after severe traumatic brain injury: the long-term perspective. J. Neurotrauma 30, 271–280 (2013).

    Article  Google Scholar 

  49. Prodam, F. et al. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism. Growth Horm. IGF Res. 23, 109–113 (2013).

    Article  CAS  Google Scholar 

  50. Cuesta, M. et al. Symptoms of gonadal dysfunction are more predictive of hypopituitarism than nonspecific symptoms in screening for pituitary dysfunction following moderate or severe traumatic brain injury. Clin. Endocrinol. (Oxf.) 84, 92–98 (2016).

    Article  CAS  Google Scholar 

  51. Popovic, V. et al. Hypopituitarism as a consequence of traumatic brain injury (TBI) and its possible relation with cognitive disabilities and mental distress. J. Endocrinol. Invest. 27, 1048–1054 (2004).

    Article  CAS  Google Scholar 

  52. Schneider, H. J. et al. Structured assessment of hypopituitarism after traumatic brain injury and aneurysmal subarachnoid hemorrhage in 1242 patients: the German interdisciplinary database. J. Neurotrauma 28, 1693–1698 (2011).

    Article  Google Scholar 

  53. Schneider, H. J. et al. Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur. J. Endocrinol. 154, 259–265 (2006).

    Article  CAS  Google Scholar 

  54. Bondanelli, M. et al. Occurrence of pituitary dysfunction following traumatic brain injury. J. Neurotrauma 21, 685–696 (2004).

    Article  Google Scholar 

  55. Lieberman, S. A., Oberoi, A. L., Gilkison, C. R., Masel, B. E. & Urban, R. J. Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J. Clin. Endocrinol. Metab. 86, 2752–2756 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research salary of U.F.-R. is sponsored by an unrestricted research grant from the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and U.F.-R. researched data for the article, made substantial contributions to discussion of content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ulla Feldt-Rasmussen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klose, M., Feldt-Rasmussen, U. Chronic endocrine consequences of traumatic brain injury — what is the evidence?. Nat Rev Endocrinol 14, 57–62 (2018). https://doi.org/10.1038/nrendo.2017.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing