Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history

Key Points

  • Adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder owing to mutations in ABCD1 with a highly complex clinical presentation

  • Presenting complaints are usually adrenal insufficiency (80% in childhood) or myelopathy (in adulthood)

  • Cerebral ALD can occur at any age and is most likely defined by the interplay between the primary ABCD1 mutation, a multitude of genetic variants and environmental factors

  • Haematopoietic stem cell transplantation (HSCT) remains the only therapeutic intervention for cerebral ALD, but the outcome of the procedure is poor unless performed at an early stage of cerebral disease

  • No treatment is currently available for the progressive myelopathy associated with ALD

  • Early diagnosis of boys with ALD by screening at birth allows the early detection of adrenal insufficiency to initiate timely adrenal steroid replacement therapy and the early detection of cerebral ALD to offer allogeneic HSCT

Abstract

X-Linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, which leads to the accumulation of very long-chain fatty acids in plasma and tissues. Virtually all men with ALD develop adrenal insufficiency and myelopathy. Approximately 60% of men develop progressive cerebral white matter lesions (known as cerebral ALD). However, one cannot identify these individuals until the early changes are seen using brain imaging. Women with ALD also develop myelopathy, but generally at a later age than men and adrenal insufficiency or cerebral ALD are very rare. Owing to the multisystem symptomatology of the disease, patients can be assessed by the paediatrician, general practitioner, endocrinologist or a neurologist. This Review describes current knowledge on the clinical presentation, diagnosis and treatment of ALD, and highlights gaps in our knowledge of the natural history of the disease owing to an absence of large-scale prospective cohort studies. Such studies are necessary for the identification of new prognostic biomarkers to improve care for patients with ALD, which is particularly relevant now that newborn screening for ALD is being introduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The clinical spectrum of ALD in men.
Figure 2
Figure 3: MRI of a 6-year-old boy with cerebral ALD.
Figure 4: Key enzymes in VLCFA homeostasis.

Similar content being viewed by others

References

  1. Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Argmann, C. A., Houten, S. M., Zhu, J. & Schadt, E. E. A. Next generation multiscale view of inborn errors of metabolism. Cell Metab. 23, 13–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Mosser, J. et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Singh, I., Moser, A. E., Moser, H. W. & Kishimoto, Y. Adrenoleukodystrophy: impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr. Res. 18, 286–290 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Wanders, R. J. et al. Peroxisomal very long-chain fatty acid β-oxidation in human skin fibroblasts: activity in Zellweger syndrome and other peroxisomal disorders. Clin. Chim. Acta 166, 255–263 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Kemp, S. & Wanders, R. Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol. 20, 831–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moser, H. W. et al. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology 31, 1241–1249 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Moser, H. W., Smith, K. D., Watkins, P. A., Powers, J. & Moser, A. B. in The Metabolic and Molecular Bases of Inherited Disease 3257–3301 (McGraw Hill, 2001). This book chapter provides an extensive historical overview of ALD research.

    Google Scholar 

  9. Igarashi, M. et al. Fatty acid abnormality in adrenoleukodystrophy. J. Neurochem. 26, 851–860 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Bezman, L. et al. Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann. Neurol. 49, 512–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Feigenbaum, V. et al. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 58, 1135–1144 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Ligtenberg, M. J. et al. Spectrum of mutations in the gene encoding the adrenoleukodystrophy protein. Am. J. Hum. Genet. 56, 44–50 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Takano, H., Koike, R., Onodera, O., Sasaki, R. & Tsuji, S. Mutational analysis and genotype–phenotype correlation of 29 unrelated Japanese patients with X-linked adrenoleukodystrophy. Arch. Neurol. 56, 295–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Amorosi, C. A. et al. X-linked adrenoleukodystrophy: molecular and functional analysis of the ABCD1 gene in Argentinean patients. PLoS ONE 7, e52635 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kemp, S. et al. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum. Mutat. 18, 499–515 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Engelen, M. et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J. Rare Dis. 7, 51 (2012). This article provides practical guidelines for the management of ALD.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Engelen, M. et al. X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. Brain 137, 693–706 (2014). A detailed description of disease manifestations in women with ALD

    Article  PubMed  Google Scholar 

  18. Kemp, S., Berger, J. & Aubourg, P. X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim. Biophys. Acta 1822, 1465–1474 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Haberfield, W. & Spieler, F. Zur diffusen Hirn-Ruckenmarksklerose im Kindesalter. Dt Z. Nervheilk 40, 436–463 (in German) (1910).

    Article  Google Scholar 

  20. Adams, R. D. & Kubik, C. S. The morbid anatomy of the demyelinative disease. Am. J. Med. 12, 510–546 (1952).

    Article  CAS  PubMed  Google Scholar 

  21. Harris-Jones, J. N. & Nixon, P. G. Familial Addison's disease with spastic paraplegia. J. Clin. Endocrinol. Metab. 15, 739–744 (1955).

    Article  CAS  PubMed  Google Scholar 

  22. Penman, R. W. Addison's disease in association with spastic paraplegia. Br. Med. J. 1, 402 (1960).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Powers, J. M. & Schaumburg, H. H. Adreno-leukodystrophy (sex-linked Schilder's disease). A pathogenetic hypothesis based on ultrastructural lesions in adrenal cortex, peripheral nerve and testis. Am. J. Pathol. 76, 481–491 (1974).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Schaumburg, H. H., Powers, J. M., Raine, C. S., Suzuki, K. & Richardson, E. P. Jr. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch. Neurol. 32, 577–591 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Budka, H., Sluga, E. & Heiss, W. D. Spastic paraplegia associated with Addison's disease: adult variant of adreno-leukodystrophy. J. Neurol. 213, 237–250 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. Griffin, J. W., Goren, E., Schaumburg, H., Engel, W. K. & Loriaux, L. Adrenomyeloneuropathy: a probable variant of adrenoleukodystrophy. I. Clinical and endocrinologic aspects. Neurology 27, 1107–1113 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. O'Neill, B. P., Moser, H. W., Saxena, K. M. & Marmion, L. C. Adrenoleukodystrophy: clinical and biochemical manifestations in carriers. Neurology 34, 798–801 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Moser, H. W., Moser, A. B., Naidu, S. & Bergin, A. Clinical aspects of adrenoleukodystrophy and adrenomyeloneuropathy. Dev. Neurosci. 13, 254–261 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt, S. et al. Phenotype assignment in symptomatic female carriers of X-linked adrenoleukodystrophy. J. Neurol. 248, 36–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Jung, H. H. et al. Phenotypes of female adrenoleukodystrophy. Neurology 68, 960–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Jangouk, P., Zackowski, K. M., Naidu, S. & Raymond, G. V. Adrenoleukodystrophy in female heterozygotes: underrecognized and undertreated. Mol. Genet. Metab. 105, 180–185 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Salsano, E. et al. Preferential expression of mutant ABCD1 allele is common in adrenoleukodystrophy female carriers but unrelated to clinical symptoms. Orphanet J. Rare Dis. 7, 10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dubey, P. et al. Adrenal insufficiency in asymptomatic adrenoleukodystrophy patients identified by very long-chain fatty acid screening. J. Pediatr. 146, 528–532 (2005). The paper highlights that adrenal failure is the most common presenting symptom of ALD in childhood.

    Article  PubMed  Google Scholar 

  34. van Geel, B. M., Bezman, L., Loes, D. J., Moser, H. W. & Raymond, G. V. Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann. Neurol. 49, 186–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. de Beer, M., Engelen, M. & van Geel, B. M. Frequent occurrence of cerebral demyelination in adrenomyeloneuropathy. Neurology 83, 2227–2231 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. el-Deiry, S. S., Naidu, S., Blevins, L. S. & Ladenson, P. W. Assessment of adrenal function in women heterozygous for adrenoleukodystrophy. J. Clin. Endocrinol. Metab. 82, 856–860 (1997).

    CAS  PubMed  Google Scholar 

  37. Blevins, L. S. Jr., Shankroff, J., Moser, H. W. & Ladenson, P. W. Elevated plasma adrenocorticotropin concentration as evidence of limited adrenocortical reserve in patients with adrenomyeloneuropathy. J. Clin. Endocrinol. Metab. 78, 261–265 (1994).

    PubMed  Google Scholar 

  38. Betterle, C. & Morlin, L. Autoimmune Addison's disease. Endocr. Dev. 20, 161–172 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, A. B., Schaumburg, H. H. & Powers, J. M. Histochemical characteristics of the striated inclusions of adrenoleukodystrophy. J. Histochem. Cytochem. 24, 725–730 (1976).

    Article  CAS  PubMed  Google Scholar 

  40. Powers, J. M., Moser, H. W., Moser, A. B. & Schaumburg, H. H. Fetal adrenoleukodystrophy: the significance of pathologic lesions in adrenal gland and testis. Hum. Pathol. 13, 1013–1019 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Powers, J. M., Schaumburg, H. H., Johnson, A. B. & Raine, C. S. A correlative study of the adrenal cortex in adreno-leukodystrophy — evidence for a fatal intoxication with very long chain saturated fatty acids. Invest. Cell Pathol. 3, 353–376 (1980).

    CAS  PubMed  Google Scholar 

  42. Govaerts, L., Monnens, L., Melis, T. & Trijbels, F. Disturbed adrenocortical function in cerebro-hepato-renal syndrome of Zellweger. Eur. J. Pediatr. 143, 10–12 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Berendse, K., Engelen, M., Linthorst, G. E., van Trotsenburg, A. S. & Poll-The, B. T. High prevalence of primary adrenal insufficiency in Zellweger spectrum disorders. Orphanet J. Rare Dis. 9, 133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaltsas, G., Kanakis, G. & Moser, H. in Endotext (eds De Groot, L. J. et al.) (South Dartmouth (MA), 2000).

    Google Scholar 

  45. Assies, J., Gooren, L. J., Van Geel, B. & Barth, P. G. Signs of testicular insufficiency in adrenomyeloneuropathy and neurologically asymptomatic X-linked adrenoleukodystrophy: a retrospective study. Int. J. Androl. 20, 315–321 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Brennemann, W., Kohler, W., Zierz, S. & Klingmuller, D. Testicular dysfunction in adrenomyeloneuropathy. Eur. J. Endocrinol. 137, 34–39 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Karapanou, O. et al. X-linked adrenoleukodystrophy: are signs of hypogonadism always due to testicular failure? Hormones (Athens) 13, 146–152 (2014).

    Article  Google Scholar 

  48. Assies, J., Haverkort, E. B., Lieverse, R. & Vreken, P. Effect of dehydroepiandrosterone (DHEA) supplementation on fatty acid and hormone levels in patients with X-linked adrenoleukodystrophy. Adv. Exp. Med. Biol. 544, 243–244 (2003).

    Article  PubMed  Google Scholar 

  49. Stradomska, T. J., Kubalska, J., Janas, R. & Tylki-Szymanska, A. Reproductive function in men affected by X-linked adrenoleukodystrophy/adrenomyeloneuropathy. Eur. J. Endocrinol. 166, 291–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Guran, T. et al. Rare causes of primary adrenal insufficiency: genetic and clinical characterization of a large nationwide cohort. J. Clin. Endocrinol. Metab. 101, 284–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Horn, M. A. et al. Screening for X-linked adrenoleukodystrophy among adult men with Addison's disease. Clin. Endocrinol. (Oxf.) 79, 316–320 (2013).

    Article  CAS  Google Scholar 

  52. Van Geel, B. M., Assies, J., Weverling, G. J. & Barth, P. G. Predominance of the adrenomyeloneuropathy phenotype of X linked adrenoleukodystrophy in the Netherlands: a survey of 30 kindreds. Neurology 44, 2343–2346 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Fatemi, A. et al. Magnetization transfer MRI demonstrates spinal cord abnormalities in adrenomyeloneuropathy. Neurology 64, 1739–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Dubey, P. et al. Spectroscopic evidence of cerebral axonopathy in patients with 'pure' adrenomyeloneuropathy. Neurology 64, 304–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. van Geel, B. M., Koelman, J. H., Barth, P. G. & Ongerboer de Visser, B. W. Peripheral nerve abnormalities in adrenomyeloneuropathy: a clinical and electrodiagnostic study. Neurology 46, 112–118 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Chaudhry, V., Moser, H. W. & Cornblath, D. R. Nerve conduction studies in adrenomyeloneuropathy. J. Neurol. Neurosurg. Psychiatry 61, 181–185 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Engelen, M. et al. X-linked adrenomyeloneuropathy due to a novel missense mutation in the ABCD1 start codon presenting as demyelinating neuropathy. J. Peripher. Nerv. Syst. 16, 353–355 (2011).

    Article  PubMed  Google Scholar 

  58. Horn, M. A., Nilsen, K. B., Jorum, E., Mellgren, S. I. & Tallaksen, C. M. Small nerve fiber involvement is frequent in X-linked adrenoleukodystrophy. Neurology 82, 1678–1683 (2014).

    Article  PubMed  Google Scholar 

  59. Raymond, G. V. et al. Head trauma can initiate the onset of adreno-leukodystrophy. J. Neurol. Sci. 290, 70–74 (2010).

    Article  PubMed  Google Scholar 

  60. Bouquet, F., Dehais, C., Sanson, M., Lubetzki, C. & Louapre, C. Dramatic worsening of adult-onset X-linked adrenoleukodystrophy after head trauma. Neurology 85, 1991–1993 (2015).

    Article  PubMed  Google Scholar 

  61. Weller, M., Liedtke, W., Petersen, D., Opitz, H. & Poremba, M. Very-late-onset adrenoleukodystrophy: possible precipitation of demyelination by cerebral contusion. Neurology 42, 367–370 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Van der Knaap, M. S. & Valk, J. in Magnetic Resonance of Myelination and Myelin Disorders (ed. Heilmann, U. ) 176–190 (Springer, 2005).

    Book  Google Scholar 

  63. Castellote, A. et al. MR in adrenoleukodystrophy: atypical presentation as bilateral frontal demyelination. AJNR Am. J. Neuroradiol. 16, 814–815 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Loes, D. J. et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 61, 369–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Melhem, E. R., Loes, D. J., Georgiades, C. S., Raymond, G. V. & Moser, H. W. X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. AJNR Am. J. Neuroradiol. 21, 839–844 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Loes, D. J. et al. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am. J. Neuroradiol. 15, 1761–1766 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Garside, S., Rosebush, P. I., Levinson, A. J. & Mazurek, M. F. Late-onset adrenoleukodystrophy associated with long-standing psychiatric symptoms. J. Clin. Psychiatry 60, 460–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kitchin, W., Cohen-Cole, S. A. & Mickel, S. F. Adrenoleukodystrophy: frequency of presentation as a psychiatric disorder. Biol. Psychiatry 22, 1375–1387 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Korenke, G. C. et al. Arrested cerebral adrenoleukodystrophy: a clinical and proton magnetic resonance spectroscopy study in three patients. Pediatr. Neurol. 15, 103–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Heffungs, W., Hameister, H. & Ropers, H. H. Addison disease and cerebral sclerosis in an apparently heterozygous girl: evidence for inactivation of the adrenoleukodystrophy locus. Clin. Genet. 18, 184–188 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Powers, J. M. et al. Pathologic findings in adrenoleukodystrophy heterozygotes. Arch. Pathol. Lab. Med. 111, 151–153 (1987).

    CAS  PubMed  Google Scholar 

  72. Chen, X. et al. Adult cerebral adrenoleukodystrophy and Addison's disease in a female carrier. Gene 544, 248–251 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Fatemi, A. et al. MRI and proton MRSI in women heterozygous for X-linked adrenoleukodystrophy. Neurology 60, 1301–1307 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Papini, M., Calandra, P., Calvieri, S., Laureti, S. & Casucci, G. Adrenoleucodystrophy: dermatological findings and skin surface lipid study. Dermatology 188, 25–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Hoftberger, R. et al. Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: implications for X-linked adrenoleukodystrophy. Neurobiol. Dis. 28, 165–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Edwin, D., Speedie, L., Naidu, S. & Moser, H. Cognitive impairment in adult-onset adrenoleukodystrophy. Mol. Chem. Neuropathol. 12, 167–176 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Walterfang, M. A., O'Donovan, J., Fahey, M. C. & Velakoulis, D. The neuropsychiatry of adrenomyeloneuropathy. CNS Spectr. 12, 696–701 (2007).

    Article  PubMed  Google Scholar 

  78. Wong, S. H., Boggild, M. & Enevoldson, T. P. & Fletcher, N. A. Myelopathy but normal MRI: where next? Pract. Neurol. 8, 90–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Moser, A. B. et al. Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann. Neurol. 45, 100–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Valianpour, F. et al. Analysis of very long-chain fatty acids using electrospray ionization mass spectrometry. Mol. Genet. Metab. 79, 189–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Boehm, C. D., Cutting, G. R., Lachtermacher, M. B., Moser, H. W. & Chong, S. S. Accurate DNA-based diagnostic and carrier testing for X-linked adrenoleukodystrophy. Mol. Genet. Metab. 66, 128–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Schackmann, M. J. et al. Pathogenicity of novel ABCD1 variants: the need for biochemical testing in the era of advanced genetics. Mol. Genet. Metab. 118, 123–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Y. et al. X-linked adrenoleukodystrophy: ABCD1 de novo mutations and mosaicism. Mol. Genet. Metab. 104, 160–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Kemp, S. et al. Identification of a two base pair deletion in five unrelated families with adrenoleukodystrophy: a possible hot spot for mutations. Biochem. Biophys. Res. Commun. 202, 647–653 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Smith, K. D. et al. X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem. Res. 24, 521–535 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Berger, J., Molzer, B., Fae, I. & Bernheimer, H. X-linked adrenoleukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem. Biophys. Res. Commun. 205, 1638–1643 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Korenke, G. C. et al. Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann. Neurol. 40, 254–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Di Rocco, M., Doria-Lamba, L. & Caruso, U. Monozygotic twins with X-linked adrenoleukodystrophy and different phenotypes. Ann. Neurol. 50, 424 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Sobue, G. et al. Phenotypic heterogeneity of an adult form of adrenoleukodystrophy in monozygotic twins. Ann. Neurol. 36, 912–915 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Engelen, M., Kemp, S. & Poll-The, B. T. X-linked adrenoleukodystrophy: pathogenesis and treatment. Curr. Neurol. Neurosci. Rep. 14, 486 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Horn, M. A., Retterstol, L., Abdelnoor, M., Skjeldal, O. H. & Tallaksen, C. M. Adrenoleukodystrophy in Norway: high rate of de novo mutations and age-dependent penetrance. Pediatr. Neurol. 48, 212–219 (2013).

    Article  PubMed  Google Scholar 

  92. Maestri, N. E. & Beaty, T. H. Predictions of a 2-locus model for disease heterogeneity: application to adrenoleukodystrophy. Am. J. Med. Genet. 44, 576–582 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Moser, H. W. et al. Adrenoleukodystrophy: phenotypic variability and implications for therapy. J. Inherit. Metab. Dis. 15, 645–664 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Wiesinger, C., Eichler, F. S. & Berger, J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. Appl. Clin. Genet. 8, 109–121 (2015). This article provides a comprehensive overview on the genetics of ALD.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Linnebank, M. et al. Methionine metabolism and phenotypic variability in X-linked adrenoleukodystrophy. Neurology 66, 442–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Linnebank, M. et al. The cystathionine β-synthase variant c.844_845ins68 protects against CNS demyelination in X-linked adrenoleukodystrophy. Hum. Mutat. 27, 1063–1064 (2006).

    Article  PubMed  Google Scholar 

  97. Semmler, A. et al. Genetic variants of methionine metabolism and X-ALD phenotype generation: results of a new study sample. J. Neurol. 256, 1277–1280 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Kemp, S., Theodoulou, F. L. & Wanders, R. J. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br. J. Pharmacol. 164, 1753–1766 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Contreras, M., Sengupta, T. K., Sheikh, F., Aubourg, P. & Singh, I. Topology of ATP-binding domain of adrenoleukodystrophy gene product in peroxisomes. Arch. Biochem. Biophys. 334, 369–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. van Roermund, C. W. et al. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J. 22, 4201–4208 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. McGuinness, M. C., Zhang, H. P. & Smith, K. D. Evaluation of pharmacological induction of fatty acid β-oxidation in X-linked adrenoleukodystrophy. Mol. Genet. Metab. 74, 256–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Kemp, S., Valianpour, F., Mooyer, P. A., Kulik, W. & Wanders, R. J. Method for measurement of peroxisomal very-long-chain fatty acid β-oxidation in human skin fibroblasts using stable-isotope-labeled tetracosanoic acid. Clin. Chem. 50, 1824–1826 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Wiesinger, C., Kunze, M., Regelsberger, G., Forss-Petter, S. & Berger, J. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J. Biol. Chem. 288, 19269–19279 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kemp, S. et al. Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat. Med. 4, 1261–1268 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Netik, A. et al. Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum. Mol. Genet. 8, 907–913 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Kemp, S. et al. ALDP expression in fibroblasts of patients with X-linked adrenoleukodystrophy. J. Inherit. Metab. Dis. 19, 667–674 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Watkins, P. A. et al. Altered expression of ALDP in X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 57, 292–301 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Zhang, X. et al. Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression. Biochem. J. 436, 547–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Ofman, R. et al. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol. Med. 2, 90–97 (2010). Characterization of the enzyme responsible for VLCFA synthesis in mammals and demonstration that inhibition of this enzyme is a potential therapeutic target.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kemp, S. et al. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol. Genet. Metab. 84, 144–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Ho, J. K., Moser, H., Kishimoto, Y. & Hamilton, J. A. Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J. Clin. Invest. 96, 1455–1463 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Knazek, R. A., Rizzo, W. B., Schulman, J. D. & Dave, J. R. Membrane microviscosity is increased in the erythrocytes of patients with adrenoleukodystrophy and adrenomyeloneuropathy. J. Clin. Invest. 72, 245–248 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Whitcomb, R. W., Linehan, W. M. & Knazek, R. A. Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro. J. Clin. Invest. 81, 185–188 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hein, S., Schonfeld, P., Kahlert, S. & Reiser, G. Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum. Mol. Genet. 17, 1750–1761 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Fourcade, S. et al. Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum. Mol. Genet. 17, 1762–1773 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Kruska, N., Schonfeld, P., Pujol, A. & Reiser, G. Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim. Biophys. Acta 1852, 925–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Eichler, F. S. et al. Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann. Neurol. 63, 729–742 (2008).

    Article  PubMed  Google Scholar 

  118. Musolino, P. L. et al. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain 138, 3206–3220 (2015). This article provided new insights into the pathophysiology of ALD.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shapiro, E. et al. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet 356, 713–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Miller, W. P. et al. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: the largest single-institution cohort report. Blood 118, 1971–1978 (2011). This is the largest report on outcome of HSCT for cerebral ALD.

    Article  CAS  PubMed  Google Scholar 

  121. Aubourg, P. et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N. Engl. J. Med. 322, 1860–1866 (1990). The first report of a successful HSCT for cerebral ALD.

    Article  CAS  PubMed  Google Scholar 

  122. Peters, C. et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104, 881–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Köhler, W. & Kühl, J. S. Hematopoietic stem cell transplantation for adult cerebral X-linked adrenoleukodystrophy (P5.174). Neurology 82 (Suppl.), 10 (2014).

    Google Scholar 

  124. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009). A ground-breaking paper on successful gene therapy for ALD.

    Article  CAS  PubMed  Google Scholar 

  125. van Geel, B. M. et al. Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: a retrospective study. J. Inherit. Metab. Dis. 38, 359–361 (2015). This article highlights that HSCT probably does not prevent the onset of the non-cerebral manifestations of the disease.

    Article  CAS  PubMed  Google Scholar 

  126. Wanders, R. J., Ferdinandusse, S., Brites, P. & Kemp, S. Peroxisomes, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta 1801, 272–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Rizzo, W. B. et al. Adrenoleukodystrophy: dietary oleic acid lowers hexacosanoate levels. Ann. Neurol. 21, 232–239 (1987).

    Article  CAS  PubMed  Google Scholar 

  128. Moser, A. B. et al. A new dietary therapy for adrenoleukodystrophy: biochemical and preliminary clinical results in 36 patients. Ann. Neurol. 21, 240–249 (1987).

    Article  CAS  PubMed  Google Scholar 

  129. Rasmussen, M., Moser, A. B., Borel, J., Khangoora, S. & Moser, H. W. Brain, liver, and adipose tissue erucic and very long chain fatty acid levels in adrenoleukodystrophy patients treated with glyceryl trierucate and trioleate oils (Lorenzo's oil). Neurochem. Res. 19, 1073–1082 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Rizzo, W. B. Lorenzo's oil — hope and disappointment. N. Engl. J. Med. 329, 801–802 (1993). An editorial on the introduction of Lorenzo's oil into clinical practice before efficacy was proven.

    Article  CAS  PubMed  Google Scholar 

  131. Aubourg, P. et al. A two-year trial of oleic and erucic acids ('Lorenzo's oil') as treatment for adrenomyeloneuropathy. N. Engl. J. Med. 329, 745–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. van Geel, B. M. et al. Progression of abnormalities in adrenomyeloneuropathy and neurologically asymptomatic X-linked adrenoleukodystrophy despite treatment with 'Lorenzo's oil'. J. Neurol. Neurosurg. Psychiatry 67, 290–299 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Moser, H. W. et al. Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo's oil. Arch. Neurol. 62, 1073–1080 (2005).

    Article  PubMed  Google Scholar 

  134. Singh, I., Khan, M., Key, L. & Pai, S. Lovastatin for X-linked adrenoleukodystrophy. N. Engl. J. Med. 339, 702–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Engelen, M. et al. Lovastatin in X-linked adrenoleukodystrophy. N. Engl. J. Med. 362, 276–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Engelen, M. et al. Bezafibrate lowers very long-chain fatty acids in X-linked adrenoleukodystrophy fibroblasts by inhibiting fatty acid elongation. J. Inherit. Metab. Dis. 35, 1137–1145 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Schackmann, M. J., Ofman, R., Dijkstra, I. M., Wanders, R. J. & Kemp, S. Enzymatic characterization of ELOVL1, a key enzyme in very long-chain fatty acid synthesis. Biochim. Biophys. Acta 1851, 231–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Engelen, M. et al. Bezafibrate for X-linked adrenoleukodystrophy. PLoS ONE 7, e41013 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Sanders, R. J., Ofman, R., Valianpour, F., Kemp, S. & Wanders, R. J. Evidence for two enzymatic pathways for ω-oxidation of docosanoic acid in rat liver microsomes. J. Lipid Res. 46, 1001–1008 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Sanders, R. J., Ofman, R., Duran, M., Kemp, S. & Wanders, R. J. ω-oxidation of very long-chain fatty acids in human liver microsomes. Implications for X-linked adrenoleukodystrophy. J. Biol. Chem. 281, 13180–13187 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Sanders, R. J., Ofman, R., Dacremont, G., Wanders, R. J. & Kemp, S. Characterization of the human ω-oxidation pathway for ω-hydroxy-very-long-chain fatty acids. FASEB J. 22, 2064–2071 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Ferdinandusse, S., Denis, S., Van Roermund, C. W., Wanders, R. J. & Dacremont, G. Identification of the peroxisomal β-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J. Lipid Res. 45, 1104–1111 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. van Roermund, C. W., Ijlst, L., Wagemans, T., Wanders, R. J. & Waterham, H. R. A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim. Biophys. Acta 1841, 563–568 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Wanders, R. J., Komen, J. & Kemp, S. Fatty acid ω-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J. 278, 182–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Lopez-Erauskin, J. et al. Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann. Neurol. 70, 84–92 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01495260 (2014)

  147. Vogel, B. H. et al. Newborn screening for X-linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines. Mol. Genet. Metab. 114, 599–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Turgeon, C. T. et al. Streamlined determination of lysophosphatidylcholines in dried blood spots for newborn screening of X-linked adrenoleukodystrophy. Mol. Genet. Metab. 114, 46–50 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Salzman (The Stop ALD Foundation) for critical review of the manuscript and helpful discussions. Work in the authors' laboratory was supported by a grant from the Netherlands Organization for Scientific Research (VENI-Grant: 016.156.033 awarded to M.E.).

Author information

Authors and Affiliations

Authors

Contributions

I.C.H. and M.E. researched data for the article. All authors made substantial contribution to discussion of the content, wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Stephan Kemp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemp, S., Huffnagel, I., Linthorst, G. et al. Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol 12, 606–615 (2016). https://doi.org/10.1038/nrendo.2016.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing