Early-life exposure to EDCs: role in childhood obesity and neurodevelopment

Key Points

  • Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood neurodevelopmental disorders or obesity by disrupting hormone-mediated processes during critical periods of development

  • The developing fetus, infant and child might have enhanced sensitivity to environmental stressors such as EDCs and increased exposure to some EDCs due to developmentally appropriate behaviour, anatomy and physiology

  • The available epidemiological evidence suggest that prenatal bisphenol A and phthalate exposure is associated with adverse neurobehavioural outcomes in children, but not excess adiposity or risk of obesity or being overweight

  • Epidemiological studies show that prenatal PFAS exposure is associated with reduced fetal growth, excess adiposity and risk of being overweight or obese, but not neurobehavioural outcomes

  • Improving EDC exposure measurement, reducing confounding bias, identifying discrete periods of vulnerability and sexually dimorphic associations, and quantifying the effects of EDC mixtures will enhance inferences made from epidemiological studies

Abstract

Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood diseases by disrupting hormone-mediated processes that are critical for growth and development during gestation, infancy and childhood. The fetus, infant and child might have enhanced sensitivity to environmental stressors such as EDCs due to their rapid development and increased exposure to some EDCs as a consequence of development-specific behaviour, anatomy and physiology. In this Review, I discuss epidemiological studies examining the relationship between early-life exposure to bisphenol A (BPA), phthalates, triclosan and perfluoroalkyl substances (PFAS) with childhood neurobehavioural disorders and obesity. The available epidemiological evidence suggest that prenatal exposure to several of these ubiquitous EDCs is associated with adverse neurobehaviour (BPA and phthalates) and excess adiposity or increased risk of obesity and/or overweight (PFAS). Quantifying the effects of EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying periods of heightened vulnerability and elucidating the presence and nature of sexually dimorphic EDC effects would enable stronger inferences to be made from epidemiological studies than currently possible. Ultimately, improved estimates of the causal effects of EDC exposures on child health could help identify susceptible subpopulations and lead to public health interventions to reduce these exposures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: EDC mechanisms of action and biological targets.
Figure 2: Early-life PFAS exposure and child adiposity.

References

  1. 1

    Barker, D. J. Sir Richard Doll Lecture. Developmental origins of chronic disease. Public Health 126, 185–189 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Heindel, J. J. et al. Developmental origins of health and disease: integrating environmental influences. Endocrinology 156, 3416–3421 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  3. 3

    Lanphear, B. P. et al. Low-level environmental lead exposure and children's intellectual function: an international pooled analysis. Environ. Health Perspect. 113, 894–899 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  4. 4

    Axelrad, D. A., Bellinger, D. C., Ryan, L. M. & Woodruff, T. J. Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ. Health Perspect. 115, 609–615 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Hoover, R. N. et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N. Engl. J. Med. 365, 1304–1314 (2011).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Eubig, P. A., Aguiar, A. & Schantz, S. L. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ. Health Perspect. 118, 1654–1667 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  7. 7

    Fried, P. A., O'Connell, C. M. & Watkinson, B. 60- and 72-month follow-up of children prenatally exposed to marijuana, cigarettes, and alcohol: cognitive and language assessment. J. Dev. Behav. Pediatr. 13, 383–391 (1992).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Tang-Peronard, J. L., Andersen, H. R., Jensen, T. K. & Heitmann, B. L. Endocrine-disrupting chemicals and obesity development in humans: a review. Obes. Rev. 12, 622–636 (2011).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Ronald, A., Pennell, C. E. & Whitehouse, A. J. Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front. Psychol. 1, 223 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Oken, E., Levitan, E. B. & Gillman, M. W. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int. J. Obes. 32, 201–210 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153, 4097–4110 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  12. 12

    Braun, J. M., Gennings, C., Hauser, R. & Webster, T. F. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ. Health Perspect. 124, A6–A9 (2016). This article provides an overview and discussion of the types of questions that epidemiological studies of chemical mixtures can address.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Woodruff, T. J., Zota, A. R. & Schwartz, J. M. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ. Health Perspect. 119, 878–885 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Robinson, O. et al. The pregnancy exposome: multiple environmental exposures in the INMA–Sabadell Birth Cohort. Environ. Sci. Technol. 49, 10632–10641 (2015).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Vrijheid, M., Casas, M., Gascon, M., Valvi, D. & Nieuwenhuijsen, M. Environmental pollutants and child health — a review of recent concerns. Int. J. Hyg. Environ. Health 219, 331–342 (2016). This article reviews the health effects of a variety of EDCs, including banned organochlorine chemicals.

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Miller, M. D. et al. Differences between children and adults: implications for risk assessment at California EPA. Int. J. Toxicol. 21, 403–418 (2002).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Selevan, S. G., Kimmel, C. A. & Mendola, P. Identifying critical windows of exposure for children's health. Environ. Health Perspect. 108 (Suppl. 3), 451–455 (2000).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Grandjean, P. & Jensen, A. A. Breastfeeding and the weanling's dilemma. Am. J. Public Health 94, 1075 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Cresteil, T. Onset of xenobiotic metabolism in children: toxicological implications. Food Addit. Contam. 15 (Suppl.), 45–51 (1998).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Hakkola, J., Tanaka, E. & Pelkonen, O. Developmental expression of cytochrome P450 enzymes in human liver. Pharmacol. Toxicol. 82, 209–217 (1998).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Rice, D. & Barone, S. Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108 (Suppl. 3), 511–533 (2000).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    de Graaf-Peters, V. B. & Hadders-Algra, M. Ontogeny of the human central nervous system: what is happening when? Early Hum. Dev. 82, 257–266 (2006).

    Article  PubMed  Google Scholar 

  23. 23

    Baccarelli, A. & Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21, 243–251 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Schug, T. T., Blawas, A. M., Gray, K., Heindel, J. J. & Lawler, C. P. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology 156, 1941–1951 (2015). This article discusses both animal and epidemiological studies examining the neurotoxic effects of EDCs.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  25. 25

    Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and obesity. Nat. Rev. Endocrinol. 11, 653–661 (2015). This article provides an overview of animal and human studies of environmental obesogens.

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Zoeller, R. T. & Rovet, J. Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J. Neuroendocrinol. 16, 809–818 (2004).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Henrichs, J., Ghassabian, A., Peeters, R. P. & Tiemeier, H. Maternal hypothyroxinemia and effects on cognitive functioning in childhood: how and why? Clin. Endocrinol. 79, 152–162 (2013).

    Article  Google Scholar 

  28. 28

    Modesto, T. et al. Maternal mild thyroid hormone insufficiency in early pregnancy and attention-deficit/hyperactivity disorder symptoms in children. JAMA Pediatr. 169, 838–845 (2015).

    Article  PubMed  Google Scholar 

  29. 29

    Roman, G. C. et al. Association of gestational maternal hypothyroxinemia and increased autism risk. Ann. Neurol. 74, 733–742 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Ghassabian, A. et al. Maternal thyroid function during pregnancy and behavioral problems in the offspring: the generation R study. Pediatr. Res. 69, 454–459 (2011).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Rovet, J. F., Ehrlich, R. M. & Sorbara, D. L. Neurodevelopment in infants and preschool children with congenital hypothyroidism: etiological and treatment factors affecting outcome. J. Pediatr. Psychol. 17, 187–213 (1992).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Rovet, J. F. & Hepworth, S. Attention problems in adolescents with congenital hypothyroidism: a multicomponential analysis. J. Int. Neuropsychol. Soc. 7, 734–744 (2001).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Rovet, J. F. & Hepworth, S. L. Dissociating attention deficits in children with ADHD and congenital hypothyroidism using multiple CPTs. J. Child Psychol. Psychiatry 42, 1049–1056 (2001).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Song, S. I., Daneman, D. & Rovet, J. The influence of etiology and treatment factors on intellectual outcome in congenital hypothyroidism. J. Dev. Behav. Pediatr. 22, 376–384 (2001).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Gillman, M. W. Early infancy as a critical period for development of obesity and related conditions. Nestle Nutr. Workshop Ser. Pediatr. Program. 65, 13–20 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Ornoy, A. Prenatal origin of obesity and their complications: gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod. Toxicol. 32, 205–212 (2011).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Painter, R. C., Roseboom, T. J. & Bleker, O. P. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod. Toxicol. 20, 345–352 (2005).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Barker, D. J. Developmental origins of chronic disease. Public Health 126, 185–189 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Barker, D. J. The developmental origins of adult disease. J. Am. Coll. Nutr. 23 (6 Suppl.), 588S–595S (2004).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Adair, L. S. et al. Size at birth, weight gain in infancy and childhood, and adult blood pressure in 5 low- and middle-income-country cohorts: when does weight gain matter? Am. J. Clin. Nutr. 89, 1383–1392 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  41. 41

    Druet, C. et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr. Perinat. Epidemiol. 26, 19–26 (2012).

    Article  PubMed  Google Scholar 

  42. 42

    Monteiro, P. O. & Victora, C. G. Rapid growth in infancy and childhood and obesity in later life — a systematic review. Obes. Rev. 6, 143–154 (2005).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Gishti, O. et al. Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children. J. Clin. Endocrinol. Metab. 99, 2557–2566 (2014).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Chomtho, S. et al. Infant growth and later body composition: evidence from the 4-component model. Am. J. Clin. Nutr. 87, 1776–1784 (2008).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Rolfe Ede, L. et al. Association between birth weight and visceral fat in adults. Am. J. Clin. Nutr. 92, 347–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Grundy, S. M. et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433–438 (2004).

    Article  PubMed  Google Scholar 

  47. 47

    Kahn, B. B. & Flier, J. S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  48. 48

    Reaven, G. M. Pathophysiology of insulin resistance in human disease. Physiol. Rev. 75, 473–486 (1995).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Llewellyn, C. H., van Jaarsveld, C. H., Plomin, R., Fisher, A. & Wardle, J. Inherited behavioral susceptibility to adiposity in infancy: a multivariate genetic analysis of appetite and weight in the Gemini birth cohort. Am. J. Clin. Nutr. 95, 633–639 (2012).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Goldstone, A. P. The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog. Brain Res. 153, 57–73 (2006).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Suzuki, K., Simpson, K. A., Minnion, J. S., Shillito, J. C. & Bloom, S. R. The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 57, 359–372 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Yau, P. L., Kang, E. H., Javier, D. C. & Convit, A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity (Silver Spring) 22, 1865–1871 (2014).

    Article  Google Scholar 

  54. 54

    Hanc, T. et al. Attention-deficit/hyperactive disorder is related to decreased weight in the preschool period and to increased rate of overweight in school-age boys. J. Child Adolesc. Psychopharmacol. 25, 691–700 (2015).

    Article  PubMed  Google Scholar 

  55. 55

    Racicka, E., Hanc, T., Giertuga, K., Brynska, A. & Wolanczyk, T. Prevalence of overweight and obesity in children and adolescents with ADHD: the significance of comorbidities and pharmacotherapy. J. Atten. Disord. http://dx.doi.org/10.1177/1087054715578272 (2015).

  56. 56

    Frazier-Wood, A. C. et al. Cognitive performance and BMI in childhood: shared genetic influences between reaction time but not response inhibition. Obesity (Silver Spring) 22, 2312–2318 (2014).

    Article  Google Scholar 

  57. 57

    Hofmann, J., Ardelt-Gattinger, E., Paulmichl, K., Weghuber, D. & Blechert, J. Dietary restraint and impulsivity modulate neural responses to food in adolescents with obesity and healthy adolescents. Obesity (Silver Spring) 23, 2183–2189 (2015).

    Article  Google Scholar 

  58. 58

    Anderberg, R. H. et al. The stomach-derived hormone ghrelin increases impulsive behavior. Neuropsychopharmacology 41, 1199–1209 (2015). This rodent study demonstrates that the adipocytokine, ghrelin, can affect impulsive behaviour.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59

    Engel, S. M. et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ. Health Perspect. 118, 565–571 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  60. 60

    Whyatt, R. M. et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ. Health Perspect. 120, 290–295 (2012).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Miodovnik, A. et al. Endocrine disruptors and childhood social impairment. Neurotoxicology 32, 261–267 (2011).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Kim, Y. et al. Prenatal exposure to phthalates and infant development at 6 months: prospective Mothers and Children's Environmental Health (MOCEH) study. Environ. Health Perspect. 119, 1495–1500 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  63. 63

    Factor-Litvak, P. et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS ONE 9, e114003 (2014). This paper reports an association between prenatal exposure to some phthalates and child IQ 7 years later.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64

    Braun, J. M. et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ. Health Perspect. 122, 513–520 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  65. 65

    Huang, H. B. et al. Fetal and childhood exposure to phthalate diesters and cognitive function in children up to 12 years of age: Taiwanese Maternal and Infant Cohort Study. PLoS ONE 10, e0131910 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Gascon, M. et al. Prenatal exposure to phthalates and neuropsychological development during childhood. Int. J. Hyg. Environ. Health 218, 550–558 (2015).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Arbuckle, T. E., Davis, K., Boylan, K., Fisher, M. & Fu, J. Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–11 years of age: CHMS 2007–2009. Neurotoxicology 54, 89–98 (2016).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Kim, B. N. et al. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol. Psychiatry 66, 958–963 (2009).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Swan, S. H. et al. Prenatal phthalate exposure and reduced masculine play in boys. Int. J. Androl. 33, 259–269 (2010).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Valvi, D. et al. Prenatal phthalate exposure and childhood growth and blood pressure: evidence from the Spanish INMA-Sabadell Birth Cohort Study. Environ. Health Perspect. 123, 1022–1029 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  71. 71

    Maresca, M. M. et al. Prenatal exposure to phthalates and childhood body size in an urban cohort. Environ. Health Perspect. 124, 514–520 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72

    Buckley, J. P. et al. Prenatal phthalate exposures and childhood fat mass in a New York City cohort. Environ. Health Perspect. 124, 507–513 (2015). A pooled cohort study examining the association between prenatal phthalate exposure and child adiposity.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73

    Rudel, R. A. et al. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ. Health Perspect. 119, 914–920 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  74. 74

    Bornehag, C. G. et al. Phthalates in indoor dust and their association with building characteristics. Environ. Health Perspect. 113, 1399–1404 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  75. 75

    Langer, S. et al. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers. Int. J. Hyg. Environ. Health 217, 78–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Braun, J. M. et al. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J. Expo. Sci. Environ. Epidemiol. 24, 459–466 (2014).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Singh, A. R., Lawrence, W. H. & Autian, J. Maternal–fetal transfer of 14C-di-2-ethylhexyl phthalate and 14C-diethyl phthalate in rats. J. Pharm. Sci. 64, 1347–1350 (1975).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Gray, T. J. & Beamand, J. A. Effect of some phthalate esters and other testicular toxins on primary cultures of testicular cells. Food Chem. Toxicol. 22, 123–131 (1984).

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Calafat, A. M. Contemporary issues in exposure assessment using biomonitoring. Curr. Epidemiol. Rep. 3, 145–153 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Perrier, F., Giorgis-Allemand, L., Slama, R. & Philippat, C. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology 27, 378–388 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Hannas, B. R. et al. Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate and diisononyl phthalate. Toxicol. Sci. 123, 206–216 (2011).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Howdeshell, K. L. et al. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the Sprague–Dawley rat in a cumulative, dose-additive manner. Toxicol. Sci. 105, 153–165 (2008).

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Yao, H. Y. et al. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns. Chemosphere 157, 42–48 (2016).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Boas, M. et al. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environ. Health Perspect. 118, 1458–1464 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  85. 85

    Johns, L. E. et al. Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis. Reprod. Biol. Endocrinol. 13, 4 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86

    Ghisari, M. & Bonefeld-Jorgensen, E. C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol. Lett. 189, 67–77 (2009).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Shimada, N. & Yamauchi, K. Characteristics of 3,5,3<0x0374>-triiodothyronine (T3)-uptake system of tadpole red blood cells: effect of endocrine-disrupting chemicals on cellular T3 response. J. Endocrinol. 183, 627–637 (2004).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Breous, E., Wenzel, A. & Loos, U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers. Mol. Cell. Endocrinol. 244, 75–78 (2005).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Ye, L., Guo, J. & Ge, R. S. Environmental pollutants and hydroxysteroid dehydrogenases. Vitam. Horm. 94, 349–390 (2014).

    CAS  Article  PubMed  Google Scholar 

  90. 90

    Ferguson, K. K., McElrath, T. F., Chen, Y. H., Mukherjee, B. & Meeker, J. D. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ. Health Perspect. 123, 210–216 (2015).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    LaRocca, J., Binder, A. M., McElrath, T. F. & Michels, K. B. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ. Health Perspect. 124, 380–387 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92

    National Research Council (US) Committee on the Health Risk of Phthalates. Phthalates and Cumulative Risk Assessment: the Tasks Ahead (National Academies Press, 2008).

  93. 93

    Kobrosly, R. W. et al. Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age. Environ. Health Perspect. 122, 521–528 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  94. 94

    Lien, Y. J. et al. Prenatal exposure to phthalate esters and behavioral syndromes in children at eight years of age: Taiwan Maternal and Infant Cohort Study. Environ. Health Perspect. 123, 95–100 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95

    Buckley, J. P. et al. Prenatal phthalate exposures and body mass index among 4 to 7 year old children: a pooled analysis. Epidemiology 27, 449–458 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Teitelbaum, S. L. et al. Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environ. Res. 112, 186–193 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  97. 97

    Deierlein, A. L. et al. Longitudinal associations of phthalate exposures during childhood and body size measurements in young girls. Epidemiology 27, 492–499 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Trasande, L., Attina, T. M., Sathyanarayana, S., Spanier, A. J. & Blustein, J. Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ. Health Perspect. 121, 501–506 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99

    Hatch, E. E. et al. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ. Health 7, 27–41 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100

    Carwile, J. L., Ye, X., Zhou, X., Calafat, A. M. & Michels, K. B. Canned soup consumption and urinary bisphenol A: a randomized crossover trial. JAMA 306, 2218–2220 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  101. 101

    von Goetz, N., Wormuth, M., Scheringer, M. & Hungerbuhler, K. Bisphenol A: how the most relevant exposure sources contribute to total consumer exposure. Risk Anal. 30, 473–487 (2010).

    Article  PubMed  Google Scholar 

  102. 102

    Ehrlich, S., Calafat, A. M., Humblet, O., Smith, T. & Hauser, R. Handling of thermal receipts as a source of exposure to bisphenol A. JAMA 311, 859–860 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  103. 103

    Thayer, K. A. et al. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ. Int. 83, 107–115 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  104. 104

    Braun, J. M. et al. Early-life bisphenol A exposure and child body mass index: a prospective cohort study. Environ. Health Perspect. 122, 1239–1245 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  105. 105

    Harley, K. G. et al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ. Health Perspect. 121, 514–520 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Vafeiadi, M. et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ. Res. 146, 379–387 (2016). This article describes a cohort study examining prenatal BPA exposure and child obesity and cardiometabolic health.

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Hoepner, L. A. et al. Bisphenol A and adiposity in an inner-city birth cohort. Environ. Health Perspect. 124, 1644–1650 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  108. 108

    Casas, L. et al. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ. Int. 37, 858–866 (2011).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Stacy, S. L. et al. Patterns, variability, and predictors of urinary bisphenol A concentrations during childhood. Environ. Sci. Technol. 50, 5981–5990 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  110. 110

    Harley, K. G. et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ. Res. 126, 43–50 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  111. 111

    Braun, J. M. et al. Prenatal bisphenol A exposure and early childhood behavior. Environ. Health Perspect. 117, 1945–1952 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  112. 112

    Braun, J. M. et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128, 873–882 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Roen, E. L. et al. Bisphenol A exposure and behavioral problems among inner city children at 7–9 years of age. Environ. Res. 142, 739–745 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  114. 114

    Perera, F. et al. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ. Health Perspect. 120, 1190–1194 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  115. 115

    Evans, S. F. et al. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology 45, 91–99 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  116. 116

    Casas, M. et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA–Sabadell cohort. Environ. Res. 142, 671–679 (2015). This paper details one of the only prospective cohort studies examining the association between prenatal BPA exposure and both child behaviour and cognition.

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Valvi, D. et al. Prenatal bisphenol A urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology 24, 791–799 (2013).

    Article  PubMed  Google Scholar 

  118. 118

    Philippat, C. et al. Prenatal exposure to phenols and growth in boys. Epidemiology 25, 625–635 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Trasande, L., Attina, T. M. & Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA 308, 1113–1121 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Wang, H. X. et al. Association between bisphenol A exposure and body mass index in Chinese school children: a cross-sectional study. Environ. Health 11, 79 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121

    Dodds, E. C. & Lawson, W. Synthetic oestrogenic agents without the phenanthrene nucleus. Nature 137, 996 (1936).

    CAS  Article  Google Scholar 

  122. 122

    Milligan, S. R., Balasubramanian, A. V. & Kalita, J. C. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ. Health Perspect. 106, 23–26 (1998).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  123. 123

    Wozniak, A. L., Bulayeva, N. N. & Watson, C. S. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ. Health Perspect. 113, 431–439 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  124. 124

    Wetherill, Y. B. et al. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 24, 178–198 (2007).

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Zhang, X. et al. Bisphenol A disrupts steroidogenesis in human H295R cells. Toxicol. Sci. 121, 320–327 (2011).

    CAS  Article  PubMed  Google Scholar 

  126. 126

    Galloway, T. et al. Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI Adult Population Study. Environ. Health Perspect. 118, 1603–1608 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  127. 127

    Meeker, J. D., Calafat, A. M. & Hauser, R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ. Sci. Technol. 44, 1458–1463 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  128. 128

    Mendiola, J. et al. Are environmental levels of bisphenol A associated with reproductive function in fertile men? Environ. Health Perspect. 118, 1286–1291 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  129. 129

    Zoeller, R. T., Bansal, R. & Parris, C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146, 607–612 (2005).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Gentilcore, D. et al. Bisphenol A interferes with thyroid specific gene expression. Toxicology 304, 21–31 (2013).

    CAS  Article  PubMed  Google Scholar 

  131. 131

    Chevrier, J. et al. Maternal urinary bisphenol A during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ. Health Perspect. 121, 138–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Meeker, J. D. & Ferguson, K. K. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environ. Health Perspect. 119, 1396–1402 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  133. 133

    Romano, M. E. et al. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME Study. Environ. Res. 138, 453–460 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  134. 134

    Chapin, R. E. et al. NTP–CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res. B Dev. Reprod. Toxicol. 83, 157–395 (2008).

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Tewar, S. et al. Association of bisphenol A exposure and attention-deficit/hyperactivity disorder in a national sample of U.S. children. Environ. Res. 150, 112–118 (2016).

    CAS  Article  PubMed  Google Scholar 

  136. 136

    Perez-Lobato, R. et al. Exposure to bisphenol A and behavior in school-age children. Neurotoxicology 53, 12–19 (2016).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Hong, S. B. et al. Bisphenol A in relation to behavior and learning of school-age children. J. Child Psychol. Psychiatry 54, 890–899 (2013).

    Article  PubMed  Google Scholar 

  138. 138

    Buckley, J. P., Herring, A. H., Wolff, M. S., Calafat, A. M. & Engel, S. M. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children's Environmental Health Study. Environ. Int. 91, 350–356 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  139. 139

    Rodricks, J. V., Swenberg, J. A., Borzelleca, J. F., Maronpot, R. R. & Shipp, A. M. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol. 40, 422–484 (2010).

    CAS  Article  PubMed  Google Scholar 

  140. 140

    Sandborgh-Englund, G., Adolfsson-Erici, M., Odham, G. & Ekstrand, J. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 69, 1861–1873 (2006).

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A. & Needham, L. L. Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ. Health Perspect. 116, 303–307 (2008).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Kumar, V., Balomajumder, C. & Roy, P. Disruption of LH-induced testosterone biosynthesis in testicular Leydig cells by triclosan: probable mechanism of action. Toxicology 250, 124–131 (2008).

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Adam, E. K. & Kumari, M. Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology 34, 1423–1436 (2009).

    CAS  Article  PubMed  Google Scholar 

  144. 144

    Johnson, P. I. et al. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ. Int. 92–93, 716–728 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. 145

    Paul, K. B., Thompson, J. T., Simmons, S. O., Vanden Heuvel, J. P. & Crofton, K. M. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicol. In Vitro 27, 2049–2060 (2013).

    CAS  Article  PubMed  Google Scholar 

  146. 146

    Koeppe, E. S., Ferguson, K. K., Colacino, J. A. & Meeker, J. D. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007–2008. Sci. Total Environ. 445–446, 299–305 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147

    Cullinan, M. P., Palmer, J. E., Carle, A. D., West, M. J. & Seymour, G. J. Long term use of triclosan toothpaste and thyroid function. Sci. Total Environ. 416, 75–79 (2012).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Yee, A. L. & Gilbert, J. A. Is triclosan harming your microbiome? Science 353, 348–349 (2016).

    CAS  Article  PubMed  Google Scholar 

  149. 149

    Lassen, T. H. et al. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environ. Health Perspect. 124, 1261–1268 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  150. 150

    Wolff, M. S. et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ. Health Perspect. 116, 1092–1097 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  151. 151

    Jensen, R. B., Juul, A., Larsen, T., Mortensen, E. L. & Greisen, G. Cognitive ability in adolescents born small for gestational age: associations with fetal growth velocity, head circumference and postnatal growth. Early Hum. Dev. 91, 755–760 (2015).

    Article  PubMed  Google Scholar 

  152. 152

    Xue, J. et al. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. Environ. Res. 137, 120–128 (2015).

    CAS  Article  PubMed  Google Scholar 

  153. 153

    Li, S. et al. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: experience in NHANES 2003–2010. Int. J. Hyg. Environ. Health 218, 401–406 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  154. 154

    Buser, M. C., Murray, H. E. & Scinicariello, F. Association of urinary phenols with increased body weight measures and obesity in children and adolescents. J. Pediatr. 165, 744–749 (2014).

    CAS  Article  PubMed  Google Scholar 

  155. 155

    Panel on Contaminants in the Food Chain. Perfluoroctane sulfonate, perfluorooctanoic acid and their salts: scientific opinion of the panel on contaminants in the food chain. EFSA J. 653, 1–131 (2008).

  156. 156

    Buck, R. C. et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr. Environ. Assess. Manag. 7, 513–541 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  157. 157

    Johnson, P. I. et al. The Navigation Guide — evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ. Health Perspect. 122, 1028–1039 (2014). This systematic review and meta-analysis of rodent studies examines early life triclosan exposure and serum thyroxine concentrations.

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    Mora, A. M. et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid-childhood. Environ. Health Perspect. http://dx.doi.org/10.1289/EHP246 (2016). This article describes a prospective cohort study examining the association between prenatal perfluoralkyl substance exposures and detailed measures of child adiposity.

  159. 159

    Braun, J. M. et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study. Obesity (Silver Spring) 24, 231–237 (2016).

    CAS  Article  Google Scholar 

  160. 160

    Halldorsson, T. I. et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ. Health Perspect. 120, 668–673 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  161. 161

    Hoyer, B. B. et al. Anthropometry in 5- to 9-year-old Greenlandic and Ukrainian children in relation to prenatal exposure to perfluorinated alkyl substances. Environ. Health Perspect. 123, 841–846 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. 162

    Maisonet, M. et al. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ. Health Perspect. 120, 1432–1437 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  163. 163

    Andersen, C. S. et al. Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age. Am. J. Epidemiol. 178, 921–927 (2013).

    Article  PubMed  Google Scholar 

  164. 164

    Stein, C. R., Savitz, D. A. & Bellinger, D. C. Perfluorooctanoate and neuropsychological outcomes in children. Epidemiology 24, 590–599 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  165. 165

    Wang, Y. et al. Prenatal exposure to perfluroalkyl substances and children's IQ: the Taiwan maternal and infant cohort study. Int. J. Hyg. Environ. Health 218, 639–644 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  166. 166

    Forns, J. et al. Perfluoroalkyl substances measured in breast milk and child neuropsychological development in a Norwegian birth cohort study. Environ. Int. 83, 176–182 (2015).

    CAS  Article  PubMed  Google Scholar 

  167. 167

    Stein, C. R. & Savitz, D. A. Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5–18 years of age. Environ. Health Perspect. 119, 1466–1471 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  168. 168

    Fei, C. & Olsen, J. Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. Environ. Health Perspect. 119, 573–578 (2011).

    CAS  Article  PubMed  Google Scholar 

  169. 169

    Vuong, A. M. et al. Prenatal polybrominated diphenyl ether and perfluoroalkyl substance exposures and executive function in school-age children. Environ. Res. 147, 556–564 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  170. 170

    Lind, P. M. et al. Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ. Health 11, 21 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  171. 171

    Liew, Z. et al. Prenatal exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am. J. Epidemiol. 180, 574–581 (2014). A nested case–control study identifying an increased risk of congenital cerebral palsy with increasing perfluoralkyl substance exposure.

    Article  PubMed  Google Scholar 

  172. 172

    Liew, Z. et al. Attention deficit/hyperactivity disorder and childhood autism in association with prenatal exposure to perfluoroalkyl substances: a nested case–control study in the Danish National Birth Cohort. Environ. Health Perspect. 123, 367–373 (2015).

    CAS  Article  PubMed  Google Scholar 

  173. 173

    Ode, A. et al. Fetal exposure to perfluorinated compounds and attention deficit hyperactivity disorder in childhood. PLoS ONE 9, e95891 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  174. 174

    Hoffman, K., Webster, T. F., Weisskopf, M. G., Weinberg, J. & Vieira, V. M. Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ. Health Perspect. 118, 1762–1767 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  175. 175

    Stein, C. R., Savitz, D. A. & Bellinger, D. C. Perfluorooctanoate exposure in a highly exposed community and parent and teacher reports of behaviour in 6–12-year-old children. Paediatr. Perinat. Epidemiol. 28, 146–156 (2014).

    Article  PubMed  Google Scholar 

  176. 176

    Olsen, G. W. et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 115, 1298–1305 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  177. 177

    Egeghy, P. P. & Lorber, M. An assessment of the exposure of Americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES data. J. Expo. Sci. Environ. Epidemiol. 21, 150–168 (2011).

    CAS  Article  PubMed  Google Scholar 

  178. 178

    United States Environmental Protection Agency. Child-specific exposure factors handbook (final report) 2008. EPA https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=199243 (2008).

  179. 179

    Fromme, H. et al. Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ. Sci. Technol. 44, 7123–7129 (2010).

    CAS  Article  PubMed  Google Scholar 

  180. 180

    Post, G. B., Cohn, P. D. & Cooper, K. R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ. Res. 116, 93–117 (2012).

    CAS  Article  PubMed  Google Scholar 

  181. 181

    Guerrero-Preston, R. et al. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 5, 539–546 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  182. 182

    Watkins, D. J. et al. Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation. Environ. Int. 63, 71–76 (2014).

    CAS  Article  PubMed  Google Scholar 

  183. 183

    Fletcher, T. et al. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Environ. Int. 57–58, 2–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. 184

    Vanden Heuvel, J. P., Thompson, J. T., Frame, S. R. & Gillies, P. J. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol. Sci. 92, 476–489 (2006).

    CAS  Article  PubMed  Google Scholar 

  185. 185

    Taxvig, C. et al. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation. Mol. Cell. Endocrinol. 361, 106–115 (2012).

    CAS  Article  PubMed  Google Scholar 

  186. 186

    Bastos Sales, L. et al. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation. Toxicol. In Vitro 27, 1634–1643 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. 187

    Boas, M., Feldt-Rasmussen, U. & Main, K. M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 355, 240–248 (2012).

    CAS  Article  PubMed  Google Scholar 

  188. 188

    Chan, E., Burstyn, I., Cherry, N., Bamforth, F. & Martin, J. W. Perfluorinated acids and hypothyroxinemia in pregnant women. Environ. Res. 111, 559–564 (2011).

    CAS  Article  PubMed  Google Scholar 

  189. 189

    Kapadia, R., Yi, J. H. & Vemuganti, R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-γ agonists. Front. Biosci. 13, 1813–1826 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  190. 190

    Koustas, E. et al. The Navigation Guide — evidence-based medicine meets environmental health: systematic review of nonhuman evidence for PFOA effects on fetal growth. Environ. Health Perspect. 122, 1015–1027 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  191. 191

    Jaddoe, V. W. et al. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ 348, g14 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  192. 192

    Perng, W. et al. Birth size, early life weight gain, and midchildhood cardiometabolic health. J. Pediatr. 173, 122–130. e1 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  193. 193

    Barry, V., Darrow, L. A., Klein, M., Winquist, A. & Steenland, K. Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure. Environ. Res. 132, 62–69 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. 194

    Akinbami, L. J. & Ogden, C. L. Childhood overweight prevalence in the United States: the impact of parent-reported height and weight. Obesity (Silver Spring) 17, 1574–1580 (2009).

    Article  Google Scholar 

  195. 195

    Hattori, A. & Sturm, R. The obesity epidemic and changes in self-report biases in BMI. Obesity (Silver Spring) 21, 856–860 (2013).

    Article  Google Scholar 

  196. 196

    Nelson, J. W., Hatch, E. E. & Webster, T. F. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ. Health Perspect. 118, 197–202 (2010).

    CAS  Article  PubMed  Google Scholar 

  197. 197

    Domazet, S. L., Grontved, A., Timmermann, A. G., Nielsen, F. & Jensen, T. K. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European Youth Heart Study. Diabetes Care 39, 1745–1751 (2016).

    Article  PubMed  Google Scholar 

  198. 198

    Sanchez, B. N., Hu, H., Litman, H. J. & Tellez-Rojo, M. M. Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants. Environ. Health Perspect. 119, 409–415 (2011). This methods paper describes several techniques that can be used to identify windows of vulnerability to environmental pollutants.

    CAS  Article  PubMed  Google Scholar 

  199. 199

    National Institute of Environmental Health Sciences. Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology studies. NIEHS http://www.niehs.nih.gov/about/visiting/events/pastmtg/2015/statistical/ (2015).

  200. 200

    Taylor, K. W. et al. Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: lessons from an innovative workshop. Environ. Health Perspect. http://dx.doi.org/10.1289/EHP547 (2016).

  201. 201

    Bobb, J. F. et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16, 493–508 (2015).

    Article  PubMed  Google Scholar 

  202. 202

    Carrico, C., Gennings, C., Wheeler, D. & Factor-Litvak, P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 20, 100–120 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  203. 203

    Yorita Christensen, K. L., Carrico, C. K., Sanyal, A. J. & Gennings, C. Multiple classes of environmental chemicals are associated with liver disease: NHANES 2003–2004. Int. J. Hyg. Environ. Health 216, 703–709 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  204. 204

    Safe, S. H. Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach. Environ. Health Perspect. 106 (Suppl. 4), 1051–1058 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  205. 205

    Vilahur, N. et al. Male specific association between xenoestrogen levels in placenta and birthweight. Environ. Int. 51, 174–181 (2013).

    CAS  Article  PubMed  Google Scholar 

  206. 206

    Agier, L. et al. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ. Health Perspect. http://dx.doi.org/10.1289/EHP172 (2016).

  207. 207

    Alexeeff, S. E., Carroll, R. J. & Coull, B. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures. Biostatistics 17, 377–389 (2016).

    Article  PubMed  Google Scholar 

  208. 208

    Weng, H. Y., Hsueh, Y. H., Messam, L. L. & Hertz-Picciotto, I. Methods of covariate selection: directed acyclic graphs and the change-in-estimate procedure. Am. J. Epidemiol. 169, 1182–1190 (2009).

    Article  PubMed  Google Scholar 

  209. 209

    Schisterman, E. F., Cole, S. R. & Platt, R. W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488–495 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  210. 210

    Yu, Z. B. et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes. Rev. 12, 525–542 (2011).

    CAS  Article  PubMed  Google Scholar 

  211. 211

    Duty, S. M., Ackerman, R. M., Calafat, A. M. & Hauser, R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ. Health Perspect. 113, 1530–1535 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  212. 212

    Bartell, S. M. et al. Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia. Environ. Health Perspect. 118, 222–228 (2010).

    CAS  Article  PubMed  Google Scholar 

  213. 213

    Fromme, H., Tittlemier, S. A., Volkel, W., Wilhelm, M. & Twardella, D. Perfluorinated compounds — exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health 212, 239–270 (2009).

    CAS  Article  PubMed  Google Scholar 

  214. 214

    Hill, A. B. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).

    PubMed  PubMed Central  CAS  Google Scholar 

  215. 215

    Boyle, C. A. et al. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127, 1034–1042 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  216. 216

    Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators & Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years — Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010. MMWR Surveill. Summ. 63, 1–21 (2014).

  217. 217

    Kohane, I. S. et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE 7, e33224 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  218. 218

    Melegari, M. G., Sacco, R., Manzi, B., Vittori, E. & Persico, A. M. Deficient emotional self-regulation in preschoolers with ADHD: identification, comorbidity, and interpersonal functioning. J. Atten. Disord. http://dx.doi.org/10.1177/1087054715622015 (2016).

  219. 219

    Forns, J. et al. A conceptual framework in the study of neuropsychological development in epidemiological studies. Neuroepidemiology 38, 203–208 (2012).

    CAS  Article  PubMed  Google Scholar 

  220. 220

    Harris, M. H. et al. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the Project Viva Cohort (Massachusetts, USA). Environ. Health Perspect. 123, 1072–1078 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  221. 221

    Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  222. 222

    World Health Organization. Global status report on noncommunicable diseases 2010. WHO http://www.who.int/nmh/publications/ncd_report2010/en/ (2010).

  223. 223

    Ebbeling, C. B., Pawlak, D. B. & Ludwig, D. S. Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473–482 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank K. L. Hanson and R. Hauser for their helpful comments and edits on an earlier version of this manuscript. The author acknowledges support from the NIH (grants R00 ES020346, R01 ES025214, R01 ES024381 and R01 ES021357).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Braun.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braun, J. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 13, 161–173 (2017). https://doi.org/10.1038/nrendo.2016.186

Download citation

Further reading