Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment

Key Points

  • Hypophosphatasia is the autosomal dominant or autosomal recessive inborn error of metabolism with an extraordinary range of severity caused by loss-of-function mutations within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP)

  • Extracellular accumulation of the TNSALP substrate inorganic pyrophosphate results in defective mineralization of the dentition causing tooth loss and often of the skeleton causing rickets or osteomalacia

  • Hypophosphatasaemia (low serum alkaline phosphatase activity) for age and sex is the biochemical hallmark

  • An elevated serum level of the TNSALP substrate pyridoxal 5′-phosphate (the major circulating form of vitamin B6) is expected

  • TNSALP gene (ALPL; also known as TNSALP) mutation analysis is necessary to understand recurrence risks and for prenatal diagnosis

  • Recombinant, bone-targeted TNSALP replacement has been shown to be effective for paediatric-onset hypophosphatasia

Abstract

Hypophosphatasia is the inborn error of metabolism characterized by low serum alkaline phosphatase activity (hypophosphatasaemia). This biochemical hallmark reflects loss-of-function mutations within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP is a cell-surface homodimeric phosphohydrolase that is richly expressed in the skeleton, liver, kidney and developing teeth. In hypophosphatasia, extracellular accumulation of TNSALP natural substrates includes inorganic pyrophosphate, an inhibitor of mineralization, which explains the dento-osseous and arthritic complications featuring tooth loss, rickets or osteomalacia, and calcific arthopathies. Severely affected infants sometimes also have hypercalcaemia and hyperphosphataemia due to the blocked entry of minerals into the skeleton, and pyridoxine-dependent seizures from insufficient extracellular hydrolysis of pyridoxal 5′-phosphate, the major circulating form of vitamin B6, required for neurotransmitter synthesis. Autosomal recessive or dominant inheritance from 300 predominantly missense ALPL (also known as TNSALP) mutations largely accounts for the remarkably broad-ranging expressivity of hypophosphatasia. High serum concentrations of pyridoxal 5′-phosphate represent a sensitive and specific biochemical marker for hypophosphatasia. Also, phosphoethanolamine levels are usually elevated in serum and urine, though less reliably for diagnosis. TNSALP mutation detection is important for recurrence risk assessment and prenatal diagnosis. Diagnosing paediatric hypophosphatasia is aided by pathognomic radiographic changes when the skeletal disease is severe. Hypophosphatasia was the last type of rickets or osteomalacia to await a medical treatment. Now, significant successes for severely affected paediatric patients are recognized using asfotase alfa, a bone-targeted recombinant TNSALP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Adult hypophosphatasia.
Figure 2: Childhood hypophosphatasia.
Figure 3: Infantile hypophosphatasia.
Figure 4: Radiographic features of infantile hypophosphatasia.
Figure 5: Perinatal hypophosphatasia.
Figure 6: Radiographic features of perinatal hypophosphatasia.
Figure 7: Role of TNSALP in vitamin B6 metabolism.
Figure 8: Perinatal hypophosphatasia: response to asfotase alfa treatment.

References

  1. 1

    Rathbun, J. C. Hypophosphatasia: a new developmental anomaly. Am. J. Dis. Child. 75, 822–831 (1948).

  2. 2

    Fraser, D. Hypophosphatasia. Am. J. Med. 22, 730–746 (1957).

  3. 3

    Sobel, E. H., Clark, L. C. Jr, Fox, R. P. & Robinow, M. Rickets, deficiency of alkaline phosphatase activity and premature loss of teeth in childhood. Pediatrics 11, 309–322 (1953).

  4. 4

    Online mendelian inheritance in man®. OMIM®[online], (2015).

  5. 5

    Robison, R. The possible significance of hexosephosphoric esters in ossification. J. Biol. Chem. 17, 286–293 (1923).

  6. 6

    McComb, R. B., Bowers, G. N. Jr & Posen, S. Alkaline Phosphatase (Plenum Press, 1979).

  7. 7

    Millan, J. L. Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology (Wiley-VCH, 2006).

  8. 8

    Whyte, M. P. in Genetics of Bone Biology and Skeletal Disease 1st edn Ch. 22 (eds Thakker, R. V. et al.) 337–360 (Academic Press, 2013).

  9. 9

    Weiss, M. J. et al. Structure of the human liver/bone/kidney alkaline phosphatase gene. J. Biol. Chem. 263, 12002–12010 (1988).

  10. 10

    Kim, E. E. & Wyckoff, H. W. Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J. Mol. Biol. 218, 449–464 (1991).

  11. 11

    Henthorn, P. S. & Whyte, M. P. Missense mutations of the tissue-nonspecific alkaline phosphatase gene in hypophosphatasia. Clin. Chem. 38, 2501–2505 (1992).

  12. 12

    Nosjean, O., Koyama, I., Goseki, M., Roux, B. & Komoda, T. Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem. J. 321, 297–303 (1997).

  13. 13

    Kiledjian, M. & Kadesch, T. Analysis of the human liver/bone/kidney alkaline phosphatase promoter in vivo and in vitro. Nucleic Acids Res. 18, 957–961 (1990).

  14. 14

    Xu, Y., Cruz, T. F. & Pritzker, K. P. Alkaline phosphatase dissolves calcium pyrophosphate dihydrate crystals. J. Rheumatol. 18, 1606–1610 (1991).

  15. 15

    Farley, J. R. Phosphate regulates the stability of skeletal alkaline phosphatase activity in human osteosarcoma (SaOS-2) cells without equivalent effects on the level of skeletal alkaline phosphatase immunoreactive protein. Calcif. Tissue Int. 57, 371–378 (1995).

  16. 16

    Hawrylak, K. & Stinson, R. A. Tetrameric alkaline phosphatase from human liver is converted to dimers by phosphatidylinositol phospholipase C. FEBS Lett. 212, 289–291 (1987).

  17. 17

    Young, G. P., Rose, I. S., Cropper, S., Seetharam, S. & Alpers, D. H. Hepatic clearance of rat plasma intestinal alkaline phosphatase. Am. J. Physiol. 247, G419–G426 (1984).

  18. 18

    Millan, J. L., Whyte, M. P., Avioli, L. V. & Fishman, W. H. Hypophosphatasia (adult form): quantitation of serum alkaline phosphatase isoenzyme activity in a large kindred. Clin. Chem. 26, 840–845 (1980).

  19. 19

    Gorodischer, R., Davidson, R. G., Mosovich, L. L. & Yaffe, S. J. Hypophosphatasia: a developmental anomaly of alkaline phosphatase? Pediatr. Res. 10, 650–656 (1976).

  20. 20

    Vanneuville, F. J. & Leroy, J. G. Hypophosphatasia: biochemical diagnosis in post-mortem organs, plasma and diploid skin fibroblasts [proceedings]. Arch. Int. Physiol. Biochim. 87, 854–855 (1979).

  21. 21

    Mueller, H. D., Stinson, R. A., Mohyuddin, F. & Milne, J. K. Isoenzymes of alkaline phosphatase in infantile hypophosphatasia. J. Lab. Clin. Med. 102, 24–30 (1983).

  22. 22

    Whyte, M. P. in Principles of Bone Biology 3rd edn (eds Bilezikian, J. P. et al.) 1573–1598 (Academic Press, 2008).

  23. 23

    Weiss, M. J. et al. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc. Natl Acad. Sci. USA 85, 7666–7669 (1988).

  24. 24

    Henthorn, P. S., Raducha, M., Fedde, K. N., Lafferty, M. A. & Whyte, M. P. Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc. Natl Acad. Sci. USA 89, 9924–9928 (1992).

  25. 25

    Mornet, E. Tissue nonspecific alkaline phosphatase gene mutations database. SESEP [online], (2015).

  26. 26

    Whyte, M. P. et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75, 229–239 (2015).

  27. 27

    Henthorn, P., Ferrero, A., Fedde, K., Coburn, S. P. & Whyte, M. P. Hypophosphatasia mutation D361V exhibits dominant effects both in vivo and in vitro [abstract]. Am. J. Hum. Genet. 59, A-199 (1996).

  28. 28

    Ozono, K. et al. Identification of novel missense mutations (Phe310Leu and Gly439Arg) in a neonatal case of hypophosphatasia. J. Clin. Endocrinol. Metab. 81, 4458–4461 (1996).

  29. 29

    Greenberg, C. R. et al. A homoallelic Gly317→Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian Mennonites. Genomics 17, 215–217 (1993).

  30. 30

    Whyte, M. P., Essmyer, K., Geimer, M. & Mumm, S. Homozygosity for TNSALP mutation 1348C>T (Arg 433Cys) causes infantile hypophosphatasia manifesting transient disease correction and variably lethal outcome in a kindred of black ancestry. J. Pediatr. 148, 753–758 (2006).

  31. 31

    Mumm, S. et al. Hypophosphatasia: the c.1133A>T, D378V transversion is the most common American TNSALP mutation [abstract]. J. Bone Miner. Res. 21, S115 (2006).

  32. 32

    Mornet, E., Yvard, A., Taillandier, A., Fauvert, D. & Simon-Bouy, B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann. Hum. Genet. 75, 439–445 (2011).

  33. 33

    Ozono, K. & Michigami, T. Hypophosphatasia now draws more attention of both clinicians and researchers: a commentary on prevalence of c. 1559delT in ALPL, a common mutation resulting in the perinatal (lethal) form of hypophosphatasias in Japanese and effects of the mutation on heterozygous carriers. J. Hum. Genet. 56, 174–175 (2011).

  34. 34

    Wenkert, D. et al. Hypophosphatasia: non-lethal disease despite skeletal presentation in utero (17 new cases and literature review). J. Bone Miner. Res. 26, 2389–2398 (2011).

  35. 35

    Scriver, C. R. & Cameron, D. Pseudohypophosphatasia. N. Engl. J. Med. 281, 604–606 (2011).

  36. 36

    Madson, K. L., Gill, S. S., Mumm, S. & Whyte, M. P. Pseudohypophosphatasia: mutation identification and 46-year follow-up of the original patient [abstract]. J. Bone Miner. Res. 30, S190 (2015).

  37. 37

    Whyte, M. P., Teitelbaum, S. L., Murphy, W. A., Bergfeld, M. A. & Avioli, L. V. Adult hypophosphatasia: clinical, laboratory, and genetic investigation of a large kindred with review of the literature. Medicine (Baltimore) 58, 329–347 (1979).

  38. 38

    Sutton, R. A., Mumm, S., Coburn, S. P., Ericson, K. L. & Whyte, M. P. 'Atypical femoral fractures' during bisphosphonate exposure in adult hypophosphatasia. J. Bone Miner. Res. 27, 987–994 (2012).

  39. 39

    Lundgren, T., Westphal, O., Bolme, P., Modeer, T. & Noren, J. G. Retrospective study of children with hypophosphatasia with reference to dental changes. Scand. J. Dent. Res. 99, 357–364 (1991).

  40. 40

    Khandwala, H. M., Mumm, S. & Whyte, M. P. Low serum alkaline phosphatase activity and pathologic fracture: case report and brief review of hypophosphatasia diagnosed in adulthood. Endocr. Pract. 12, 676–681 (2006).

  41. 41

    Coe, J. D., Murphy, W. A. & Whyte, M. P. Management of femoral fractures and pseudofractures in adult hypophosphatasia. J. Bone Joint Surg. Am. 68, 981–990 (1986).

  42. 42

    Whyte, M. P. Atypical femoral fractures, bisphosphonates, and adult hypophosphatasia. J. Bone Miner. Res. 24, 1132–1134 (2009).

  43. 43

    Whyte, M. P., Mumm, S. & Deal, C. Adult hypophosphatasia treated with teriparatide. J. Clin. Endocrinol. Metab. 92, 1203–1208 (2007).

  44. 44

    Chuck, A. J., Pattrick, M. G., Hamilton, E., Wilson, R. & Doherty, M. Crystal deposition in hypophosphatasia: a reappraisal. Ann. Rheum. Dis. 48, 571–576 (1989).

  45. 45

    Whyte, M. P., Murphy, W. A. & Fallon, M. D. Adult hypophosphatasia with chondrocalcinosis and arthropathy. Variable penetrance of hypophosphatasemia in a large Oklahoma kindred. Am. J. Med. 72, 631–641 (1982).

  46. 46

    Guañabens, N. et al. Calcific periarthritis as the only clinical manifestation of hypophosphatasia in middle-aged sisters. J. Bone Miner. Res. 29, 929–934 (2014).

  47. 47

    Lassere, M. N. & Jones, J. G. Recurrent calcific periarthritis, erosive osteoarthritis and hypophosphatasia: a family study. J. Rheumatol. 17, 1244–1248 (1990).

  48. 48

    Weinstein, R. S. & Whyte, M. P. Fifty-year follow-up of hypophosphatasia. Arch. Int. Med. 141, 1720–1721 (1981).

  49. 49

    Fallon, M. D. et al. Hypophosphatasia: clinicopathologic comparison of the infantile, childhood, and adult forms. Medicine (Baltimore) 63, 12–24 (1984).

  50. 50

    Collmann, H., Mornet, E., Gattenlohner, S., Beck, C. & Girschick, H. Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv. Syst. 25, 217–223 (2009).

  51. 51

    Seshia, S. S., Derbyshire, G., Haworth, J. C. & Hoogstraten, J. Myopathy with hypophosphatasia. Arch. Dis. Child. 65, 130–131 (1990).

  52. 52

    Whyte, M. P. et al. Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J. Bone Miner. Res. 24, 1493–1505 (2009).

  53. 53

    Kozlowski, K. et al. Hypophosphatasia. Review of 24 cases. Pediatr. Radiol. 5, 103–117 (1976).

  54. 54

    Whyte, M. P., Wenkert, D., McAlister, W. H., Mack, K. E. & Zhang, F. Hypophosphatasia: natural history study of 101 affected children followed at one research center [abstract]. J. Bone Miner. Res. 30, S189 (2015).

  55. 55

    Lepe, X., Rothwell, B. R., Banich, S. & Page, R. C. Absence of adult dental anomalies in familial hypophosphatasia. J. Periodontal Res. 32, 375–380 (1997).

  56. 56

    Whyte, M. P. et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med. 366, 904–913 (2012).

  57. 57

    Whyte, M. P., Valdes, R. Jr, Ryan, L. M. & McAlister, W. H. Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J. Pediatr. 101, 379–386 (1982).

  58. 58

    Sty, J. R., Boedecker, R. A. & Babbitt, D. P. Skull scintigraphy in infantile hypophosphatasia. J. Nucl. Med. 20, 305–306 (1979).

  59. 59

    Baumgartner-Sigl, S. et al. Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40, 1655–1661 (2007).

  60. 60

    Whyte, M. P. et al. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J. Clin. Endocrinol. Metab. 101, 334–342 (2016).

  61. 61

    Taillard, F. et al. L'hypophosphatasie affection polymorphe de fréquence peut-e˘tre sous estimée. Infantile 91, 559–576 (in French) (1984).

  62. 62

    Shohat, M., Rimoin, D. L., Gruber, H. E. & Lachman, R. S. Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr. Radiol. 21, 421–427 (1991).

  63. 63

    Silver, M. M., Vilos, G. A. & Milne, K. J. Pulmonary hypoplasia in neonatal hypophosphatasia. Pediatr. Pathol. 8, 483–493 (1988).

  64. 64

    Cole, D. E. et al. Increased serum pyridoxal-5′-phosphate in pseudohypophosphatasia. N. Engl. J. Med. 314, 992–993 (1986).

  65. 65

    Heaton, B. W. & McClendon, J. L. Childhood pseudohypophosphatasia. Clinical and laboratory study of two cases. Tex. Dent. J. 103, 4–8 (1986).

  66. 66

    Rubecz, I. et al. Hypophosphatasia: screening and family investigation. Clin. Genet. 6, 155–159 (1974).

  67. 67

    Robison, R. The Significance of Phosphoteric Esters in Metabolism (New York Universty Press, 1932).

  68. 68

    Murshed, M., Harmey, D., Millan, J. L., McKee, M. D. & Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093–1104 (2005).

  69. 69

    Anderson, H. C., Hsu, H. H., Morris, D. C., Fedde, K. N. & Whyte, M. P. Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am. J. Pathol. 151, 1555–1561 (1997).

  70. 70

    Ornoy, A., Adomian, G. E. & Rimoin, D. L. Histologic and ultrastructural studies on the mineralization process in hypophosphatasia. Am. J. Med. Genet. 22, 743–758 (1985).

  71. 71

    Fraser, D., Yendt, E. R. & Christie, F. H. Metabolic abnormalities in hypophosphatasia. Lancet 268, 286 (1955).

  72. 72

    Fleisch, H., Russell, R. G. & Straumann, F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212, 901–903 (1966).

  73. 73

    Russell, R. G., Bisaz, S., Donath, A., Morgan, D. B. & Fleisch, H. Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and other disorders of bone. J. Clin. Invest. 50, 961–969 (1971).

  74. 74

    Moss, D. W., Eaton, R. H., Smith, J. K. & Whitby, L. G. Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem. J. 102, 53–57 (1967).

  75. 75

    Chapple, I. L. Hypophosphatasia: dental aspects and mode of inheritance. J. Clin. Periodontol. 20, 615–622 (1993).

  76. 76

    Currarino, G., Neuhauser, E. B., Reyersbach, G. C. & Sobel, E. H. Hypophosphatasia. Am. J. Roentgenol. Radium Ther. Nucl. Med. 78, 392–419 (1957).

  77. 77

    Whyte, M. P. & Seino, Y. Circulating vitamin D metabolite levels in hypophosphatasia. J. Clin. Endocrinol. Metab. 55, 178–180 (1982).

  78. 78

    Opshaug, O., Maurseth, K., Howlid, H., Aksnes, L. & Aarskog, D. Vitamin D metabolism in hypophosphatasia. Acta Paediatr. Scand. 71, 517–521 (1982).

  79. 79

    Whyte, M. P. & Rettinger, S. D. Hyperphosphatemia due to enhanced renal reclamation of phosphate in hypophosphatasia [abstract]. J. Bone Miner. Res. 2 (Suppl. 1) 399 (1987).

  80. 80

    Otero, J. E. et al. Severe skeletal toxicity from protracted etidronate therapy for generalized arterial calcification of infancy. J. Bone Miner. Res. 28, 419–430 (2013).

  81. 81

    Rutsch, F. et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ. Cardiovasc. Genet. 1, 133–140 (2008).

  82. 82

    McCance, R. A., Morrison, A. B. & Dent, C. E. The excretion of phosphoethanolamine and hypophosphatasia. Lancet 268, 131 (1955).

  83. 83

    Russell, R. G. Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet 10, 461–464 (1965).

  84. 84

    Whyte, M. P., Mahuren, J. D., Vrabel, L. A. & Coburn, S. P. Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J. Clin. Invest. 76, 752–756 (1985).

  85. 85

    Coburn, S. P. & Whyte, M. P. in Clinical and Physiological Applications of Vitamin B-6 (eds Leklem, J. E. & Reynolds, R. D.) 65–93 (AR Liss, 1988).

  86. 86

    Fedde, K. N. & Whyte, M. P. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am. J. Hum. Genet. 47, 767–775 (1990).

  87. 87

    Fedde, K. N., Lane, C. C. & Whyte, M. P. Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch. Biochem. Biophys. 264, 400–409 (1988).

  88. 88

    Rasmussen, K. Phosphorylethanolamine and hypophosphatasia. Dan. Med. Bull. 15, 1–112 (1968).

  89. 89

    Gron, I. H. Mammalian O-phosphorylethanolamine phospho-lyase activity and its inhibition. Scand. J. Clin. Lab. Invest. 38, 107–112 (1978).

  90. 90

    Whyte, M. P. et al. Perinatal hypophosphaasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5′-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J. Clin. Invest. 81, 1234–1239 (1988).

  91. 91

    Caswell, A. M., Whyte, M. P. & Russell, R. G. Hypophosphatasia and the extracellular metabolism of inorganic pyrophosphate: clinical and laboratory aspects. Crit. Rev. Clin. Lab. Sci. 28, 175–232 (1991).

  92. 92

    Moore, C. A., Ward, J. C., Rivas, M. L., Magill, H. L. & Whyte, M. P. Infantile hypophosphatasia: autosomal recessive transmission to two related sibships. Am. J. Med. Genet. 36, 15–22 (1990).

  93. 93

    Macfarlane, J. D., Kroon, H. M. & van der Harten, J. J. Phenotypically dissimilar hypophosphatasia in two sibships. Am. J. Med. Genet. 42, 117–121 (1992).

  94. 94

    Yadav, M. C. et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J. Bone Miner. Res. 26, 286–297 (2011).

  95. 95

    Fedde, K. N. et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone Miner. Res. 14, 2015–2026 (1991).

  96. 96

    Millan, J. L. & Whyte, M. P. Alkaline phosphatase and hypophosphatasia. Calcif. Tissue Int. http://dx.doi.org/10.1007/s00223-015-0079-1 (2015).

  97. 97

    Hough, T. A. et al. Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J. Bone Miner. Res. 22, 1397–1407 (2007).

  98. 98

    Foster, B. L. et al. Periodontal defects in the A116T knock-in mouse model of odontohypophosphatasia. J. Dent. Res. 94, 706–714 (2015).

  99. 99

    Kleinman, G., Uri, M., Hull, S. & Keene, C. Perinatal ultrasound casebook. Antenatal findings in congenital hypophosphatasia. J. Perinatol. 11, 282–284 (1991).

  100. 100

    Whyte, M. P. in Pediatric Bone: Biology and Diseases 3rd edn (eds Glorieux, F. H. et al.) 771–794 (Academic Press, 2012).

  101. 101

    McKiernan, F. E., Berg, R. L. & Fuehrer, J. Clinical and radiographic findings in adults with persistent hypophosphatasemia. J. Bone Miner. Res. 29, 1651–1660 (2014).

  102. 102

    Royce, P. M. et al. Lethal osteogenesis imperfecta: abnormal collagen metabolism and biochemical characteristics of hypophosphatasia. Eur. J. Pediatr. 147, 626–631 (1988).

  103. 103

    El-Gharbawy, A. H. et al. Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2. Am. J. Med. Genet. A 152A, 169–174 (2010).

  104. 104

    Licata, A. A., Radfar, N., Bartter, F. C. & Bou, E. The urinary excretion of phosphoethanolamine in diseases other than hypophosphatasia. Am. J. Med. 64, 133–138 (1978).

  105. 105

    Chodirker, B. N., Coburn, S. P., Seargeant, L. E., Whyte, M. P. & Greenberg, C. R. Increased plasma pyridoxal-5′-phosphate levels before and after pyridoxine loading in carriers of perinatal/infantile hypophosphatasia. J. Inherit. Metab. Dis. 13, 891–896 (1990).

  106. 106

    Macfarlane, J. D., Poorthuis, B. J., Mulivor, R. A. & Caswell, A. M. Raised urinary excretion of inorganic pyrophosphate in asymptomatic members of a hypophosphatasia kindred. Clin. Chim. Acta. 202, 141–148 (1991).

  107. 107

    Rockman-Greenberg, C. et al. Asfotase alfa: Sustained efficacy and tolerability in children with hypophosphatasia treated for 5 years. J. Bone Miner. Res. 30 (Suppl. 1), http://www.asbmr.org/education/AbstractDetail?aid=25f0b55b-32f2-4df7-b81c-2de3107bc114 (2015).

  108. 108

    Zhang, F., Whyte, M. P. & Wenkert, D. Improving dual-energy X-ray absorptiometry (DXA) interpretation: a simple equation for height correction for pre-teenage children. J. Clin. Densitom. 15, 267–274 (2012).

  109. 109

    el-Labban, N. G., Lee, K. W. & Rule, D. Permanent teeth in hypophosphatasia: light and electron microscopic study. J. Oral Pathol. Med. 20, 352–360 (1991).

  110. 110

    Watanabe, A. et al. Perinatal hypophosphatasia caused by uniparental isodisomy. Bone 60, 93–97 (2014).

  111. 111

    Rudd, N. L., Miskin, M., Hoar, D. I., Benzie, R. & Doran, T. A. Prenatal diagnosis of hypophosphatasia. N. Engl. J. Med. 295, 146–148 (1976).

  112. 112

    Mulivor, R. A., Mennuti, M., Zackai, E. H. & Harris, H. Prenatal diagnosis of hypophosphatasia; genetic, biochemical, and clinical studies. Am. J. Hum. Genet. 30, 271–282 (1978).

  113. 113

    Brock, D. J. & Barron, L. First-trimester prenatal diagnosis of hypophosphatasia: experience with 16 cases. Prenat. Diagn. 11, 387–391 (1991).

  114. 114

    Hausser, C., Habib, R. & Poitras, P. Hypophosphatasia: complete absence of the fetal skeleton. Union Med. Can. 113, 978–979 (1984).

  115. 115

    Henthorn, P. S. & Whyte, M. P. Infantile hypophosphatasia: successful prenatal assessment by testing for tissue-non-specific alkaline phosphatase isoenzyme gene mutations. Prenat. Diagn. 15, 1001–1006 (1995).

  116. 116

    Orimo, H. et al. First-trimester prenatal molecular diagnosis of infantile hypophosphatasia in a Japanese family. Prenat. Diagn. 16, 559–563 (1996).

  117. 117

    Leung, E. C. et al. Outcome of perinatal hypophosphatasia in Manitoba Mennonites: a retrospective cohort analysis. JIMD Rep. 11, 73–78 (2013).

  118. 118

    Whyte, M. P. et al. Marrow cell transplantation for infantile hypophosphatasia. J. Bone Miner. Res. 18, 624–636 (2003).

  119. 119

    Cahill, R. A. et al. Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J. Clin. Endocrinol. Metab. 92, 2923–2930 (2007).

  120. 120

    Ish-shalom, S. et al. A follow-up of hypophosphatasia from infancy to adulthood [abstract]. Presented at the annual meeting of the Pediatric Working Group, American Society for Bone and Mineral Research (1986).

  121. 121

    Rodriguez, E. et al. Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr. Pulmonol. 47, 917–922 (2012).

  122. 122

    Barcia, J. P., Strife, C. F., & Langman, C. B. Infantile hypophosphatasia: treatment options to control hypercalcemia, hypercalciuria, and chronic bone demineralization. J. Pediatr. 130, 825–828 (1997).

  123. 123

    Girschick, H. J. et al. Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J. Rare Dis. 1, 24 (2006).

  124. 124

    Fraser, D. & Laidlaw, J. C. Treatment of hypophosphatasia with cortisone. Lancet 1, 553 (1956).

  125. 125

    Whyte, M. P. et al. Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma: results in three additional patients. J. Pediatr. 105, 926–933 (1984).

  126. 126

    Whyte, M. P. et al. Failure of hyperphosphatasemia by intravenous infusion of purified placental alkaline phosphatase (ALP) to correct severe hypophosphatasia: evidence against a role for circulating ALP in skeletal mineralization [abstract]. J. Bone Miner. Res. 7, S155 (1992).

  127. 127

    Camacho, P. M., Painter, S. & Kadanoff, R. Treatment of adult hypophosphatasia with teriparatide. Endocr. Pract. 14, 204–208 (2008).

  128. 128

    Schalin-Jantti, C., Mornet, E., Lamminen, A. & Valimaki, M. J. Parathyroid hormone treatment improves pain and fracture healing in adult hypophosphatasia. J. Clin. Endocrinol. Metab. 95, 5174–5179 (2010).

  129. 129

    McKee, M. et al. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J. Dent. Res. 90, 470–476 (2011).

  130. 130

    Millán, J. L. et al. Enzyme replacement therapy for murine hypophosphatasia. J. Bone Miner. Res. 23, 777–787 (2008).

  131. 131

    US National Library of Science. ClinicalTrials.gov[online], (2014).

  132. 132

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  133. 133

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  134. 134

    US National Library of Science. ClinicalTrials.gov[online], (2014).

  135. 135

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  136. 136

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  137. 137

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  138. 138

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  139. 139

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  140. 140

    US National Library of Science. ClinicalTrials.gov[online], (2015).

  141. 141

    Gasque, K. C. et al. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl−/− mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 72, 137–147 (2015).

  142. 142

    Yamamoto, S. et al. Prolonged survival and phenotypic correction of Akp2−/− hypophosphatasia mice by lentiviral gene therapy. J. Bone Miner. Res. 26, 135–142 (2011).

Download references

Acknowledgements

This Review was made possible by the skill and dedication of the medical, nursing, laboratory, dietary, radiology and physical therapy staff of the Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St Louis, Missouri, USA. S. McKenzie and V. Bijanki assisted in the preparation of this manuscript.

Author information

Correspondence to Michael P. Whyte.

Ethics declarations

Competing interests

M.P.W. has received consulting fees and research grant support from Enobia Pharma and honoraria, travel and research grant support from Alexion Pharmaceuticals, who have developed asfotase alfa to treat paediatric-onset hypophosphatasia as approved in Japan, Canada, the Europe Union and the USA.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whyte, M. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12, 233–246 (2016). https://doi.org/10.1038/nrendo.2016.14

Download citation

Further reading