Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment

Key Points

  • Hypophosphatasia is the autosomal dominant or autosomal recessive inborn error of metabolism with an extraordinary range of severity caused by loss-of-function mutations within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP)

  • Extracellular accumulation of the TNSALP substrate inorganic pyrophosphate results in defective mineralization of the dentition causing tooth loss and often of the skeleton causing rickets or osteomalacia

  • Hypophosphatasaemia (low serum alkaline phosphatase activity) for age and sex is the biochemical hallmark

  • An elevated serum level of the TNSALP substrate pyridoxal 5′-phosphate (the major circulating form of vitamin B6) is expected

  • TNSALP gene (ALPL; also known as TNSALP) mutation analysis is necessary to understand recurrence risks and for prenatal diagnosis

  • Recombinant, bone-targeted TNSALP replacement has been shown to be effective for paediatric-onset hypophosphatasia

Abstract

Hypophosphatasia is the inborn error of metabolism characterized by low serum alkaline phosphatase activity (hypophosphatasaemia). This biochemical hallmark reflects loss-of-function mutations within the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP is a cell-surface homodimeric phosphohydrolase that is richly expressed in the skeleton, liver, kidney and developing teeth. In hypophosphatasia, extracellular accumulation of TNSALP natural substrates includes inorganic pyrophosphate, an inhibitor of mineralization, which explains the dento-osseous and arthritic complications featuring tooth loss, rickets or osteomalacia, and calcific arthopathies. Severely affected infants sometimes also have hypercalcaemia and hyperphosphataemia due to the blocked entry of minerals into the skeleton, and pyridoxine-dependent seizures from insufficient extracellular hydrolysis of pyridoxal 5′-phosphate, the major circulating form of vitamin B6, required for neurotransmitter synthesis. Autosomal recessive or dominant inheritance from 300 predominantly missense ALPL (also known as TNSALP) mutations largely accounts for the remarkably broad-ranging expressivity of hypophosphatasia. High serum concentrations of pyridoxal 5′-phosphate represent a sensitive and specific biochemical marker for hypophosphatasia. Also, phosphoethanolamine levels are usually elevated in serum and urine, though less reliably for diagnosis. TNSALP mutation detection is important for recurrence risk assessment and prenatal diagnosis. Diagnosing paediatric hypophosphatasia is aided by pathognomic radiographic changes when the skeletal disease is severe. Hypophosphatasia was the last type of rickets or osteomalacia to await a medical treatment. Now, significant successes for severely affected paediatric patients are recognized using asfotase alfa, a bone-targeted recombinant TNSALP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adult hypophosphatasia.
Figure 2: Childhood hypophosphatasia.
Figure 3: Infantile hypophosphatasia.
Figure 4: Radiographic features of infantile hypophosphatasia.
Figure 5: Perinatal hypophosphatasia.
Figure 6: Radiographic features of perinatal hypophosphatasia.
Figure 7: Role of TNSALP in vitamin B6 metabolism.
Figure 8: Perinatal hypophosphatasia: response to asfotase alfa treatment.

Similar content being viewed by others

References

  1. Rathbun, J. C. Hypophosphatasia: a new developmental anomaly. Am. J. Dis. Child. 75, 822–831 (1948).

    Article  CAS  PubMed  Google Scholar 

  2. Fraser, D. Hypophosphatasia. Am. J. Med. 22, 730–746 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Sobel, E. H., Clark, L. C. Jr, Fox, R. P. & Robinow, M. Rickets, deficiency of alkaline phosphatase activity and premature loss of teeth in childhood. Pediatrics 11, 309–322 (1953).

    CAS  PubMed  Google Scholar 

  4. Online mendelian inheritance in man®. OMIM®[online], (2015).

  5. Robison, R. The possible significance of hexosephosphoric esters in ossification. J. Biol. Chem. 17, 286–293 (1923).

    CAS  Google Scholar 

  6. McComb, R. B., Bowers, G. N. Jr & Posen, S. Alkaline Phosphatase (Plenum Press, 1979).

    Book  Google Scholar 

  7. Millan, J. L. Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology (Wiley-VCH, 2006).

    Book  Google Scholar 

  8. Whyte, M. P. in Genetics of Bone Biology and Skeletal Disease 1st edn Ch. 22 (eds Thakker, R. V. et al.) 337–360 (Academic Press, 2013).

    Book  Google Scholar 

  9. Weiss, M. J. et al. Structure of the human liver/bone/kidney alkaline phosphatase gene. J. Biol. Chem. 263, 12002–12010 (1988).

    CAS  PubMed  Google Scholar 

  10. Kim, E. E. & Wyckoff, H. W. Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J. Mol. Biol. 218, 449–464 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Henthorn, P. S. & Whyte, M. P. Missense mutations of the tissue-nonspecific alkaline phosphatase gene in hypophosphatasia. Clin. Chem. 38, 2501–2505 (1992).

    CAS  PubMed  Google Scholar 

  12. Nosjean, O., Koyama, I., Goseki, M., Roux, B. & Komoda, T. Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem. J. 321, 297–303 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kiledjian, M. & Kadesch, T. Analysis of the human liver/bone/kidney alkaline phosphatase promoter in vivo and in vitro. Nucleic Acids Res. 18, 957–961 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xu, Y., Cruz, T. F. & Pritzker, K. P. Alkaline phosphatase dissolves calcium pyrophosphate dihydrate crystals. J. Rheumatol. 18, 1606–1610 (1991).

    CAS  PubMed  Google Scholar 

  15. Farley, J. R. Phosphate regulates the stability of skeletal alkaline phosphatase activity in human osteosarcoma (SaOS-2) cells without equivalent effects on the level of skeletal alkaline phosphatase immunoreactive protein. Calcif. Tissue Int. 57, 371–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Hawrylak, K. & Stinson, R. A. Tetrameric alkaline phosphatase from human liver is converted to dimers by phosphatidylinositol phospholipase C. FEBS Lett. 212, 289–291 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Young, G. P., Rose, I. S., Cropper, S., Seetharam, S. & Alpers, D. H. Hepatic clearance of rat plasma intestinal alkaline phosphatase. Am. J. Physiol. 247, G419–G426 (1984).

    CAS  PubMed  Google Scholar 

  18. Millan, J. L., Whyte, M. P., Avioli, L. V. & Fishman, W. H. Hypophosphatasia (adult form): quantitation of serum alkaline phosphatase isoenzyme activity in a large kindred. Clin. Chem. 26, 840–845 (1980).

    CAS  PubMed  Google Scholar 

  19. Gorodischer, R., Davidson, R. G., Mosovich, L. L. & Yaffe, S. J. Hypophosphatasia: a developmental anomaly of alkaline phosphatase? Pediatr. Res. 10, 650–656 (1976).

    CAS  PubMed  Google Scholar 

  20. Vanneuville, F. J. & Leroy, J. G. Hypophosphatasia: biochemical diagnosis in post-mortem organs, plasma and diploid skin fibroblasts [proceedings]. Arch. Int. Physiol. Biochim. 87, 854–855 (1979).

    CAS  PubMed  Google Scholar 

  21. Mueller, H. D., Stinson, R. A., Mohyuddin, F. & Milne, J. K. Isoenzymes of alkaline phosphatase in infantile hypophosphatasia. J. Lab. Clin. Med. 102, 24–30 (1983).

    CAS  PubMed  Google Scholar 

  22. Whyte, M. P. in Principles of Bone Biology 3rd edn (eds Bilezikian, J. P. et al.) 1573–1598 (Academic Press, 2008).

    Book  Google Scholar 

  23. Weiss, M. J. et al. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc. Natl Acad. Sci. USA 85, 7666–7669 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henthorn, P. S., Raducha, M., Fedde, K. N., Lafferty, M. A. & Whyte, M. P. Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc. Natl Acad. Sci. USA 89, 9924–9928 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mornet, E. Tissue nonspecific alkaline phosphatase gene mutations database. SESEP [online], (2015).

  26. Whyte, M. P. et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75, 229–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Henthorn, P., Ferrero, A., Fedde, K., Coburn, S. P. & Whyte, M. P. Hypophosphatasia mutation D361V exhibits dominant effects both in vivo and in vitro [abstract]. Am. J. Hum. Genet. 59, A-199 (1996).

    Google Scholar 

  28. Ozono, K. et al. Identification of novel missense mutations (Phe310Leu and Gly439Arg) in a neonatal case of hypophosphatasia. J. Clin. Endocrinol. Metab. 81, 4458–4461 (1996).

    CAS  PubMed  Google Scholar 

  29. Greenberg, C. R. et al. A homoallelic Gly317→Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian Mennonites. Genomics 17, 215–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Whyte, M. P., Essmyer, K., Geimer, M. & Mumm, S. Homozygosity for TNSALP mutation 1348C>T (Arg 433Cys) causes infantile hypophosphatasia manifesting transient disease correction and variably lethal outcome in a kindred of black ancestry. J. Pediatr. 148, 753–758 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Mumm, S. et al. Hypophosphatasia: the c.1133A>T, D378V transversion is the most common American TNSALP mutation [abstract]. J. Bone Miner. Res. 21, S115 (2006).

    Google Scholar 

  32. Mornet, E., Yvard, A., Taillandier, A., Fauvert, D. & Simon-Bouy, B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann. Hum. Genet. 75, 439–445 (2011).

    Article  PubMed  Google Scholar 

  33. Ozono, K. & Michigami, T. Hypophosphatasia now draws more attention of both clinicians and researchers: a commentary on prevalence of c. 1559delT in ALPL, a common mutation resulting in the perinatal (lethal) form of hypophosphatasias in Japanese and effects of the mutation on heterozygous carriers. J. Hum. Genet. 56, 174–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wenkert, D. et al. Hypophosphatasia: non-lethal disease despite skeletal presentation in utero (17 new cases and literature review). J. Bone Miner. Res. 26, 2389–2398 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Scriver, C. R. & Cameron, D. Pseudohypophosphatasia. N. Engl. J. Med. 281, 604–606 (2011).

    Article  Google Scholar 

  36. Madson, K. L., Gill, S. S., Mumm, S. & Whyte, M. P. Pseudohypophosphatasia: mutation identification and 46-year follow-up of the original patient [abstract]. J. Bone Miner. Res. 30, S190 (2015).

    Google Scholar 

  37. Whyte, M. P., Teitelbaum, S. L., Murphy, W. A., Bergfeld, M. A. & Avioli, L. V. Adult hypophosphatasia: clinical, laboratory, and genetic investigation of a large kindred with review of the literature. Medicine (Baltimore) 58, 329–347 (1979).

    Article  CAS  Google Scholar 

  38. Sutton, R. A., Mumm, S., Coburn, S. P., Ericson, K. L. & Whyte, M. P. 'Atypical femoral fractures' during bisphosphonate exposure in adult hypophosphatasia. J. Bone Miner. Res. 27, 987–994 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Lundgren, T., Westphal, O., Bolme, P., Modeer, T. & Noren, J. G. Retrospective study of children with hypophosphatasia with reference to dental changes. Scand. J. Dent. Res. 99, 357–364 (1991).

    CAS  PubMed  Google Scholar 

  40. Khandwala, H. M., Mumm, S. & Whyte, M. P. Low serum alkaline phosphatase activity and pathologic fracture: case report and brief review of hypophosphatasia diagnosed in adulthood. Endocr. Pract. 12, 676–681 (2006).

    Article  PubMed  Google Scholar 

  41. Coe, J. D., Murphy, W. A. & Whyte, M. P. Management of femoral fractures and pseudofractures in adult hypophosphatasia. J. Bone Joint Surg. Am. 68, 981–990 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. Whyte, M. P. Atypical femoral fractures, bisphosphonates, and adult hypophosphatasia. J. Bone Miner. Res. 24, 1132–1134 (2009).

    Article  PubMed  Google Scholar 

  43. Whyte, M. P., Mumm, S. & Deal, C. Adult hypophosphatasia treated with teriparatide. J. Clin. Endocrinol. Metab. 92, 1203–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Chuck, A. J., Pattrick, M. G., Hamilton, E., Wilson, R. & Doherty, M. Crystal deposition in hypophosphatasia: a reappraisal. Ann. Rheum. Dis. 48, 571–576 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Whyte, M. P., Murphy, W. A. & Fallon, M. D. Adult hypophosphatasia with chondrocalcinosis and arthropathy. Variable penetrance of hypophosphatasemia in a large Oklahoma kindred. Am. J. Med. 72, 631–641 (1982).

    Article  CAS  PubMed  Google Scholar 

  46. Guañabens, N. et al. Calcific periarthritis as the only clinical manifestation of hypophosphatasia in middle-aged sisters. J. Bone Miner. Res. 29, 929–934 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Lassere, M. N. & Jones, J. G. Recurrent calcific periarthritis, erosive osteoarthritis and hypophosphatasia: a family study. J. Rheumatol. 17, 1244–1248 (1990).

    CAS  PubMed  Google Scholar 

  48. Weinstein, R. S. & Whyte, M. P. Fifty-year follow-up of hypophosphatasia. Arch. Int. Med. 141, 1720–1721 (1981).

    Article  CAS  Google Scholar 

  49. Fallon, M. D. et al. Hypophosphatasia: clinicopathologic comparison of the infantile, childhood, and adult forms. Medicine (Baltimore) 63, 12–24 (1984).

    Article  CAS  Google Scholar 

  50. Collmann, H., Mornet, E., Gattenlohner, S., Beck, C. & Girschick, H. Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv. Syst. 25, 217–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Seshia, S. S., Derbyshire, G., Haworth, J. C. & Hoogstraten, J. Myopathy with hypophosphatasia. Arch. Dis. Child. 65, 130–131 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Whyte, M. P. et al. Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J. Bone Miner. Res. 24, 1493–1505 (2009).

    Article  PubMed  Google Scholar 

  53. Kozlowski, K. et al. Hypophosphatasia. Review of 24 cases. Pediatr. Radiol. 5, 103–117 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Whyte, M. P., Wenkert, D., McAlister, W. H., Mack, K. E. & Zhang, F. Hypophosphatasia: natural history study of 101 affected children followed at one research center [abstract]. J. Bone Miner. Res. 30, S189 (2015).

    Google Scholar 

  55. Lepe, X., Rothwell, B. R., Banich, S. & Page, R. C. Absence of adult dental anomalies in familial hypophosphatasia. J. Periodontal Res. 32, 375–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Whyte, M. P. et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med. 366, 904–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Whyte, M. P., Valdes, R. Jr, Ryan, L. M. & McAlister, W. H. Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J. Pediatr. 101, 379–386 (1982).

    Article  CAS  PubMed  Google Scholar 

  58. Sty, J. R., Boedecker, R. A. & Babbitt, D. P. Skull scintigraphy in infantile hypophosphatasia. J. Nucl. Med. 20, 305–306 (1979).

    CAS  PubMed  Google Scholar 

  59. Baumgartner-Sigl, S. et al. Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40, 1655–1661 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Whyte, M. P. et al. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J. Clin. Endocrinol. Metab. 101, 334–342 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Taillard, F. et al. L'hypophosphatasie affection polymorphe de fréquence peut-e˘tre sous estimée. Infantile 91, 559–576 (in French) (1984).

    Google Scholar 

  62. Shohat, M., Rimoin, D. L., Gruber, H. E. & Lachman, R. S. Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr. Radiol. 21, 421–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Silver, M. M., Vilos, G. A. & Milne, K. J. Pulmonary hypoplasia in neonatal hypophosphatasia. Pediatr. Pathol. 8, 483–493 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Cole, D. E. et al. Increased serum pyridoxal-5′-phosphate in pseudohypophosphatasia. N. Engl. J. Med. 314, 992–993 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Heaton, B. W. & McClendon, J. L. Childhood pseudohypophosphatasia. Clinical and laboratory study of two cases. Tex. Dent. J. 103, 4–8 (1986).

    CAS  PubMed  Google Scholar 

  66. Rubecz, I. et al. Hypophosphatasia: screening and family investigation. Clin. Genet. 6, 155–159 (1974).

    Article  CAS  PubMed  Google Scholar 

  67. Robison, R. The Significance of Phosphoteric Esters in Metabolism (New York Universty Press, 1932).

    Google Scholar 

  68. Murshed, M., Harmey, D., Millan, J. L., McKee, M. D. & Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093–1104 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Anderson, H. C., Hsu, H. H., Morris, D. C., Fedde, K. N. & Whyte, M. P. Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am. J. Pathol. 151, 1555–1561 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Ornoy, A., Adomian, G. E. & Rimoin, D. L. Histologic and ultrastructural studies on the mineralization process in hypophosphatasia. Am. J. Med. Genet. 22, 743–758 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Fraser, D., Yendt, E. R. & Christie, F. H. Metabolic abnormalities in hypophosphatasia. Lancet 268, 286 (1955).

    Article  CAS  PubMed  Google Scholar 

  72. Fleisch, H., Russell, R. G. & Straumann, F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212, 901–903 (1966).

    Article  CAS  PubMed  Google Scholar 

  73. Russell, R. G., Bisaz, S., Donath, A., Morgan, D. B. & Fleisch, H. Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and other disorders of bone. J. Clin. Invest. 50, 961–969 (1971).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Moss, D. W., Eaton, R. H., Smith, J. K. & Whitby, L. G. Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem. J. 102, 53–57 (1967).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chapple, I. L. Hypophosphatasia: dental aspects and mode of inheritance. J. Clin. Periodontol. 20, 615–622 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Currarino, G., Neuhauser, E. B., Reyersbach, G. C. & Sobel, E. H. Hypophosphatasia. Am. J. Roentgenol. Radium Ther. Nucl. Med. 78, 392–419 (1957).

    CAS  PubMed  Google Scholar 

  77. Whyte, M. P. & Seino, Y. Circulating vitamin D metabolite levels in hypophosphatasia. J. Clin. Endocrinol. Metab. 55, 178–180 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Opshaug, O., Maurseth, K., Howlid, H., Aksnes, L. & Aarskog, D. Vitamin D metabolism in hypophosphatasia. Acta Paediatr. Scand. 71, 517–521 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Whyte, M. P. & Rettinger, S. D. Hyperphosphatemia due to enhanced renal reclamation of phosphate in hypophosphatasia [abstract]. J. Bone Miner. Res. 2 (Suppl. 1) 399 (1987).

    Google Scholar 

  80. Otero, J. E. et al. Severe skeletal toxicity from protracted etidronate therapy for generalized arterial calcification of infancy. J. Bone Miner. Res. 28, 419–430 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Rutsch, F. et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ. Cardiovasc. Genet. 1, 133–140 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. McCance, R. A., Morrison, A. B. & Dent, C. E. The excretion of phosphoethanolamine and hypophosphatasia. Lancet 268, 131 (1955).

    Article  CAS  PubMed  Google Scholar 

  83. Russell, R. G. Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet 10, 461–464 (1965).

    Article  Google Scholar 

  84. Whyte, M. P., Mahuren, J. D., Vrabel, L. A. & Coburn, S. P. Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J. Clin. Invest. 76, 752–756 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Coburn, S. P. & Whyte, M. P. in Clinical and Physiological Applications of Vitamin B-6 (eds Leklem, J. E. & Reynolds, R. D.) 65–93 (AR Liss, 1988).

    Google Scholar 

  86. Fedde, K. N. & Whyte, M. P. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am. J. Hum. Genet. 47, 767–775 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Fedde, K. N., Lane, C. C. & Whyte, M. P. Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch. Biochem. Biophys. 264, 400–409 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Rasmussen, K. Phosphorylethanolamine and hypophosphatasia. Dan. Med. Bull. 15, 1–112 (1968).

    Google Scholar 

  89. Gron, I. H. Mammalian O-phosphorylethanolamine phospho-lyase activity and its inhibition. Scand. J. Clin. Lab. Invest. 38, 107–112 (1978).

    Article  CAS  PubMed  Google Scholar 

  90. Whyte, M. P. et al. Perinatal hypophosphaasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5′-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J. Clin. Invest. 81, 1234–1239 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Caswell, A. M., Whyte, M. P. & Russell, R. G. Hypophosphatasia and the extracellular metabolism of inorganic pyrophosphate: clinical and laboratory aspects. Crit. Rev. Clin. Lab. Sci. 28, 175–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Moore, C. A., Ward, J. C., Rivas, M. L., Magill, H. L. & Whyte, M. P. Infantile hypophosphatasia: autosomal recessive transmission to two related sibships. Am. J. Med. Genet. 36, 15–22 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Macfarlane, J. D., Kroon, H. M. & van der Harten, J. J. Phenotypically dissimilar hypophosphatasia in two sibships. Am. J. Med. Genet. 42, 117–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Yadav, M. C. et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J. Bone Miner. Res. 26, 286–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Fedde, K. N. et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone Miner. Res. 14, 2015–2026 (1991).

    Article  Google Scholar 

  96. Millan, J. L. & Whyte, M. P. Alkaline phosphatase and hypophosphatasia. Calcif. Tissue Int. http://dx.doi.org/10.1007/s00223-015-0079-1 (2015).

  97. Hough, T. A. et al. Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J. Bone Miner. Res. 22, 1397–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Foster, B. L. et al. Periodontal defects in the A116T knock-in mouse model of odontohypophosphatasia. J. Dent. Res. 94, 706–714 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kleinman, G., Uri, M., Hull, S. & Keene, C. Perinatal ultrasound casebook. Antenatal findings in congenital hypophosphatasia. J. Perinatol. 11, 282–284 (1991).

    CAS  PubMed  Google Scholar 

  100. Whyte, M. P. in Pediatric Bone: Biology and Diseases 3rd edn (eds Glorieux, F. H. et al.) 771–794 (Academic Press, 2012).

    Book  Google Scholar 

  101. McKiernan, F. E., Berg, R. L. & Fuehrer, J. Clinical and radiographic findings in adults with persistent hypophosphatasemia. J. Bone Miner. Res. 29, 1651–1660 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Royce, P. M. et al. Lethal osteogenesis imperfecta: abnormal collagen metabolism and biochemical characteristics of hypophosphatasia. Eur. J. Pediatr. 147, 626–631 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. El-Gharbawy, A. H. et al. Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2. Am. J. Med. Genet. A 152A, 169–174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Licata, A. A., Radfar, N., Bartter, F. C. & Bou, E. The urinary excretion of phosphoethanolamine in diseases other than hypophosphatasia. Am. J. Med. 64, 133–138 (1978).

    Article  CAS  PubMed  Google Scholar 

  105. Chodirker, B. N., Coburn, S. P., Seargeant, L. E., Whyte, M. P. & Greenberg, C. R. Increased plasma pyridoxal-5′-phosphate levels before and after pyridoxine loading in carriers of perinatal/infantile hypophosphatasia. J. Inherit. Metab. Dis. 13, 891–896 (1990).

    Article  CAS  PubMed  Google Scholar 

  106. Macfarlane, J. D., Poorthuis, B. J., Mulivor, R. A. & Caswell, A. M. Raised urinary excretion of inorganic pyrophosphate in asymptomatic members of a hypophosphatasia kindred. Clin. Chim. Acta. 202, 141–148 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Rockman-Greenberg, C. et al. Asfotase alfa: Sustained efficacy and tolerability in children with hypophosphatasia treated for 5 years. J. Bone Miner. Res. 30 (Suppl. 1), http://www.asbmr.org/education/AbstractDetail?aid=25f0b55b-32f2-4df7-b81c-2de3107bc114 (2015).

  108. Zhang, F., Whyte, M. P. & Wenkert, D. Improving dual-energy X-ray absorptiometry (DXA) interpretation: a simple equation for height correction for pre-teenage children. J. Clin. Densitom. 15, 267–274 (2012).

    Article  PubMed  Google Scholar 

  109. el-Labban, N. G., Lee, K. W. & Rule, D. Permanent teeth in hypophosphatasia: light and electron microscopic study. J. Oral Pathol. Med. 20, 352–360 (1991).

    Article  CAS  PubMed  Google Scholar 

  110. Watanabe, A. et al. Perinatal hypophosphatasia caused by uniparental isodisomy. Bone 60, 93–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Rudd, N. L., Miskin, M., Hoar, D. I., Benzie, R. & Doran, T. A. Prenatal diagnosis of hypophosphatasia. N. Engl. J. Med. 295, 146–148 (1976).

    Article  CAS  PubMed  Google Scholar 

  112. Mulivor, R. A., Mennuti, M., Zackai, E. H. & Harris, H. Prenatal diagnosis of hypophosphatasia; genetic, biochemical, and clinical studies. Am. J. Hum. Genet. 30, 271–282 (1978).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Brock, D. J. & Barron, L. First-trimester prenatal diagnosis of hypophosphatasia: experience with 16 cases. Prenat. Diagn. 11, 387–391 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Hausser, C., Habib, R. & Poitras, P. Hypophosphatasia: complete absence of the fetal skeleton. Union Med. Can. 113, 978–979 (1984).

    CAS  PubMed  Google Scholar 

  115. Henthorn, P. S. & Whyte, M. P. Infantile hypophosphatasia: successful prenatal assessment by testing for tissue-non-specific alkaline phosphatase isoenzyme gene mutations. Prenat. Diagn. 15, 1001–1006 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Orimo, H. et al. First-trimester prenatal molecular diagnosis of infantile hypophosphatasia in a Japanese family. Prenat. Diagn. 16, 559–563 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Leung, E. C. et al. Outcome of perinatal hypophosphatasia in Manitoba Mennonites: a retrospective cohort analysis. JIMD Rep. 11, 73–78 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Whyte, M. P. et al. Marrow cell transplantation for infantile hypophosphatasia. J. Bone Miner. Res. 18, 624–636 (2003).

    Article  PubMed  Google Scholar 

  119. Cahill, R. A. et al. Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J. Clin. Endocrinol. Metab. 92, 2923–2930 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Ish-shalom, S. et al. A follow-up of hypophosphatasia from infancy to adulthood [abstract]. Presented at the annual meeting of the Pediatric Working Group, American Society for Bone and Mineral Research (1986).

  121. Rodriguez, E. et al. Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr. Pulmonol. 47, 917–922 (2012).

    Article  PubMed  Google Scholar 

  122. Barcia, J. P., Strife, C. F., & Langman, C. B. Infantile hypophosphatasia: treatment options to control hypercalcemia, hypercalciuria, and chronic bone demineralization. J. Pediatr. 130, 825–828 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Girschick, H. J. et al. Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J. Rare Dis. 1, 24 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fraser, D. & Laidlaw, J. C. Treatment of hypophosphatasia with cortisone. Lancet 1, 553 (1956).

    Article  Google Scholar 

  125. Whyte, M. P. et al. Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma: results in three additional patients. J. Pediatr. 105, 926–933 (1984).

    Article  CAS  PubMed  Google Scholar 

  126. Whyte, M. P. et al. Failure of hyperphosphatasemia by intravenous infusion of purified placental alkaline phosphatase (ALP) to correct severe hypophosphatasia: evidence against a role for circulating ALP in skeletal mineralization [abstract]. J. Bone Miner. Res. 7, S155 (1992).

    Google Scholar 

  127. Camacho, P. M., Painter, S. & Kadanoff, R. Treatment of adult hypophosphatasia with teriparatide. Endocr. Pract. 14, 204–208 (2008).

    Article  PubMed  Google Scholar 

  128. Schalin-Jantti, C., Mornet, E., Lamminen, A. & Valimaki, M. J. Parathyroid hormone treatment improves pain and fracture healing in adult hypophosphatasia. J. Clin. Endocrinol. Metab. 95, 5174–5179 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. McKee, M. et al. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J. Dent. Res. 90, 470–476 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Millán, J. L. et al. Enzyme replacement therapy for murine hypophosphatasia. J. Bone Miner. Res. 23, 777–787 (2008).

    Article  PubMed  Google Scholar 

  131. US National Library of Science. ClinicalTrials.gov[online], (2014).

  132. US National Library of Science. ClinicalTrials.gov[online], (2015).

  133. US National Library of Science. ClinicalTrials.gov[online], (2015).

  134. US National Library of Science. ClinicalTrials.gov[online], (2014).

  135. US National Library of Science. ClinicalTrials.gov[online], (2015).

  136. US National Library of Science. ClinicalTrials.gov[online], (2015).

  137. US National Library of Science. ClinicalTrials.gov[online], (2015).

  138. US National Library of Science. ClinicalTrials.gov[online], (2015).

  139. US National Library of Science. ClinicalTrials.gov[online], (2015).

  140. US National Library of Science. ClinicalTrials.gov[online], (2015).

  141. Gasque, K. C. et al. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl−/− mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 72, 137–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Yamamoto, S. et al. Prolonged survival and phenotypic correction of Akp2−/− hypophosphatasia mice by lentiviral gene therapy. J. Bone Miner. Res. 26, 135–142 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review was made possible by the skill and dedication of the medical, nursing, laboratory, dietary, radiology and physical therapy staff of the Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St Louis, Missouri, USA. S. McKenzie and V. Bijanki assisted in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Whyte.

Ethics declarations

Competing interests

M.P.W. has received consulting fees and research grant support from Enobia Pharma and honoraria, travel and research grant support from Alexion Pharmaceuticals, who have developed asfotase alfa to treat paediatric-onset hypophosphatasia as approved in Japan, Canada, the Europe Union and the USA.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whyte, M. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12, 233–246 (2016). https://doi.org/10.1038/nrendo.2016.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing