Anti-obesogenic and antidiabetic effects of plants and mushrooms

Key Points

  • The prevalence of obesity is increasing worldwide as a result of high-calorie diets and sedentary lifestyles

  • Current anti-obesogenic therapies have limited effectiveness and/or severe adverse effects

  • Substances in plants and mushrooms have anti-obesogenic and antidiabetic effects by regulating appetite, nutrient digestion and absorption, adipogenesis, energy expenditure, insulin sensitivity and composition and function of the gut microbiota

  • Clinical data relating to the effectiveness of plants and mushrooms are limited, but preliminary evidence suggests they can have beneficial effects on body weight and fat accumulation in humans

  • Herbal and fungal phytonutrients could be combined with existing weight-loss treatments to optimize anti-obesogenic effects

Abstract

Obesity is reaching global epidemic proportions as a result of factors such as high-calorie diets and lack of physical exercise. Obesity is now considered to be a medical condition, which not only contributes to the risk of developing type 2 diabetes mellitus, cardiovascular disease and cancer, but also negatively affects longevity and quality of life. To combat this epidemic, anti-obesogenic approaches are required that are safe, widely available and inexpensive. Several plants and mushrooms that are consumed in traditional Chinese medicine or as nutraceuticals contain antioxidants, fibre and other phytochemicals, and have anti-obesogenic and antidiabetic effects through the modulation of diverse cellular and physiological pathways. These effects include appetite reduction, modulation of lipid absorption and metabolism, enhancement of insulin sensitivity, thermogenesis and changes in the gut microbiota. In this Review, we describe the molecular mechanisms that underlie the anti-obesogenic and antidiabetic effects of these plants and mushrooms, and propose that combining these food items with existing anti-obesogenic approaches might help to reduce obesity and its complications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Active substances in plants and mushrooms with anti-obesogenic and antidiabetic effects.
Figure 2: Molecular mechanisms of the antidiabetic and anti-obesogenic effects of plants and mushrooms.
Figure 3: Polysaccharides from plants and mushrooms have antidiabetic and anti-obesogenic effects via the gut microbiota.

References

  1. 1

    Caballero, B. The global epidemic of obesity: an overview. Epidemiol. Rev. 29, 1–5 (2007).

    Article  PubMed  Google Scholar 

  2. 2

    World Health Organization. Obesity and overweight. WHO http://www.who.int/mediacentre/factsheets/fs311/en/ (2016).

  3. 3

    Haslam, D. W. & James, W. P. Obesity. Lancet 366, 1197–1209 (2005). A comprehensive review of studies linking obesity with chronic diseases.

    Article  PubMed  Google Scholar 

  4. 4

    McArdle, M. A., Finucane, O. M., Connaughton, R. M., McMorrow, A. M. & Roche, H. M. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front. Endocrinol. (Lausanne) 4, 52 (2013).

    Article  Google Scholar 

  5. 5

    Visscher, T. L. & Seidell, J. C. The public health impact of obesity. Annu. Rev. Public Health 22, 355–375 (2001).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 121, 21–33 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Guh, D. P. et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Fontaine, K. R. & Barofsky, I. Obesity and health-related quality of life. Obes. Rev. 2, 173–182 (2001).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Walley, A. J., Blakemore, A. I. & Froguel, P. Genetics of obesity and the prediction of risk for health. Hum. Mol. Genet. 15, R124–R130 (2006).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Mutch, D. M. & Clément, K. Genetics of human obesity. Best Pract. Res. Clin. Endocrinol. Metab. 20, 647–664 (2006).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    El-Sayed Moustafa, J. S. & Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 9, 402–413 (2013).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Hurt, R. T., Kulisek, C., Buchanan, L. A. & McClave, S. A. The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol. Hepatol. (NY) 6, 780–792 (2010).

    Google Scholar 

  14. 14

    Wing, R. R. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 34, 1481–1486 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. 15

    Ryan, D. H. & Bray, G. A. Pharmacologic treatment options for obesity: what is old is new again. Curr. Hypertens. Rep. 15, 182–189 (2013).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Yanovski, S. Z. & Yanovski, J. A. Long-term drug treatment for obesity: a systematic and clinical review. JAMA 311, 74–86 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  17. 17

    Atkinson, R. L. Current status of the field of obesity. Trends Endocrinol. Metab. 25, 283–284 (2014).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Dokken, B. B. & Tsao, T. S. The physiology of body weight regulation: are we too efficient for our own good? Diabetes Spect. 20, 166–170 (2007).

    Article  Google Scholar 

  19. 19

    Filippatos, T. D. et al. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 31, 53–65 (2008).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Dietrich, M. O. & Horvath, T. L. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat. Rev. Drug Discov. 11, 675–691 (2012).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Field, B. C., Chaudhri, O. B. & Bloom, S. R. Obesity treatment: novel peripheral targets. Br. J. Clin. Pharmacol. 68, 830–843 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  22. 22

    Prasad-Reddy, L. & Isaacs, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context 4, 212283 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Bult, M. J., van Dalen, T. & Muller, A. F. Surgical treatment of obesity. Eur. J. Endocrinol. 158, 135–145 (2008).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Andersen, C., Rayalam, S., Della-Fera, M. A. & Baile, C. A. Phytochemicals and adipogenesis. Biofactors 36, 415–422 (2010). An overview of phytochemicals that affect adipogenesis, and their mechanisms of action.

    CAS  Article  PubMed  Google Scholar 

  25. 25

    González- Castejón, M. & Rodriguez-Casado, A. Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol. Res. 64, 438–455 (2011).

    Article  CAS  Google Scholar 

  26. 26

    Sui, Y. et al. A systematic review on use of Chinese medicine and acupuncture for treatment of obesity. Obes. Rev. 13, 409–430 (2012).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Ji, H. F., Li, X. J. & Zhang, H. Y. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 10, 194–200 (2009). An insightful overview of the role of herbal products in the development of pharmaceutical drugs.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. 28

    Petrovska, B. B. Historical review of medicinal plants' usage. Pharmacogn. Rev. 6, 1–5 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Newman, D. J., Cragg, G. M. & Snader, K. M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1022–1037 (2003).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Fabricant, D. S. & Farnsworth, N. R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109 (Suppl. 1), 69–75 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. 32

    Craig, W. J. Health effects of vegan diets. Am. J. Clin. Nutr. 89, 1627S–1633S (2009).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Saper, R. B., Eisenberg, D. M. & Phillips, R. S. Common dietary supplements for weight loss. Am. Fam. Physician 70, 1731–1738 (2004).

    PubMed  Google Scholar 

  34. 34

    Blundell, J. Making claims: functional foods for managing appetite and weight. Nat. Rev. Endocrinol. 6, 53–56 (2010).

    Article  PubMed  Google Scholar 

  35. 35

    Kong, L. Y. & Tan, R. X. Artemisinin, a miracle of traditional Chinese medicine. Nat. Prod. Rep. 32, 1617–1621 (2015).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Adachi, K. & Chiba, K. FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Medicin. Chem. 1, 11–23 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Lindequist, U., Niedermeyer, T. H. & Jülich, W. D. The pharmacological potential of mushrooms. Evid. Based Complement. Alternat. Med. 2, 285–299 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    El Enshasy, H. A. & Hatti-Kaul, R. Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol. 31, 668–677 (2013). This article describes the major classes of medicinal mushrooms and their immunological properties.

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Wasser, S. P. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed. J. 37, 345–356 (2014).

    Article  PubMed  Google Scholar 

  40. 40

    Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015). A seminal study on the screening and identification of an anti-obesogenic compound from a plant used in traditional Chinese medicine.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  41. 41

    Chang, C. J. et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 6, 7489 (2015). This study demonstrated that a medicinal mushroom produces anti-obesogenic and antidiabetic effects in mice by modulating the composition of the gut microbiota.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  42. 42

    Ahima, R. S. & Antwi, D. A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. North Am. 37, 811–823 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  43. 43

    Field, B. C., Chaudhri, O. B. & Bloom, S. R. Bowels control brain: gut hormones and obesity. Nat. Rev. Endocrinol. 6, 444–453 (2010).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Rui, L. Brain regulation of energy balance and body weight. Rev. Endocr. Metab. Disord. 14, 387–407 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Myers, M. G., Cowley, M. A. & Münzberg, H. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 70, 537–556 (2008).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Lee, J. & Ozcan, U. Unfolded protein response signaling and metabolic diseases. J. Biol. Chem. 289, 1203–1211 (2014).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Allison, A. C., Cacabelos, R., Lombardi, V. R., Alvarez, X. A. & Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 1341–1357 (2001).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Mathern, J. R., Raatz, S. K., Thomas, W. & Slavin, J. L. Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects. Phytother. Res. 23, 1543–1548 (2009).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Wellman, P. J. Overview of adrenergic anorectic agents. Am. J. Clin. Nutr. 55, 193S–198S (1992).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Powers, M. E. Ephedra and its application to sport performance: another concern for the athletic trainer? J. Athl. Train. 36, 420–424 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. 52

    Shekelle, P. G. et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 289, 1537–1545 (2003).

    CAS  PubMed  Google Scholar 

  53. 53

    Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. 21, S12–S23 (1997).

    CAS  PubMed  Google Scholar 

  54. 54

    Birari, R. B. & Bhutani, K. K. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov. Today 12, 879–889 (2007). A comprehensive review of pancreatic lipase inhibitors that have been found in natural health products.

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Martins, F. et al. Maté tea inhibits in vitro pancreatic lipase activity and has hypolipidemic effect on high-fat diet-induced obese mice. Obesity (Silver Spring) 18, 42–47 (2010).

    CAS  Article  Google Scholar 

  56. 56

    Zheng, C. D., Duan, Y. Q., Gao, J. M. & Ruan, Z. G. Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. J. Chin. Med. Assoc. 73, 319–324 (2010).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Williams, L. K. et al. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nat. Chem. Biol. 11, 691–696 (2015).

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Anderson, J. W. Physiological and metabolic effects of dietary fiber. Fed. Proc. 44, 2902–2906 (1985).

    CAS  PubMed  Google Scholar 

  59. 59

    Topping, D. L. Soluble fiber polysaccharides: effects on plasma cholesterol and colonic fermentation. Nutr. Rev. 49, 195–203 (1991).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Maka, D. A. & Murphy, L. K. Drug–nutrient interactions: a review. AACN Clin. Issues 11, 580–589 (2000).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Racette, S. B. et al. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am. J. Clin. Nutr. 91, 32–38 (2010).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Wang, C. Y. & Liao, J. K. A mouse model of diet-induced obesity and insulin resistance. Methods Mol. Biol. 821, 421–433 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  63. 63

    Enerbäck, S. Brown adipose tissue in humans. Int. J. Obes. (Lond.) 34, S43–S46 (2010).

    Article  CAS  Google Scholar 

  64. 64

    Waki, H. & Tontonoz, P. Endocrine functions of adipose tissue. Annu. Rev. Pathol. 2, 31–56 (2007).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Jung, U. J. & Choi, M. S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15, 6184–6223 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Moon, H. S. et al. Inhibitory effect of (–)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity (Silver Spring) 15, 2571–2582 (2007).

    CAS  Article  Google Scholar 

  67. 67

    Lin, J., Della-Fera, M. A. & Baile, C. A. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res. 13, 982–990 (2005).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Yang, J. Y. et al. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci. 82, 1032–1039 (2008).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Rayalam, S., Yang, J. Y., Ambati, S., Della-Fera, M. A. & Baile, C. A. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res. 22, 1367–1371 (2008).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Penza, M. et al. Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology 147, 5740–5751 (2006).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Park, H. J. et al. Genistein inhibits differentiation of primary human adipocytes. J. Nutr. Biochem. 20, 140–148 (2009).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Zhang, W. L., Zhu, L. & Jiang, J. G. Active ingredients from natural botanicals in the treatment of obesity. Obes. Rev. 15, 957–967 (2014).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Hsu, C. L. & Yen, G. C. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J. Agric. Food Chem. 55, 1730–1736 (2007).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Siersbæk, R., Nielsen, R. & Mandrup, S. PPARγ in adipocyte differentiation and metabolism — novel insights from genome-wide studies. FEBS Lett. 584, 3242–3249 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Yun, S. N., Moon, S. J., Ko, S. K., Im, B. O. & Chung, S. H. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch. Pharm. Res. 27, 790–796 (2004).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Bouskila, M., Pajvani, U. B. & Scherer, P. E. Adiponectin: a relevant player in PPARγ-agonist-mediated improvements in hepatic insulin sensitivity? Int. J. Obes. (Lond.) 29, S17–S23 (2005).

    CAS  Article  Google Scholar 

  77. 77

    Nawrocki, A. R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem. 281, 2654–2660 (2006).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Wang, L. et al. Natural product agonists of peroxisome proliferator-activated receptor γ (PPARγ): a review. Biochem. Pharmacol. 92, 73–89 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  79. 79

    Cariou, B., Charbonnel, B. & Staels, B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol. Metab. 23, 205–215 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Seale, P. & Lazar, M. A. Brown fat in humans: turning up the heat on obesity. Diabetes 58, 1482–1484 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. 81

    Gong, D. W., He, Y., Karas, M. & Reitman, M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin. J. Biol. Chem. 272, 24129–24132 (1997).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Saito, M., Yoneshiro, T. & Matsushita, M. Food ingredients as anti-obesity agents. Trends Endocrinol. Metab. 26, 585–587 (2015). An insightful overview of the anti-obesogenic effects produced by activation of thermogenesis in brown-fat tissues.

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Yoon, S. S. et al. Uncoupled protein 3 and p38 signal pathways are involved in anti-obesity activity of Solanum tuberosum L. cv. Bora Valley. J. Ethnopharmacol. 118, 396–404 (2008).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Zhang, Z. et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun. 5, 5493 (2014).

    CAS  Article  PubMed  Google Scholar 

  85. 85

    Hardie, D. G. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. (Lond.) 32, S7–S12 (2008).

    CAS  Article  Google Scholar 

  86. 86

    Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  87. 87

    Lee, Y. S. et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55, 2256–2264 (2006).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Hwang, J. T. et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338, 694–699 (2005).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Wang, S. et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int. J. Obes. (Lond.) 39, 967–976 (2015).

    CAS  Article  Google Scholar 

  90. 90

    Law, M. R., Wald, N. J. & Rudnicka, A. R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326, 1423 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  91. 91

    Chen, S. Y., Ho, K. J., Hsieh, Y. J., Wang, L. T. & Mau, J. L. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT Food Sci. Technol. 47, 274–278 (2012).

    CAS  Article  Google Scholar 

  92. 92

    Lin, S. Y. et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int. J. Med. Mushrooms 15, 315–323 (2013).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Zhao, Z. J., Pan, Y. Z., Liu, Q. J. & Li, X. H. Exposure assessment of lovastatin in Pu-erh tea. Int. J. Food Microbiol. 164, 26–31 (2013).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Cuccioloni, M. et al. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase. J. Lipid Res. 52, 897–907 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  95. 95

    Cerf, M. E. β cell dysfunction and insulin resistance. Front. Endocrinol. (Lausanne) 4, 37 (2013).

    Article  Google Scholar 

  96. 96

    Kim, E. K. et al. Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor κB activation. Pancreas 35, e1–e9 (2007).

    Article  PubMed  Google Scholar 

  97. 97

    Hosseini, A., Shafiee-Nick, R. & Ghorbani, A. Pancreatic β cell protection/regeneration with phytotherapy. Braz. J. Pharm. Sci. 51, 1–16 (2015).

    CAS  Article  Google Scholar 

  98. 98

    Kajimoto, Y. & Kaneto, H. Role of oxidative stress in pancreatic β-cell dysfunction. Ann. NY Acad. Sci. 1011, 168–176 (2004).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Scalbert, A., Johnson, I. T. & Saltmarsh, M. Polyphenols: antioxidants and beyond. Am. J. Clin. Nutr. 81, 215S–217S (2005).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Skrovankova, S., Misurcova, L. & Machu, L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 67, 75–139 (2012).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Vinayagam, R. & Xu, B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr. Metab. (Lond.) 12, 60 (2015).

    Article  CAS  Google Scholar 

  102. 102

    MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51, S434–S442 (2002).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015). This review describes multiple roles of the gut microbiota and short-chain fatty acids in regulation of body weight and insulin sensitivity.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Park, S. J. et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  105. 105

    Liu, C. Y. et al. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS ONE 9, e91163 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106

    Liu, S. H., Huang, Y. W., Wu, C. T., Chiu, C. Y. & Chiang, M. T. Low molecular weight chitosan accelerates glucagon-like peptide-1 secretion in human intestinal endocrine cells via a p38-dependent pathway. J. Agric. Food Chem. 61, 4855–4861 (2013).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Hsieh, Y. L., Yao, H. T., Cheng, R. S. & Chiang, M. T. Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats. J. Med. Food 15, 453–460 (2012).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Sen, S., Roy, M. & Chakraborti, A. S. Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J. Pharm. Pharmacol. 63, 287–296 (2011).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Kim, S. H., Hyun, S. H. & Choung, S. Y. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J. Ethnopharmacol. 104, 119–123 (2006).

    Article  PubMed  Google Scholar 

  110. 110

    Vuksan, V. et al. Konjac-Mannan and American ginsing: emerging alternative therapies for type 2 diabetes mellitus. J. Am. Coll. Nutr. 20, 370S–380S (2001).

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Graf, B. L., Raskin, I., Cefalu, W. T. & Ribnicky, D. M. Plant-derived therapeutics for the treatment of metabolic syndrome. Curr. Opin. Investig. Drugs 11, 1107–1115 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. 112

    Lin, C. S. et al. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed. J. 37, 259–268 (2014). This article describes the physiological and pathological effects of the gut microbiota in animals and humans.

    Article  PubMed  Google Scholar 

  113. 113

    Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011). An insightful review of the contribution of the gut microbiota in obesity, along with possible innovative treatments in this field.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Shen, J., Obin, M. S. & Zhao, L. The gut microbiota, obesity and insulin resistance. Mol. Aspects Med. 34, 39–58 (2013). This comprehensive review describes the contribution of the gut microbiota in obesity and insulin resistance.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116

    Vrieze, A. et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60, 824–831 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913.e7–916.e7 (2012).

    Article  CAS  Google Scholar 

  118. 118

    Holmes, D. Obesity: medicinal mushroom reduces obesity by modulating microbiota. Nat. Rev. Endocrinol. 11, 504 (2015).

    Article  PubMed  Google Scholar 

  119. 119

    Delzenne, N. M. & Bindels, L. B. Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity? Nat. Rev. Gastroenterol. Hepatol. 12, 553–554 (2015).

    Article  PubMed  Google Scholar 

  120. 120

    Yadav, H., Lee, J. H., Lloyd, J., Walter, P. & Rane, S. G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 288, 25088–25097 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  121. 121

    Cornu, M. et al. Glucagon-like peptide-1 protects β-cells against apoptosis by increasing the activity of an Igf-2/Igf-1 receptor autocrine loop. Diabetes 58, 1816–1825 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  122. 122

    Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 324–334 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Aida, F. M. N. A., Shuhaimi, M., Yazid, M. & Maaruf, A. G. Mushroom as a potential source of prebiotics: a review. Trends Food Sci. Technol. 20, 567–575 (2009).

    CAS  Article  Google Scholar 

  124. 124

    Chen, F. et al. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J. Ethnopharmacol. 179, 253–264 (2016).

    Article  PubMed  Google Scholar 

  125. 125

    Lee, M. S., Kim, C. T. & Kim, Y. Green tea (–)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann. Nutr. Metab. 54, 151–157 (2009).

    CAS  Article  PubMed  Google Scholar 

  126. 126

    Zhang, L. L. et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res. 100, 1063–1070 (2007).

    CAS  Article  PubMed  Google Scholar 

  127. 127

    Macarulla, M. T. et al. Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J. Physiol. Biochem. 65, 369–376 (2009).

    CAS  Article  PubMed  Google Scholar 

  128. 128

    Poulsen, M. M., Jørgensen, J. O., Jessen, N., Richelsen, B. & Pedersen, S. B. Resveratrol in metabolic health: an overview of the current evidence and perspectives. Ann. NY Acad. Sci. 1290, 74–82 (2013).

    CAS  Article  PubMed  Google Scholar 

  129. 129

    Timmers, S., Hesselink, M. K. & Schrauwen, P. Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Ann. NY Acad. Sci. 1290, 83–89 (2013).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Tonstad, S., Butler, T., Yan, R. & Fraser, G. E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32, 791–796 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Bertoia, M. L. et al. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ 352, i17 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. 132

    Coffey, C. S., Steiner, D., Baker, B. A. & Allison, D. B. A randomized double-blind placebo-controlled clinical trial of a product containing ephedrine, caffeine, and other ingredients from herbal sources for treatment of overweight and obesity in the absence of lifestyle treatment. Int. J. Obes. Relat. Metab. Disord. 28, 1411–1419 (2004).

    CAS  Article  PubMed  Google Scholar 

  133. 133

    Hursel, R., Viechtbauer, W. & Westerterp-Plantenga, M. S. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int. J. Obes. (Lond.) 33, 956–961 (2009).

    CAS  Article  Google Scholar 

  134. 134

    Onakpoya, I., Terry, R. & Ernst, E. The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol. Res. Pract. 2011, 382852 (2011).

    Article  PubMed  Google Scholar 

  135. 135

    Di Pierro, F., Menghi, A. B., Barreca, A., Lucarelli, M. & Calandrelli, A. GreenSelect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial. Altern. Med. Rev. 14, 154–160 (2009).

    PubMed  Google Scholar 

  136. 136

    Onakpoya, I., Hung, S. K., Perry, R., Wider, B. & Ernst, E. The use of Garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J. Obes. 2011, 509038 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Most, J., Goossens, G. H., Jocken, J. W. & Blaak, E. E. Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects. Int. J. Obes. (Lond.) 38, 698–706 (2014).

    CAS  Article  Google Scholar 

  138. 138

    Coghlan, M. L. et al. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet. 8, e1002657 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  139. 139

    Chen, C. H. et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl Acad. Sci. USA 109, 8241–8246 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Kuriyan, R. et al. Effect of Caralluma fimbriata extract on appetite, food intake and anthropometry in adult Indian men and women. Appetite 48, 338–344 (2007).

    Article  PubMed  Google Scholar 

  141. 141

    Gout, B., Bourges, C. & Paineau-Dubreuil, S. Satiereal, a Crocus sativus L extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Nutr. Res. 30, 305–313 (2010).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Boozer, C. N. et al. An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial. Int. J. Obes. Relat. Metab. Disord. 25, 316–324 (2001).

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Chevassus, H. et al. A fenugreek seed extract selectively reduces spontaneous fat intake in overweight subjects. Eur. J. Clin. Pharmacol. 66, 449–455 (2010).

    Article  PubMed  Google Scholar 

  144. 144

    Roongpisuthipong, C., Kantawan, R. & Roongpisuthipong, W. Reduction of adipose tissue and body weight: effect of water soluble calcium hydroxycitrate in Garcinia atroviridis on the short term treatment of obese women in Thailand. Asia Pac. J. Clin. Nutr. 16, 25–29 (2007).

    PubMed  Google Scholar 

  145. 145

    Garrison, R. & Chambliss, W. G. Effect of a proprietary Magnolia and Phellodendron extract on weight management: a pilot, double-blind, placebo-controlled clinical trial. Altern. Ther. Health Med. 12, 50–54 (2006).

    PubMed  Google Scholar 

  146. 146

    Oben, J. E., Ngondi, J. L., Momo, C. N., Agbor, G. A. & Sobgui, C. S. The use of a Cissus quadrangularis/Irvingia gabonensis combination in the management of weight loss: a double-blind placebo-controlled study. Lipids Health Dis. 7, 12 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147

    Blom, W. A. et al. Effects of 15-d repeated consumption of Hoodia gordonii purified extract on safety. ad libitum energy intake, and body weight in healthy, overweight women: a randomized controlled trial. Am. J. Clin. Nutr. 94, 1171–1181 (2011).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Onakpoya, I., Aldaas, S., Terry, R. & Ernst, E. The efficacy of Phaseolus vulgaris as a weight-loss supplement: a systematic review and meta-analysis of randomised clinical trials. Br. J. Nutr. 106, 196–202 (2011).

    CAS  Article  PubMed  Google Scholar 

  149. 149

    Snitker, S. et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am. J. Clin. Nutr. 89, 45–50 (2009).

    CAS  Article  PubMed  Google Scholar 

  150. 150

    Mielgo-Ayuso, J. et al. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial. Br. J. Nutr. 111, 1263–1271 (2014).

    CAS  Article  PubMed  Google Scholar 

  151. 151

    Onakpoya, I., Posadzki, P. & Ernst, E. The efficacy of glucomannan supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. J. Am. Coll. Nutr. 33, 70–78 (2014).

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Lopez, H. L. et al. Eight weeks of supplementation with a multi-ingredient weight loss product enhances body composition, reduces hip and waist girth, and increases energy levels in overweight men and women. J. Int. Soc. Sports Nutr. 10, 22 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  153. 153

    Egert, S., Boesch-Saadatmandi, C., Wolffram, S., Rimbach, G. & Müller, M. J. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J. Nutr. 140, 278–284 (2010).

    CAS  Article  PubMed  Google Scholar 

  154. 154

    Basu, A. et al. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition 27, 206–213 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  155. 155

    Wang, H. et al. Effects of catechin enriched green tea on body composition. Obesity (Silver Spring) 18, 773–779 (2010).

    Article  CAS  Google Scholar 

  156. 156

    Nagao, T., Hase, T. & Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring) 15, 1473–1483 (2007).

    CAS  Article  Google Scholar 

  157. 157

    Kubota, K. et al. Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract. Nutr. Res. 31, 421–428 (2011).

    CAS  Article  PubMed  Google Scholar 

  158. 158

    Poddar, K. H. et al. Positive effect of mushrooms substituted for meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial. Appetite 71, 379–387 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Primordia Institute of New Sciences and Medicine, by grants MOST103-2320-B-182-027-MY3 and MOST103-2321-B-182-014-MY3 from the Ministry of Science and Technology of Taiwan, and grants CMRPD1B0053, CMRPD1C0782, CMRPD190303, BMRPA04 and QZRPD120 from Chang Gung Memorial Hospital, Taiwan.

Author information

Affiliations

Authors

Contributions

J.M. and D.M.O. researched data for the article. J.M., D.M.O. and J.D.Y. wrote the article. All authors contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to John D. Young.

Ethics declarations

Competing interests

Y.F.K. is President of Chang Gung Biotechnology Corporation. J.D.Y. is Chairman of the Board of Chang Gung Biotechnology Corporation. The authors (with the exception of S.F.T.) have filed patent applications related to the anti-obesogenic and antidiabetic effects of mushroom polysaccharides.

Supplementary information

Supplementary information S1 (figure)

Active substances in plants and mushrooms with anti-obesogenic and antidiabetic effects. (PDF 342 kb)

PowerPoint slides

Glossary

Insulin resistance

Pathological condition in which the body produces insulin but fails to adequately respond to it.

Traditional Chinese medicine

A system of medical treatments that has been practiced in China for at least 2,000 years, including herbal medicine, acupuncture, qigong and meditation.

Nutraceuticals

Dietary supplements or purified compounds that produce beneficial physiological effects on the human body, in addition to their nutritive values.

Gut microbiota

Community of microorganisms living in the gastrointestinal tract in animals and humans, which has been shown to participate in various physiological and pathological processes in the gut and systemically.

Phytochemicals

Bioactive plant components that can have physiological effects in the human body.

Endoplasmic reticulum

An organelle of eukaryotic cells that is involved in protein synthesis and sorting, and lipid synthesis and metabolism, as well as detoxification.

Endoplasmic-reticulum stress

Condition in which misfolded proteins accumulate in the endoplasmic reticulum, leading to organelle dysfunction.

Leptin resistance

Pathological condition associated with obesity in which the body produces the hormone leptin, but fails to adequately respond to it.

Enterohepatic circulation

Circulation of bile acids from the liver to the small intestine, followed by absorption by enterocytes and transport back to the liver via the blood.

β-Oxidation

Catabolic process occurring in eukaryotic cells in which fatty acids are broken down to produce ATP and cellular metabolites.

Adipokines

Hormones secreted by adipocytes.

Glucotoxicity

Structural and functional damage to pancreatic β cells and the target tissues of insulin caused by chronic hyperglycaemia.

Intestinal tight junctions

Connections between two adjacent intestinal cells that limits the space between them and the passage of material from the intestinal lumen to the gut mucosa.

Prebiotics

Foods that are not digestible by humans, but promote the growth of beneficial microorganisms in the intestines.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martel, J., Ojcius, D., Chang, CJ. et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol 13, 149–160 (2017). https://doi.org/10.1038/nrendo.2016.142

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing