Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Subclinical hypothyroidism in childhood — current knowledge and open issues

Key Points

  • Subclinical hypothyroidism among children is often a benign and remitting condition, for which risk of progression to overt hypothyroidism depends on the underlying cause (for example, autoimmune disease)

  • The optimum management of children with subclinical hypothyroidism depends on the aetiology and degree of TSH elevation and should be individually tailored

  • The benefits of levothyroxine therapy are clear for the severe forms of subclinical hypothyroidism; however, uncertainty about this approach still exists for the mild forms of the condition

  • In the absence of therapeutic intervention, clinical evaluation and thyroid function tests should be regularly performed to ensure early identification of children who might benefit from treatment

  • Growth and neurocognitive outcomes do not seem to be affected in mild subclinical hypothyroidism; however, subtle proatherogenic abnormalities have been detected among children with modest elevations of TSH concentration

  • Cardiovascular risk assessment among children and adolescents with subclinical hypothyroidism could help to prevent cardiovascular disease in adulthood

Abstract

Subclinical hypothyroidism is defined as serum levels of TSH above the upper limit of the reference range, in the presence of normal concentrations of total T4 or free T4. This biochemical profile might be an indication of mild hypothyroidism, with a potential increased risk of metabolic abnormalities and cardiovascular disease recorded among adults. Whether subclinical hypothyroidism results in adverse health outcomes among children is a matter of debate and so management of this condition remains challenging. Mild forms of untreated subclinical hypothyroidism do not seem to be associated with impairments in growth, bone health or neurocognitive outcome. However, ongoing scientific investigations have highlighted the presence of subtle proatherogenic abnormalities among children with modest elevations in their TSH levels. Although current findings are insufficient to recommend levothyroxine treatment for all children with mild asymptomatic forms of subclinical hypothyroidism, they highlight the potential need for assessment of cardiovascular risk among children with this condition. Increased understanding of the early metabolic risk factors associated with subclinical hypothyroidism in childhood will help to improve the management of affected individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional effects of thyroid hormones.
Figure 2: Proposed management of children with subclinical hypothyroidism.

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. Biondi, B. & Cooper, D. S. The clinical significance of subclinical thyroid dysfunction. Endocr. Rev. 29, 76–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Van Vliet, G. & Deladoëy, J. Interpreting minor variations in thyroid function or echostructure: treating patients, not numbers or images. Pediatr. Clin. North Am. 62, 929–942 (2015).

    Article  PubMed  Google Scholar 

  3. Karmisholt, J., Andersen, S. & Laurberg, P. Variation in thyroid function in subclinical hypothyroidism: importance of clinical follow-up and therapy. Eur. J. Endocrinol. 164, 317–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Duntas, L. H. & Wartofsky, L. Cardiovascular risk and subclinical hypothyroidism: focus on lipids and new emerging risk factors. What is the evidence? Thyroid 17, 1075–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Maratou, E. et al. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur. J. Endocrinol. 160, 785–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).

    Article  PubMed  Google Scholar 

  8. Cikim, A. S. et al. Evaluation of endothelial function in subclinical hypothyroidism and subclinical hyperthyroidism. Thyroid 14, 605–609 (2004).

    Article  PubMed  Google Scholar 

  9. Gao, N., Zhang, W., Zhang, Y. Z., Yang, Q. & Chen, S. H. Carotid intima-media thickness in patients with subclinical hypothyroidism: a meta-analysis. Atherosclerosis 227, 18–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Rodondi, N. et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304, 1365–1374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gencer, B. et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation 126, 1040–1049 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Razvi, S., Weaver, J. U., Vanderpump, M. P. & Pearce, S. H. The incidence of ischemic heart disease andmortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. J. Clin. Endocrinol. Metab. 95, 1734–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Chaker, L. et al. Subclinical hypothyroidism and the risk of stroke events and fatal stroke: an individual participant data analysis. J. Clin. Endocrinol. Metab. 100, 2181–2191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaber, J. R. et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 22, 1200–1235 (2012).

    Article  CAS  Google Scholar 

  15. Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J. 2, 215–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monzani, A. et al. Endocrine disorders in childhood and adolescence. Natural history of subclinical hypothyroidism in children and adolescents and potential effects of replacement therapy: a review. Eur. J. Endocrinol. 168, R1–R11 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Cerbone, M. et al. Cardiovascular risk factors in children with long-standing untreated idiopathic subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 99, 2697–2703 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Cerbone, M. et al. Linear growth and intellectual outcome in children with long-term idiopathic subclinical hypothyroidism. Eur. J. Endocrinol. 164, 591–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Wasniewska, M. et al. Comparative evaluation of therapy with L-thyroxine versus no treatment in children with idiopathic and mild subclinical hypothyroidism. Horm. Res. Paediatr. 77, 376–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Cerbone, M. et al. Non-autoimmune subclinical hypothyroidism due to a mutation in TSH receptor: report on two brothers. Ital. J. Pediatr. 39, 5 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, T., Flowers, J. W., Tudiver, F., Wilson, J. L. & Punyasavatsut, N. Subclinical thyroid disorders and cognitive performance among adolescents in the United States. BMC Pediatr. 6, 12 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lazar, L. et al. Natural history of thyroid function tests over 5 years in a large pediatric cohort. J. Clin. Endocrinol. Metab. 94, 1678–1682 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Gopalakrishnan, S. et al. Goitrous autoimmune thyroiditis in a pediatric population: a longitudinal study. Pediatrics 122, e670–e674 (2008).

    Article  PubMed  Google Scholar 

  24. Brown, R. S. Autoimmune thyroiditis in childhood. J. Clin. Res. Pediatr. Endocrinol. 5 (Suppl. 1), 45–49 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Radetti, G. et al. The natural history of the normal/mild elevated TSH serum levels in children and adolescents with Hashimoto's thyroiditis and isolated hyperthyrotropinemia: a 3-year follow-up. Clin. Endocrinol. 76, 394–398 (2012).

    Article  CAS  Google Scholar 

  26. Deladoëy, J., Ruel, J., Giguère, Y. & Van Vliet, G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Québec. J. Clin. Endocrinol. Metab. 96, 2422–2429 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Korada, S. M. et al. Difficulties in selecting an appropriate neonatal thyroid stimulating hormone (TSH) screening threshold. Arch. Dis. Child. 95, 169–173 (2010).

    Article  PubMed  Google Scholar 

  28. Rabbiosi, S. et al. Congenital hypothyroidism with eutopic thyroid gland: analysis of clinical and biochemical features at diagnosis and after re-evaluation. J. Clin. Endocrinol. Metab. 98, 1395–1402 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Leonardi, D. et al. Longitudinal study of thyroid function in children with mild hyperthyrotropinemia at neonatal screening for congenital hypothyroidism. J. Clin. Endocrinol. Metab. 93, 2679–2685 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Rapa, A. et al. Subclinical hypothyroidism in children and adolescents: a wide range of clinical, biochemical, and genetic factors involved. J. Clin. Endocrinol. Metab. 94, 2414–2420 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Nicoletti, A. et al. Thyrotropin-stimulating hormone receptor gene analysis in pediatric patients with non-autoimmune subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 94, 4187–4194 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Calebiro, D. et al. Frequent TSH receptor genetic alterations with variable signaling impairment in a large series of children with nonautoimmune isolated hyperthyrotropinemia. J. Clin. Endocrinol. Metab. 97, E156–E160 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Tenebaum-Raskover, Y. et al. Long-term outcome of loss-of-function mutations in thyrotropin receptor gene. Thyroid 25, 292–299 (2015).

    Article  CAS  Google Scholar 

  34. Persani, L. et al. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol. Cell. Endocrinol. 322, 72–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Cassio, A. et al. Current loss-of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment. J. Clin. Res. Pediatr. Endocrinol. 5 (Suppl. 1), 29–39 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. De Marco, G. et al. Identification and functional analysis of novel dual oxidase 2 (DUOX2) mutations in children with congenital or subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 96, E1335–E1339 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Van Vilert, G. How often should we screen children with Down's syndrome for hypothyroidism? Arch. Dis. Child. 90, 557–558 (2005).

    Article  Google Scholar 

  38. King, K., O'Gorman, C. & Gallagher, S. Thyroid dysfunction in children with Down's syndrome: a literature review. Ir. J. Med. Sci. 183, 1–6 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Gibson, P. A. et al. Longitudinal study of thyroid function in Down's syndrome in the first two decades. Arch. Dis. Child. 90, 574–578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konings, C. H. et al. Plasma thyrotropin bioactivity in Down's syndrome children with subclinical hypothyroidism. Eur. J. Endocrinol. 144, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Tonacchera, M. et al. TSH receptor and Gsα genetic analysis in children with Down's syndrome and subclinical hypothyroidism. J. Endocrinol. Invest. 26, 997–1000 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Mantovani, G., Spada, A. & Elli, F. M. Pseudohypoparathyroidism and Gsα-cAMP-linked disorders: current view and open issues. Nat. Rev. Endocrinol. 12, 347–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Zimmermann, M. B. Iodine deficiency. Endocr. Rev. 30, 376–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Rosene, M. L. et al. Inihibition of type 2 iodothyronine diodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151, 5961–5970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomer, Y. & Menconi, F. Interferon induced thyroiditis. Best Pract. Res. Clin. Endocrinol. Metab. 23, 703–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strolin Benedetti, M., Whomsley, R., Baltes, E. & Tonner, F. Alteration of thyroid hormone homeostasis by antiepileptic drugs in humans: involvement of glucuronosyltransferase induction. Eur. J. Clin. Phamacol. 61, 863–872 (2005).

    Article  CAS  Google Scholar 

  47. Verrotti, A., Scardapane, A., Manco, R. & Chiarelli, F. Antiepileptic drugs and thyroid function. J. Pediatr. Endocrinol. Metab. 21, 401–408 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Ishiguro, H. et al. Long-term follow-up of thyroid function in patients who received bone marrow transplantation during childhood and adolescence. J. Clin. Endocrinol. Metab. 89, 5981–5986 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Ostroumova, E. et al. Subclinical hypothyroidism after radioiodine exposure: Ukrainian-American cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident (1998–2000). Environ. Health Perspect. 117, 745–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Ostroumova, E. et al. Measures of thyroid function among Belarusian children and adolescents exposed to Iodine-131 from the accident at Chernobyl nuclear plant. Environ. Health Perspect. 121, 865–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reinher, T. et al. Thyroid function in the nutritionally obese child and adolescent. Curr. Opin. Pediatr. 23, 415–420 (2011).

    Article  CAS  Google Scholar 

  52. Grandone, A. et al. Thyroid function derangement and childhood obesity: an Italian experience. BMC Endocr. Disord. 10, 8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reinehr, T., de Sousa, G. & Andler, W. Hyperthyrotropinemia in obese children is reversible after weight loss and is not related to lipids. J. Clin. Endocrinol. Metab. 91, 3088–3091 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Reinehr, T., Isa, A., de Sousa, G., Dieffenbach, R. & Andler, W. Thyroid hormones and their relation to weight status. Horm. Res. 70, 51–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Wolters, B., Lass, N. & Reinehr, T. TSH and free triiodothyronine concentrations are associated with weight loss in a lifestyle intervention and weight regain afterwards in obese children. Eur. J. Endocrinol. 168, 323–329 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Reinehr, T. Obesity and thyroid function. Mol. Cell. Endocrinol. 316, 165–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Pacifico, A., Anania, C., Ferraro, F., Andreoli, G. M. & Chiesa, C. Thyroid function in childhood obesity and metabolic comorbidity. Clin. Chim. Acta. 413, 396–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Wasniewska, M. et al. Prospective evaluation of the natural course of idiopathic subclinical hypothyroidism in childhood and adolescence. Eur. J. Endocrinol. 160, 417–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Lazarus, J. et al. 2014 European Thyroid Association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur. Thyroid J. 3, 76–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aversa, T. et al. Underlying Hashimoto's thyroiditis negatively affects the evolution of subclinical hypothyroidism in children irrespective of other concomitant risk factors. Thyroid 25, 183–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Wasniewska, M. et al. Five-year prospective evaluation of thyroid function in girls with subclinical mild hypothyroidism of different etiology. Eur. J. Endocrinol. 173, 801–808 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Claret, C. et al. Subclinical hypothyroidism in the first years of life in patients with Down's syndrome. Pediatr. Res. 73, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Chase, H. P., Garg, S. K., Cockerham, R. S., Wilcox, W. D. & Walravens, P. A. Thyroid hormone replacement and growth of children with subclinical hypothyroidism and diabetes. Diabet. Med. 7, 299–303 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Radetti, G. et al. The natural history of euthyroid Hashimoto's thyroiditis in children. J. Pediatr. 149, 827–832 (2006).

    Article  PubMed  Google Scholar 

  65. Horn, S. & Heuer, H. Thyroid hormone action during brain development: more questions than answers. Mol. Cell. Endocrinol. 315, 19–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Brown, R. S. Disorders of the thyroid gland in infancy, childhood and adolescence. Endotext http://www.endotext.org/chapter/disorders-of-the-thyroid-gland-in-infancy-childhood-and-adolescence/ (2012).

  67. Pérez-Lobato, R. et al. Thyroid status and its association with cognitive functioning in healthy boys at 10 years of age. Eur. J. Endocrinol. 172, 129–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Ergür, A. T. et al. Neurocognitive functions in children and adolescents with subclinical hypothyroidism. J. Clin. Res. Pediatr. Endocrinol. 4, 21–24 (2012).

    Article  PubMed  Google Scholar 

  69. Aijaz, N. J. et al. Neurocognitive function in children with compensated hypothyroidism: lack of short term effects on or off thyroxin. BMC Endocr. Disord. 6, 2 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gogakos, A. I., Duncan Bassett, J. H. & Williams, G. R. Thyroid and bone. Arch. Biochem. Biophys. 503, 129–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Abe, E. et al. TSH is a negative regulator of skeletal remodeling. Cell 115, 151–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Saggese, G., Bertelloni, S., Baroncelli, G. I., Costa, S. & Ceccarelli, C. Bone mineral density in adolescent females treated with L-thyroxine: a longitudinal study. Eur. J. Pediatr. 155, 452–457 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Di Mase, R. et al. Bone health in children with long-term idiopathic subclinical hypothyroidism. Ital. J. Pediatr. 38, 56 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kahaly, G. J. & Dillmann, W. H. Thyroid hormone action in the heart. Endocr. Rev. 26, 704–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Danzi, S. & Klein, I. Thyroid disease and the cardiovascular system. Endocrinol. Metab. Clin. North Am. 43, 517–528 (2014).

    Article  PubMed  Google Scholar 

  76. Cappola, A. R. & Ladenson, P. W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Biondi, B., Palmieri, E. A., Lombardi, G. & Fazio, S. Subclinical hypothyroidism and cardiac function. Thyroid 12, 505–510 (2002).

    Article  PubMed  Google Scholar 

  78. Taddei, S. et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J. Clin. Endocrinol. Metab. 88, 3731–3737 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Stary, H. C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92, 1355–1374 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Berenson, G. S., Srinivasan, S. R. & Nicklas, T. A. Atherosclerosis: a nutritional disease of childhood. Am. J. Cardiol. 82, 22T–29T (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Paoli-Valeri, M. et al. Atherogenic lipid profile in children with subclinical hypothyroidism. An. Pediatr. (Barc.) 62, 128–134 (in Spanish) (2005).

    Article  CAS  Google Scholar 

  82. Marwaha, R. K. et al. Dyslipidemia in subclinical hypothyroidism in an Indian population. Clin. Biochem. 4, 1214–1217 (2011).

    Article  CAS  Google Scholar 

  83. Nader, N. S. et al. Relationships between thyroid function and lipid status or insulin resistance in a pediatric population. Thyroid 20, 1333–1339 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, J. et al. Serum thyrotropin is positively correlated with the metabolic syndrome components of obesity and dyslipidemia in Chinese adolescents. Int. J. Endocrinol. 2014, 289503 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Witte, T., Ittermann, T., Thamm, M., Riblet, N. B. & Völzke, H. Association between serum thyroid-stimulating hormone levels and serum lipids in children and adolescents: a population-based study of german youth. J. Clin. Endocrinol. Metab. 100, 2090–2097 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Ittermann, T., Thamm, M., Wallaschofski, H., Rettig, R. & Völzke, H. Serum thyroid-stimulating hormone levels are associated with blood pressure in children and adolescents. J. Clin. Endocrinol. Metab. 97, 828–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, H. et al. Investigation of thyroid function and blood pressure in school-aged subjects without overt thyroid disease. Endocrine 41, 122–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Javed, A. et al. Association between thyrotropin levels and insulin sensitivity in euthyroid obese adolescents. Thyroid 25, 478–484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sawicka, B. et al. Relationship between metabolic parameters and thyroid hormones and the level of gastric peptides in children with autoimmune thyroid diseases. J. Pediatr. Endocrinol. Metab. 23, 345–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Mokha, J. S. et al. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: the Bogalusa Heart Study. BMC Pediatr. 10, 73 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Canas, J. A., Sweeten, S. & Balagopal, P. B. Biomarkers for cardiovascular risk in children. Curr. Opin. Cardiol. 28, 103–114 (2013).

    Article  PubMed  Google Scholar 

  92. Bossowski, A. et al. Analysis of serum adiponectin, resistin and leptin levels in children and adolescents with autoimmune thyroid disorders. J. Pediatr. Endocrinol. Metab. 23, 369–377 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Fonseca, V., Guba, S. C. & Fink, L. M. Hyperhomocysteinemia and the endocrine system: implications for atherosclerosis and thrombosis. Endocr. Rev. 20, 738–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Atabek, M. E., Pirgon, O. & Erkul, I. Plasma homocysteine concentrations in adolescents with subclinical hypothyroidism. J. Pediatr. Endocrinol. Metab. 16, 1245–1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Lekakis, J. et al. Flow-mediated, endothelium-dependent vasodilation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high-normal serum thyrotropin (TSH) values. Thyroid 7, 411–414 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Cerbone, M. et al. Effects of L-thyroxine treatment on early markers of atherosclerotic disease in children with subclinical hypothyroidism. Eur. J. Endocrinol. 175, 11–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Boger, R. H. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the 'L-arginine paradox' and acts as a novel cardiovascular risk factor. J. Nutr. 134, 2842S–2847S (2004).

    Article  PubMed  Google Scholar 

  98. Çatli, G. et al. The effect of L-thyroxine treatment on left ventricular functions in children with subclinical hypothyroidism. Arch. Dis. Child. 100, 130–137 (2015).

    Article  PubMed  Google Scholar 

  99. Toscano, E. et al. Subclinical hypothyroidism and Down's syndrome; studies on myocardial structure and function. Arch. Dis. Child. 88, 1005–1008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dörr, H. G. et al. Levothyroxine treatment of euthyroid children with autoimmune Hashimoto thyroiditis: results of a multicenter, randomized, controlled trial. Horm. Res. Paediatr. 84, 266–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Özen, S., Berk, Ö., S¸ims¸ek, D. G. & Darcan, S. Clinical course of Hashimoto's thyroiditis and effects of levothyroxine therapy on the clinical course of the disease in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 3, 192–197 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Scarpa, V. et al. Treatment with thyroxine reduces thyroid volume in euthyroid children and adolescents with chronic autoimmune thyroiditis. Horm. Res. Paediatr. 73, 61–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Svensson, J. et al. Levothyroxine treatment reduces thyroid size in children and adolescents with chronic autoimmune thyroiditis. J. Clin. Endocrinol. Metab. 91, 1729–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Cetinkaya, E., Aslan, A., Vidinlisan, S. & Ocal, G. Height improvement by L-thyroxine treatment in subclinical hypothyroidism. Pediatr. Int. 45, 534–537 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Çatlı, G., Anık, A., Ünver Tuhan, H., Böber, E., & Abacı, A. The effect of L-thyroxine treatment on hypothyroid symptom scores and lipid profile in children with subclinical hypothyroidism. J. Clin. Res. Pediatr. Endocrinol. 6, 238–244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.S., D.C. and M.C researched the data for the article. M.S., D.C., M.C. and F.D.L. provided a substantial contribution to discussions of the content. M.S., D.C. and M.C. wrote the article. M.S., D.C., M.C. and F.D.L. reviewed and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Mariacarolina Salerno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salerno, M., Capalbo, D., Cerbone, M. et al. Subclinical hypothyroidism in childhood — current knowledge and open issues. Nat Rev Endocrinol 12, 734–746 (2016). https://doi.org/10.1038/nrendo.2016.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing