ERa signalling drives β -cell formation and replication

In mice, the formation of pancreatic β cells during embryonic development and regeneration after injury in adulthood is controlled by estrogen receptor α (ER α) signalling, according to new research. The findings, published in *Diabetes*, identify ER α as a possible therapeutic target to restore β -cell mass and thereby control glucose homeostasis in patients with type 1 diabetes mellitus.

The researchers performed partial duct ligation (PDL) surgery on adult mice to mimic severe pancreatic injury and loss of β -cell mass. PDL-treated mice had increased 17 β -estradiol (E₂) levels, ERa activity, *Esr1* (which encodes ERa) transcript levels and nuclear localization of ERa in β cells, in concert with increased β -cell proliferation. These responses were abrogated when ERa signalling was attenuated either chemically (by use of tamoxifen) or genetically (in ERa^{-/-} mice); conversely, *in situ* delivery of E₂ induced β -cell formation. ERa signalling during

embryogenesis of the endocrine pancreas resulted in similar effects to those seen in pancreata of PDL-treated adult mice.

Although ER α signalling has previously been shown not to increase β -cell proliferation in rodent models of diabetes mellitus or in human islets transplanted in diabetic mice, the current study supports the involvement of ER α in β -cell proliferation in embryonic and adult pancreata. Commenting on the findings, lead investigator Harry Heimberg says, "As estrogen can be preferentially delivered to the endocrine pancreas when conjugated to GLP-1 (thus avoiding unwanted adverse effects), correct targeting of the drug to human β cells to increase their proliferation in a controlled way should be feasible."

David Holmes

Original article Yuchi, Y. *et al.* Estrogen receptor α regulates beta cell formation during pancreas development and following injury. *Diabetes* doi:10.2337/db14-1798