Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Drug–subphenotype interactions for cancer in type 2 diabetes mellitus

Abstract

On the basis of data obtained from a prospective cohort of Chinese patients with type 2 diabetes mellitus (T2DM), we discuss cancer subphenotypes (risk factors) in patients with T2DM, which can lead to drug–cancer subphenotype interactions. These subphenotypes include HDL cholesterol levels <1.0 mmol/l, co-occurrence of LDL cholesterol levels <2.8 mmol/l and triglyceride levels <1.7 mmol/l, and co-occurrence of LDL cholesterol levels <2.8 mmol/l and albuminuria. The increased risk of cancer associated with low levels of HDL cholesterol, low LDL cholesterol levels plus low triglyceride levels, and low levels of LDL cholesterol plus albuminuria can be reduced by treatment with metformin, renin–angiotensin system (RAS) inhibitors and statins, respectively. Mechanistic studies support the hypothesis that dysregulation of the 5′-AMP-activated protein kinase pathway and crosstalk between the RAS and insulin-like growth factor 1–cholesterol pathways create a cancer-promoting milieu in patients with T2DM. These findings highlight that in Chinese individuals, multiple pathways are implicated in the link between T2DM and cancer, which can generate multiple subphenotypes as well as drug–subphenotype interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical consequences of insulin deficiency and activation of the RAS and IGF-1–cholesterol pathways.

Similar content being viewed by others

References

  1. Yang, X. et al. Independent associations between low-density lipoprotein cholesterol and cancer among patients with type 2 diabetes mellitus. CMAJ 179, 427–437 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jee, S. H. et al. Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293, 194–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Stattin, P. et al. Prospective study of hyperglycemia and cancer risk. Diabetes Care 30, 561–567 (2007).

    Article  PubMed  Google Scholar 

  4. Yang, X. et al. Associations of hyperglycemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong Diabetes Registry. Diabetes 59, 1254–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saydah, S. H. et al. Association of markers of insulin and glucose control with subsequent colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 12, 412–418 (2003).

    CAS  PubMed  Google Scholar 

  6. Johnson, J. A. & Bowker, S. L. Intensive glycaemic control and cancer risk in type 2 diabetes: a meta-analysis of major trials. Diabetologia 54, 25–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Roumie, C. L. et al. Association between intensification of metformin treatment with insulin vs sulfonylureas and cardiovascular events and all-cause mortality among patients with diabetes. JAMA 311, 2288–2296 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Currie, C. J., Poole, C. D., Evans, M., Peters, J. R. & Morgan, C. L. Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes. J. Clin. Endocrinol. Metab. 98, 668–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lewis, J. D. et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care 34, 916–922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, X. et al. Use of sulphonylurea and cancer in type 2 diabetes—The Hong Kong Diabetes Registry. Diabetes Res. Clin. Pract 90, 343–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, P., Li, H., Tan, X., Chen, L. & Wang, S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol. 37, 207–218 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. Gerstein, H. C. et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367, 319–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Home, P. D. et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) clinical trials. Diabetologia 53, 1838–1845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levin, D. et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia 58, 493–504 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Andersson, T., Alfredsson, L., Kallberg, H., Zdravkovic, S. & Ahlbom, A. Calculating measures of biological interaction. Eur. J. Epidemiol. 20, 575–579 (2005).

    Article  PubMed  Google Scholar 

  17. Yang, X. et al. Validation of methods to control for immortal time bias in a pharmacoepidemiologic analysis of renin–angiotensin system inhibitors in type 2 diabetes. J. Epidemiol. 24, 267–273 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kong, A. P. et al. Additive effects of blood glucose lowering drugs, statins and renin–angiotensin system blockers on all-site cancer risk in patients with type 2 diabetes. BMC Med. 12, 76 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yang, X. L. et al. Addressing different biases in analysing drug use on cancer risk in diabetes in non-clinical trial settings—what, why and how? Diabetes Obes. Metab. 14, 579–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Rothman, K. J. & Greenland, S. Causation and causal inference in epidemiology. Am. J. Public Health 95 (Suppl. 1), S144–S150 (2005).

    Article  PubMed  Google Scholar 

  21. Yang, X. L. et al. Predicting values of lipids and white blood cell count for all-site cancer in type 2 diabetes. Endocr. Relat. Cancer 15, 597–607 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, X. et al. Low HDL cholesterol, metformin use, and cancer risk in type 2 diabetes: the Hong Kong Diabetes Registry. Diabetes Care 34, 375–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, X. et al. Low triglyceride and nonuse of statins is associated with cancer in type 2 diabetes mellitus: the Hong Kong Diabetes Registry. Cancer 117, 862–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X. et al. Low LDL cholesterol, albuminuria, and statins for the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry. Diabetes Care 32, 1826–1832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, X. et al. Synergistic effects of low LDL cholesterol with other factors for the risk of cancer in type 2 diabetes: the Hong Kong Diabetes Registry. Acta Diabetol. 49 (Suppl. 1), S185–S193 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Alsheikh-Ali, A. A., Trikalinos, T. A., Kent, D. M. & Karas, R. H. Statins, low-density lipoprotein cholesterol, and risk of cancer. J. Am. Coll. Cardiol. 52, 1141–1147 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, W. et al. HDL Cholesterol and cancer risk among patients with type 2 diabetes. Diabetes Care 37, 3196–3203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jafri, H., Alsheikh-Ali, A. A. & Karas, R. H. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J. Am. Coll. Cardiol. 55, 2846–2854 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Kahn, S. E. The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46, 3–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Yoon, K. H. et al. Selective β-cell loss and α-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 88, 2300–2308 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Suraamornkul, S., Kwancharoen, R., Ovartlarnporn, M., Rawdaree, P. & Bajaj, M. Insulin clamp-derived measurements of insulin sensitivity and insulin secretion in lean and obese Asian type 2 diabetic patients. Metab. Syndr. Relat. Disord. 8, 113–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Liguori, A. et al. Effect of glycaemic control and age on low-density lipoprotein susceptibility to oxidation in diabetes mellitus type 1. Eur. Heart J. 22, 2075–2084 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, J. & Mehta, J. L. Interaction of oxidized low-density lipoprotein and the renin–angiotensin system in coronary artery disease. Curr. Hypertens. Rep. 8, 139–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, B. M. & Mehta, J. L. Interactions between the renin–angiotensin system and dyslipidemia: relevance in the therapy of hypertension and coronary heart disease. Arch. Intern. Med. 163, 1296–1304 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, X. et al. Additive interaction between the renin–angiotensin system and lipid metabolism for cancer in type 2 diabetes. Diabetes 58, 1518–1525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silvente-Poirot, S. & Poirot, M. Cancer. Cholesterol and cancer, in the balance. Science 343, 1445–1446 (2014).

    Article  PubMed  Google Scholar 

  37. Yang, X. L. & Chan, J. C. Metformin and the risk of cancer in type 2 diabetes: methodological challenges and perspectives. Ann. Transl Med. 2, 52 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Yang, X. et al. Renin–angiotensin system inhibitors may attenuate low LDL cholesterol-related cancer risk in type 2 diabetes. Diabetes Metab. Res. Rev. 30, 415–423 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Towler, M. C. & Hardie, D. G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, I. & He, Y. Y. Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front. Oncol. 3, 175 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Hardie, D. G. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62, 2164–2172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stephenne, X. et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54, 3101–3110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. & Sonenberg, N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804–10812 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Alimova, I. N. et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Hofmann, J. Protein kinase C isozymes as potential targets for anticancer therapy. Curr. Cancer Drug Targets 4, 125–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Murao, K. et al. Effects of glucose and insulin on rat apolipoprotein A-I gene expression. J. Biol. Chem. 273, 18959–18965 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Han, R. et al. Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia 50, 1960–1968 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kimura, T. et al. Mechanism and role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells. J. Biol. Chem. 285, 4387–4397 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Cazzaniga, M., Bonanni, B., Guerrieri-Gonzaga, A. & Decensi, A. Is it time to test metformin in breast cancer clinical trials? Cancer Epidemiol. Biomarkers Prev. 18, 701–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Samani, A. A., Yakar, S., LeRoith, D. & Brodt, P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev. 28, 20–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Moschos, S. J. & Mantzoros, C. S. The role of the IGF system in cancer: from basic to clinical studies and clinical applications. Oncology 63, 317–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Godsland, I. F. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin. Sci. (Lond.) 118, 315–332 (2010).

    Article  CAS  Google Scholar 

  54. LeRoith, D. et al. Obesity and type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence. Exp. Clin. Endocrinol. Diabetes 116 (Suppl. 1), S4–S6 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Hemkens, L. G. et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52, 1732–1744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Andersen, A. S. et al. Identification of determinants that confer ligand specificity on the insulin receptor. J. Biol. Chem. 267, 13681–13686 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Slaaby, R. et al. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J. Biol. Chem. 281, 25869–25874 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Felig, P. in Metabolic Control and Disease (eds Bondy, P. K. & Rosenberg, L. E.) 277–301 (Saunders, 1980).

    Google Scholar 

  59. Carlberg, M. et al. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cell growth. J. Biol. Chem. 271, 17453–17462 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Eberle, D., Hegarty, B., Bossard, P., Ferre, P. & Foufelle, F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Shimomura, I. et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl Acad. Sci. USA 96, 13656–13661 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhasker, C. R. & Friedmann, T. Insulin-like growth factor-1 coordinately induces the expression of fatty acid and cholesterol biosynthetic genes in murine C2C12 myoblasts. BMC Genomics 9, 535 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Du, X., Kristiana, I., Wong, J. & Brown, A. J. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol. Biol. Cell 17, 2735–2745 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luu, W., Sharpe, L. J., Stevenson, J. & Brown, A. J. Akt acutely activates the cholesterogenic transcription factor SREBP-2. Biochim. Biophys. Acta 1823, 458–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Krycer, J. R., Sharpe, L. J., Luu, W. & Brown, A. J. The Akt–SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol. Metab. 21, 268–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Eggert, M. L. et al. Cross-sectional and longitudinal relation of IGF1 and IGF-binding protein 3 with lipid metabolism. Eur. J. Endocrinol. 171, 9–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Paolisso, G. et al. Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J. Clin. Endocrinol. Metab. 82, 2204–2209 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 10, 842–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimizu, M. et al. Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice. BMC Cancer 11, 281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yasuda, Y. et al. Pitavastatin inhibits azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Cancer Sci. 101, 1701–1707 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Ko, G. T. et al. Effect of interactions between C peptide levels and insulin treatment on clinical outcomes among patients with type 2 diabetes mellitus. CMAJ 180, 919–926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schrijvers, B. F., De Vriese, A. S. & Flyvbjerg, A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 25, 971–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Sugimoto, M. et al. Influences of chymase and angiotensin I-converting enzyme gene polymorphisms on gastric cancer risks in Japan. Cancer Epidemiol. Biomarkers Prev. 15, 1929–1934 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. George, A. J., Thomas, W. G. & Hannan, R. D. The renin–angiotensin system and cancer: old dog, new tricks. Nat. Rev. Cancer 10, 745–759 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Jia, G., Aggarwal, A., Yohannes, A., Gangahar, D. M. & Agrawal, D. K. Cross-talk between angiotensin II and IGF-1-induced connexin 43 expression in human saphenous vein smooth muscle cells. J. Cell. Mol. Med. 15, 1695–1702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yasumaru, M. et al. Inhibition of angiotensin II activity enhanced the antitumor effect of cyclooxygenase-2 inhibitors via insulin-like growth factor I receptor pathway. Cancer Res. 63, 6726–6734 (2003).

    CAS  PubMed  Google Scholar 

  78. Yang, X. et al. Low LDL cholesterol, albuminuria, and statins for the risk of cancer in type 2 diabetes: the Hong Kong Diabetes Registry. Diabetes Care 32, 1826–1832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sui, Y. et al. Pancreatic islet β-cell deficit and glucose intolerance in rats with uninephrectomy. Cell. Mol. Life Sci. 64, 3119–3128 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Zhao, H. L. et al. Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int. 74, 467–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. De Mitri, M. S., Cassini, R. & Bernardi, M. Hepatitis B virus-related hepatocarcinogenesis: molecular oncogenic potential of clear or occult infections. Eur. J. Cancer 46, 2178–2186 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Yamasaki, K., Hayashi, Y., Okamoto, S., Osanai, M. & Lee, G. H. Insulin-independent promotion of chemically induced hepatocellular tumor development in genetically diabetic mice. Cancer Sci. 101, 65–72 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Tsan, Y. T., Lee, C. H., Wang, J. D. & Chen, P. C. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. J. Clin. Oncol. 30, 623–630 (2012).

    Article  PubMed  Google Scholar 

  84. Yang, X. et al. Enhancers and attenuators of risk associations of chronic hepatitis B virus infection with hepatocellular carcinoma in type 2 diabetes. Endocr. Relat. Cancer 20, 161–171 (2013).

    Article  PubMed  CAS  Google Scholar 

  85. Melvin, J. C., Holmberg, L., Rohrmann, S., Loda, M. & Van Hemelrijck, M. Serum lipid profiles and cancer risk in the context of obesity: four meta-analyses. J. Cancer Epidemiol. 2013, 823849 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Dombrowski, F., Bannasch, P. & Pfeifer, U. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in streptozotocin diabetic rats. Am. J. Pathol. 150, 1071–1087 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shafie, S. M. & Grantham, F. H. Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J. Natl Cancer Inst. 67, 51–56 (1981).

    CAS  PubMed  Google Scholar 

  88. Goodwin, P. J. et al. Insulin- and obesity-related variables in early-stage breast cancer: correlations and time course of prognostic associations. J. Clin. Oncol. 30, 164–171 (2012).

    Article  PubMed  Google Scholar 

  89. Onitilo, A. A. et al. Type 2 diabetes mellitus, glycemic control, and cancer risk. Eur. J. Cancer Prev. 23, 134–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Chan, J. C., Zhang, Y. & Ning, G. Diabetes in China: a societal solution for a personal challenge. Lancet Diabetes Endocrinol. 2, 969–979 (2014).

    Article  PubMed  Google Scholar 

  92. Weinstein, I., Patel, T. B. & Heimberg, M. Secretion of triglyceride and ketogenesis by livers from spontaneous diabetic BB Wistar rats. Biochem. Biophys. Res. Commun. 176, 1157–1162 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Yoshino, G. et al. Effect of long-term insulin deficiency and insulin treatment on the composition of triglyceride-rich lipoproteins and triglyceride turnover in rats. Atherosclerosis 92, 243–250 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Kraemer, F. B. Insulin deficiency alters cellular cholesterol metabolism in murine macrophages. Diabetes 35, 764–770 (1986).

    Article  CAS  PubMed  Google Scholar 

  95. Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 359, 2105–2120 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Davis-Yadley, A. H. et al. Ethnic disparities in the risk of colorectal adenomas associated with lipid levels: a retrospective multiethnic study. J. Gastrointest. Cancer 46, 29–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, X. et al. White blood cell count and renin–angiotensin system inhibitors for the risk of cancer in type 2 diabetes. Diabetes Res. Clin. Pract. 87, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Ma, R. C. & Chan, J. C. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann. NY Acad. Sci. 1281, 64–91 (2013).

    Article  PubMed  Google Scholar 

  99. Whiting, D. R., Guariguata, L., Weil, C. & Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321 (2011).

    Article  PubMed  Google Scholar 

  100. Ranc, K., Jorgensen, M. E., Friis, S. & Carstensen, B. Mortality after cancer among patients with diabetes mellitus: effect of diabetes duration and treatment. Diabetologia 57, 927–934 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.Y., H.M.L. and J.C.N.C. acknowledge H. Gerstein, McMaster University, Canada, for advice regarding this article, and thank all clinical and supporting staff involved in setting up the Hong Kong Diabetes Registry and all patients for donating their anonymized data for research and education purposes.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and J.C.N.C. contributed equally to researching data for the article, to providing substantial contributions to discussions of the content, to writing the article and to reviewing and/or editing of the manuscript before submission. H.M.L. provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Xilin Yang or Juliana C. N. Chan.

Ethics declarations

Competing interests

J.C.N.C. declares that she is a board member of the Asia Diabetes Foundation, has acted as a consultant for AstraZeneca, Bayer, Boehringer Ingelheim, Merck Sharp & Dohme, Pfizer, Sanofi and Qualigenics, and that she has received honoraria, travel expenses and/or payments from AstraZeneca, Bayer, Bristol-Myers Squibb, Daiichi-Sankyo, Eli Lilly, GlaxoSmithKline, Merck Serono, Merck Sharp & Dohme, Nestle Nutrition Institute, Novo Nordisk, Pfizer, Roche, Sanofi and Takeda for giving lectures. H.M.L. and X.Y. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lee, H. & Chan, J. Drug–subphenotype interactions for cancer in type 2 diabetes mellitus. Nat Rev Endocrinol 11, 372–379 (2015). https://doi.org/10.1038/nrendo.2015.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.37

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer