Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights in prolactin: pathological implications

Key Points

  • The major 23 kDa prolactin isoform exerts its action via a transmembrane receptor, prolactin receptor (PRL-R), which belongs to the class of haematopoietic cytokine receptors

  • Binding of prolactin to its predimerized receptor induces a conformational change in the receptor, which enables signal transduction

  • Hyperprolactinaemia causes hypogonadotropic hypogonadism by inhibiting kisspeptin-1 secretion, which in turn disrupts hypothalamic gonadotropin-releasing hormone I secretion

  • The first germline loss-of-function mutation in the gene that encodes PRL-R was reported in three sisters with familial idiopathic hyperprolactinaemia

  • The 16 kDa isoform of prolactin has antitumoral and antiangiogenic actions and is involved in peripartum cardiomyopathy

Abstract

Prolactin is a hormone that is mainly secreted by lactotroph cells of the anterior pituitary gland, and is involved in many biological processes including lactation and reproduction. Animal models have provided insights into the biology of prolactin proteins and offer compelling evidence that the different prolactin isoforms each have independent biological functions. The major isoform, 23 kDa prolactin, acts via its membrane receptor, the prolactin receptor (PRL-R), which is a member of the haematopoietic cytokine superfamily and for which the mechanism of activation has been deciphered. The 16 kDa prolactin isoform is a cleavage product derived from native prolactin, which has received particular attention as a result of its newly described inhibitory effects on angiogenesis and tumorigenesis. The discovery of multiple extrapituitary sites of prolactin secretion also increases the range of known functions of this hormone. This Review summarizes current knowledge of the biology of prolactin and its receptor, as well as its physiological and pathological roles. We focus on the role of prolactin in human pathophysiology, particularly the discovery of the mechanism underlying infertility associated with hyperprolactinaemia and the identification of the first mutation in human PRLR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prolactin isoforms.
Figure 2: Mouse and human PRL-R proteins.
Figure 3: Major signalling cascades triggered by the long PRL-R isoform.
Figure 4: Model of mechanisms of hyperprolactinaemia-induced anovulatory infertility.
Figure 5: Possible pathological effects of the PRL-R His188Arg heterozygous loss-of-function mutation on circulating levels of prolactin and on reproductive phenotypes.88

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Nagano, M. & Kelly, P. A. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J. Biol. Chem. 269, 13337–13345 (1994).

    CAS  PubMed  Google Scholar 

  2. Freemark, M., Driscoll, P., Maaskant, R., Petryk, A. & Kelly, P. A. Ontogenesis of prolactin receptors in the human fetus in early gestation. Implications for tissue differentiation and development. J. Clin. Invest. 99, 1107–1117 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N. & Kelly, P. A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19, 225–268 (1998).

    CAS  PubMed  Google Scholar 

  4. Goffin, V., Binart, N., Touraine, P. & Kelly, P. A. Prolactin: the new biology of an old hormone. Annu. Rev. Physiol. 64, 47–67 (2002).

    CAS  PubMed  Google Scholar 

  5. Ben-Jonathan, N., LaPensee, C. R. & LaPensee, E. W. What can we learn from rodents about prolactin in humans? Endocr. Rev. 29, 1–41 (2008).

    CAS  PubMed  Google Scholar 

  6. Clapp, C., Aranda, J., González, C., Jeziorski, M. C. & Martínez de la Escalera, G. Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol. Metab. 17, 301–307 (2006).

    CAS  PubMed  Google Scholar 

  7. Truong, A. T. et al. Isolation and characterization of the human prolactin gene. EMBO J. 3, 429–437 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hiraoka, Y. et al. A placenta-specific 5′ non-coding exon of human prolactin. Mol. Cell. Endocrinol. 75, 71–80 (1991).

    CAS  PubMed  Google Scholar 

  9. Freeman, M. E., Kanyicska, B., Lerant, A. & Nagy, G. Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80, 1523–1631 (2000).

    CAS  PubMed  Google Scholar 

  10. Horseman, N. D. & Yu-Lee, L. Y. Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr. Rev. 15, 627–649 (1994).

    CAS  PubMed  Google Scholar 

  11. Walker, A. M. S179D prolactin: antagonistic agony! Mol. Cell. Endocrinol. 276, 1–9 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fahie-Wilson, M. & Smith, T. P. Determination of prolactin: the macroprolactin problem. Best Pract. Res. Clin. Endocrinol. Metab. 27, 725–742 (2013).

    CAS  PubMed  Google Scholar 

  13. Suliman, A. M., Smith, T. P., Gibney, J. & McKenna, T. J. Frequent misdiagnosis and mismanagement of hyperprolactinemic patients before the introduction of macroprolactin screening: application of a new strict laboratory definition of macroprolactinemia. Clin. Chem. 49, 1504–1509 (2003).

    CAS  PubMed  Google Scholar 

  14. Gibney, J., Smith, T. P. & McKenna, T. J. The impact on clinical practice of routine screening for macroprolactin. J. Clin. Endocrinol. Metab. 90, 3927–3932 (2005).

    CAS  PubMed  Google Scholar 

  15. McKenna, T. J. Should macroprolactin be measured in all hyperprolactinaemic sera? Clin. Endocrinol. (Oxf.) 71, 466–469 (2009).

    CAS  Google Scholar 

  16. Clapp, C. & Weiner, R. I. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130, 1380–1386 (1992).

    CAS  PubMed  Google Scholar 

  17. Macotela, Y. et al. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J. Cell Sci. 119, 1790–1800 (2006).

    CAS  PubMed  Google Scholar 

  18. Ochoa, A. et al. Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Invest. Ophthalmol. Vis. Sci. 42, 1639–1645 (2001).

    CAS  PubMed  Google Scholar 

  19. Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128, 589–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lkhider, M., Castino, R., Bouguyon, E., Isidoro, C. & Ollivier-Bousquet, M. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J. Cell Sci. 117, 5155–5164 (2004).

    CAS  PubMed  Google Scholar 

  21. Clapp, C., Martial, J. A., Guzman, R. C., Rentier-Delure, F. & Weiner, R. I. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133, 1292–1299 (1993).

    CAS  PubMed  Google Scholar 

  22. Grattan, D. R. & Kokay, I. C. Prolactin: a pleiotropic neuroendocrine hormone. J. Neuroendocrinol. 20, 752–763 (2008).

    CAS  PubMed  Google Scholar 

  23. Schuff, K. G. et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J. Clin. Invest. 110, 973–981 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marano, R. J. & Ben-Jonathan, N. Minireview: extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol. Endocrinol. 28, 622–633 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Gellersen, B., Kempf, R., Telgmann, R. & DiMattia, G. E. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol. Endocrinol. 8, 356–373 (1994).

    CAS  PubMed  Google Scholar 

  26. Peers, B. et al. Regulatory elements controlling pituitary-specific expression of the human prolactin gene. Mol. Cell. Biol. 10, 4690–4700 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ben-Jonathan, N., Mershon, J. L., Allen, D. L. & Steinmetz, R. W. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr. Rev. 17, 639–669 (1996).

    CAS  PubMed  Google Scholar 

  28. Langan, E. A., Foitzik-Lau, K., Goffin, V., Ramot, Y. & Paus, R. Prolactin: an emerging force along the cutaneous-endocrine axis. Trends Endocrinol. Metab. 21, 569–577 (2010).

    CAS  PubMed  Google Scholar 

  29. Brandebourg, T., Hugo, E. & Ben-Jonathan, N. Adipocyte prolactin: regulation of release and putative functions. Diabetes Obes. Metab. 9, 464–476 (2007).

    CAS  PubMed  Google Scholar 

  30. Marano, R. J., Tickner, J. & Redmond, S. L. Prolactin expression in the cochlea of aged BALB/c mice is gender biased and correlates to loss of bone mineral density and hearing loss. PLoS ONE 8, e63952 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, C.-C. et al. Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Genes Dev. 26, 2154–2168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dagil, R. et al. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation: insight from structures of the prolactin receptor. Structure 20, 270–282 (2012).

    CAS  PubMed  Google Scholar 

  33. Kelly, P. A., Djiane, J., Postel-Vinay, M. C. & Edery, M. The prolactin/growth hormone receptor family. Endocr. Rev. 12, 235–251 (1991).

    CAS  PubMed  Google Scholar 

  34. Lebrun, J. J., Ali, S., Sofer, L., Ullrich, A. & Kelly, P. A. Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J. Biol. Chem. 269, 14021–14026 (1994).

    CAS  PubMed  Google Scholar 

  35. Tanner, J. W., Chen, W., Young, R. L., Longmore, G. D. & Shaw, A. S. The conserved Box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem. 270, 6523–6530 (1995).

    CAS  PubMed  Google Scholar 

  36. Binart, N., Bachelot, A. & Bouilly, J. Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol. Metab. 21, 362–368 (2010).

    CAS  PubMed  Google Scholar 

  37. Arden, K. C., Boutin, J. M., Djiane, J., Kelly, P. A. & Cavenee, W. K. The receptors for prolactin and growth hormone are localized in the same region of human chromosome 5. Cytogenet. Cell Genet. 53, 161–165 (1990).

    CAS  PubMed  Google Scholar 

  38. Barker, C. S. et al. Activation of the prolactin receptor gene by promoter insertion in a Moloney murine leukemia virus-induced rat thymoma. J. Virol. 66, 6763–6768 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, Z.-Z., Zhuang, L., Meng, J., Leondires, M. & Dufau, M. L. The human prolactin receptor gene structure and alternative promoter utilization: the generic promoter hPIII and a novel human promoter hPN . J. Clin. Endocrinol. Metab. 84, 1153–1156 (1999).

    CAS  PubMed  Google Scholar 

  40. Hu, Z. Z., Meng, J. & Dufau, M. L. Isolation and characterization of two novel forms of the human prolactin receptor generated by alternative splicing of a newly identified exon 11. J. Biol. Chem. 276, 41086–41094 (2001).

    CAS  PubMed  Google Scholar 

  41. Kline, J. B., Roehrs, H. & Clevenger, C. V. Functional characterization of the intermediate isoform of the human prolactin receptor. J. Biol. Chem. 274, 35461–35468 (1999).

    CAS  PubMed  Google Scholar 

  42. Trott, J. F., Hovey, R. C., Koduri, S. & Vonderhaar, B. K. Multiple new isoforms of the human prolactin receptor gene. Adv. Exp. Med. Biol. 554, 495–499 (2004).

    CAS  PubMed  Google Scholar 

  43. Postel-Vinay, M. C., Belair, L., Kayser, C., Kelly, P. A. & Djiane, J. Identification of prolactin and growth hormone binding proteins in rabbit milk. Proc. Natl Acad. Sci. USA 88, 6687–6690 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Goffin, V., Shiverick, K. T., Kelly, P. A. & Martial, J. A. Sequence-function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals. Endocr. Rev. 17, 385–410 (1996).

    CAS  PubMed  Google Scholar 

  45. Brooks, C. L. Molecular mechanisms of prolactin and its receptor. Endocr. Rev. 33, 504–525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown, R. J. et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat. Struct. Mol. Biol. 12, 814–821 (2005).

    CAS  PubMed  Google Scholar 

  47. Qazi, A. M., Tsai-Morris, C.-H. & Dufau, M. L. Ligand-independent homo- and heterodimerization of human prolactin receptor variants: inhibitory action of the short forms by heterodimerization. Mol. Endocrinol. 20, 1912–1923 (2006).

    CAS  PubMed  Google Scholar 

  48. Gadd, S. L. & Clevenger, C. V. Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol. Endocrinol. 20, 2734–2746 (2006).

    CAS  PubMed  Google Scholar 

  49. Brooks, A. J. & Waters, M. J. The growth hormone receptor: mechanism of activation and clinical implications. Nat. Rev. Endocrinol. 6, 515–525 (2010).

    CAS  PubMed  Google Scholar 

  50. Goffin, V., Martial, J. A. & Summers, N. L. Use of a model to understand prolactin and growth hormone specificities. Protein Eng. 8, 1215–1231 (1995).

    CAS  PubMed  Google Scholar 

  51. Brooks, A. J. et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344, 1249783 (2014).

    PubMed  Google Scholar 

  52. Waters, M. J., Brooks, A. J. & Chhabra, Y. A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors. JAK-STAT 3, e29569 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Gouilleux, F., Wakao, H., Mundt, M. & Groner, B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 13, 4361–4369 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fresno Vara, J. A., Cáceres, M. A., Silva, A. & Martín-Pérez, J. Src family kinases are required for prolactin induction of cell proliferation. Mol. Biol. Cell 12, 2171–2183 (2001).

    CAS  PubMed  Google Scholar 

  55. García-Martínez, J. M. et al. A non-catalytic function of the Src family tyrosine kinases controls prolactin-induced Jak2 signaling. Cell. Signal. 22, 415–426 (2010).

    PubMed  Google Scholar 

  56. Clevenger, C. V., Furth, P. A., Hankinson, S. E. & Schuler, L. A. The role of prolactin in mammary carcinoma. Endocr. Rev. 24, 1–27 (2003).

    CAS  PubMed  Google Scholar 

  57. Swaminathan, G., Varghese, B. & Fuchs, S. Y. Regulation of prolactin receptor levels and activity in breast cancer. J. Mammary Gland Biol. Neoplasia 13, 81–91 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Watkin, H. et al. Lactation failure in Src knockout mice is due to impaired secretory activation. BMC Dev. Biol. 8, 6 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Piazza, T. M., Lu, J.-C., Carver, K. C. & Schuler, L. A. SRC family kinases accelerate prolactin receptor internalization, modulating trafficking and signaling in breast cancer cells. Mol. Endocrinol. 23, 202–212 (2009).

    CAS  PubMed  Google Scholar 

  60. Berlanga, J. J. et al. Prolactin activates tyrosyl phosphorylation of insulin receptor substrate 1 and phosphatidylinositol-3-OH kinase. J. Biol. Chem. 272, 2050–2052 (1997).

    CAS  PubMed  Google Scholar 

  61. Miller, S. L., DeMaria, J. E., Freier, D. O., Riegel, A. M. & Clevenger, C. V. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol. Endocrinol. 19, 939–949 (2005).

    CAS  PubMed  Google Scholar 

  62. Ali, S. et al. PTP1D is a positive regulator of the prolactin signal leading to β-casein promoter activation. EMBO J. 15, 135–142 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Brockman, J. L., Schroeder, M. D. & Schuler, L. A. PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol. Endocrinol. 16, 774–784 (2002).

    CAS  PubMed  Google Scholar 

  64. Chan, C.-B. et al. PIKE-A is required for prolactin-mediated STAT5a activation in mammary gland development. EMBO J. 29, 956–968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pezet, A., Ferrag, F., Kelly, P. A. & Edery, M. Tyrosine docking sites of the rat prolactin receptor required for association and activation of stat5. J. Biol. Chem. 272, 25043–25050 (1997).

    CAS  PubMed  Google Scholar 

  66. Schlessinger, J. & Lemmon, M. A. SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE 2003, RE12 (2003).

    PubMed  Google Scholar 

  67. Liu, B. A. et al. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22, 851–868 (2006).

    PubMed  Google Scholar 

  68. Bouilly, J., Sonigo, C., Auffret, J., Gibori, G. & Binart, N. Prolactin signaling mechanisms in ovary. Mol. Cell. Endocrinol. 356, 80–87 (2012).

    CAS  PubMed  Google Scholar 

  69. Devi, Y. S. & Halperin, J. Reproductive actions of prolactin mediated through short and long receptor isoforms. Mol. Cell. Endocrinol. 382, 400–410 (2014).

    Google Scholar 

  70. Horseman, N. D. et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 16, 6926–6935 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ormandy, C. J. et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11, 167–178 (1997).

    CAS  PubMed  Google Scholar 

  72. Wennbo, H., Kindblom, J., Isaksson, O. G. & Törnell, J. Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology 138, 4410–4415 (1997).

    CAS  PubMed  Google Scholar 

  73. Hennighausen, L. & Robinson, G. W. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev. 22, 711–721 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. Semprini, S. et al. Real-time visualization of human prolactin alternate promoter usage in vivo using a double-transgenic rat model. Mol. Endocrinol. 23, 529–538 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Christensen, H. R., Murawsky, M. K., Horseman, N. D., Willson, T. A. & Gregerson, K. A. Completely humanizing prolactin rescues infertility in prolactin knockout mice and leads to human prolactin expression in extrapituitary mouse tissues. Endocrinology 154, 4777–4789 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Karnik, S. K. et al. Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus. Science 318, 806–809 (2007).

    CAS  PubMed  Google Scholar 

  77. Auffret, J. et al. Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period. Am. J. Physiol. Endocrinol. Metab. 305, E1309–E1318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang, Y. & Chang, Y. Regulation of pancreatic islet β-cell mass by growth factor and hormone signaling. Prog. Mol. Biol. Transl Sci. 121, 321–349 (2014).

    CAS  PubMed  Google Scholar 

  79. Huang, C., Snider, F. & Cross, J. C. Prolactin receptor is required for normal glucose homeostasis and modulation of β-cell mass during pregnancy. Endocrinology 150, 1618–1626 (2009).

    CAS  PubMed  Google Scholar 

  80. Huang, C. Wild-type offspring of heterozygous prolactin receptor-null female mice have maladaptive β-cell responses during pregnancy. J. Physiol. 591, 1325–1338 (2013).

    PubMed  Google Scholar 

  81. Adán, N. et al. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J. Clin. Invest. 123, 3902–3913 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Melmed, S. et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 273–288 (2011).

    CAS  PubMed  Google Scholar 

  83. Kokay, I. C., Petersen, S. L. & Grattan, D. R. Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology 152, 526–535 (2011).

    CAS  PubMed  Google Scholar 

  84. Sonigo, C. et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J. Clin. Invest. 122, 3791–3795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, X., Brown, R. S. E., Herbison, A. E. & Grattan, D. R. Lactational anovulation in mice results from a selective loss of kisspeptin input to GnRH neurons. Endocrinology 155, 193–203 (2014).

    CAS  PubMed  Google Scholar 

  86. Araujo-Lopes, R. et al. Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats. Endocrinology 155, 1010–1020 (2014).

    PubMed  Google Scholar 

  87. Brown, R., Herbison, A. & Grattan, D. Prolactin regulation of kisspeptin neurons in the mouse brain and its role in the lactation-induced suppression of kisspeptin expression. J. Neuroendocrinol. 26, 898–908 (2014).

    CAS  PubMed  Google Scholar 

  88. Newey, P. J. et al. Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med. 369, 2012–2020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Harris, C. Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med. 370, 976 (2014).

    CAS  PubMed  Google Scholar 

  90. Grossmann, M. Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med. 370, 976–977 (2014).

    PubMed  Google Scholar 

  91. Molitch, M. E. Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med. 370, 977 (2014).

    PubMed  Google Scholar 

  92. David, A. et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr. Rev. 32, 472–497 (2011).

    CAS  PubMed  Google Scholar 

  93. Schlechte, J., Vangilder, J. & Sherman, B. Predictors of the outcome of transsphenoidal surgery for prolactin-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 52, 785–789 (1981).

    CAS  PubMed  Google Scholar 

  94. Lecomte, P. et al. Pregnancy after intravenous pulsatile gonadotropin-releasing hormone in a hyperprolactinaemic woman resistant to treatment with dopamine agonists. Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 219–221 (1997).

    CAS  PubMed  Google Scholar 

  95. Ayling, R. M. et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat. Genet. 16, 13–14 (1997).

    CAS  PubMed  Google Scholar 

  96. Binart, N. et al. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology 141, 2691–2697 (2000).

    CAS  PubMed  Google Scholar 

  97. Gallego, M. I. et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev. Biol. 229, 163–175 (2001).

    CAS  PubMed  Google Scholar 

  98. Bogorad, R. L. et al. Identification of a gain-of-function mutation of the prolactin receptor in women with benign breast tumors. Proc. Natl Acad. Sci. USA 105, 14533–14538 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. NHLBI Exome Sequencing Project (ESP). Exome Variant Server [online], (2013).

  100. Das, R. & Vonderhaar, B. K. Prolactin as a mitogen in mammary cells. J. Mammary Gland Biol. Neoplasia 2, 29–39 (1997).

    CAS  PubMed  Google Scholar 

  101. Reynolds, C., Montone, K. T., Powell, C. M., Tomaszewski, J. E. & Clevenger, C. V. Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138, 5555–5560 (1997).

    CAS  PubMed  Google Scholar 

  102. Wennbo, H. et al. Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J. Clin. Invest. 100, 2744–2751 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vomachka, A. J., Pratt, S. L., Lockefeer, J. A. & Horseman, N. D. Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19, 1077–1084 (2000).

    CAS  PubMed  Google Scholar 

  104. Oakes, S. R. et al. Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene 26, 543–553 (2007).

    CAS  PubMed  Google Scholar 

  105. Tworoger, S. S., Eliassen, A. H., Rosner, B., Sluss, P. & Hankinson, S. E. Plasma prolactin concentrations and risk of postmenopausal breast cancer. Cancer Res. 64, 6814–6819 (2004).

    CAS  PubMed  Google Scholar 

  106. Tworoger, S. S. et al. A 20-year prospective study of plasma prolactin as a risk marker of breast cancer development. Cancer Res. 73, 4810–4819 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tworoger, S. S., Eliassen, A. H., Sluss, P. & Hankinson, S. E. A prospective study of plasma prolactin concentrations and risk of premenopausal and postmenopausal breast cancer. J. Clin. Oncol. 25, 1482–1488 (2007).

    CAS  PubMed  Google Scholar 

  108. Tikk, K. et al. Circulating prolactin and breast cancer risk among pre- and postmenopausal women in the EPIC cohort. Ann. Oncol. 25, 1422–1428 (2014).

    CAS  PubMed  Google Scholar 

  109. Berinder, K., Akre, O., Granath, F. & Hulting, A.-L. Cancer risk in hyperprolactinemia patients: a population-based cohort study. Eur. J. Endocrinol. 165, 209–215 (2011).

    CAS  PubMed  Google Scholar 

  110. Dekkers, O. M., Romijn, J. A., de Boer, A. & Vandenbroucke, J. P. The risk for breast cancer is not evidently increased in women with hyperprolactinemia. Pituitary 13, 195–198 (2010).

    CAS  PubMed  Google Scholar 

  111. Lee, S. A. et al. A comprehensive analysis of common genetic variation in prolactin (PRL) and PRL receptor (PRLR) genes in relation to plasma prolactin levels and breast cancer risk: the multiethnic cohort. BMC Med. Genet. 8, 72 (2007).

    PubMed  PubMed Central  Google Scholar 

  112. Wagner, K.-U. & Rui, H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J. Mammary Gland Biol. Neoplasia 13, 93–103 (2008).

    PubMed  Google Scholar 

  113. Galsgaard, E. D. et al. Re-evaluation of the prolactin receptor expression in human breast cancer. J. Endocrinol. 201, 115–128 (2009).

    CAS  PubMed  Google Scholar 

  114. Nitze, L. M. et al. Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer. Breast Cancer Res. Treat. 142, 31–44 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nevalainen, M. T. et al. Prolactin and prolactin receptors are expressed and functioning in human prostate. J. Clin. Invest. 99, 618–627 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rouet, V. et al. Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc. Natl Acad. Sci. USA 107, 15199–15204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, H. et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res. 64, 4774–4782 (2004).

    CAS  PubMed  Google Scholar 

  118. Li, H. et al. Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin. Cancer Res. 11, 5863–5868 (2005).

    CAS  PubMed  Google Scholar 

  119. Gu, L. et al. Pharmacologic inhibition of Jak2-Stat5 signaling By Jak2 inhibitor AZD1480 potently suppresses growth of both primary and castrate-resistant prostate cancer. Clin. Cancer Res. 19, 5658–5674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Goffin, V., Touraine, P., Culler, M. D. & Kelly, P. A. Drug Insight: prolactin-receptor antagonists, a novel approach to treatment of unresolved systemic and local hyperprolactinemia? Nat. Clin. Pract. Endocrinol. Metab. 2, 571–581 (2006).

    CAS  PubMed  Google Scholar 

  121. Damiano, J. S. et al. Neutralization of prolactin receptor function by monoclonal antibody LFA102, a novel potential therapeutic for the treatment of breast cancer. Mol. Cancer Ther. 12, 295–305 (2013).

    CAS  PubMed  Google Scholar 

  122. Damiano, J. S. & Wasserman, E. Molecular pathways: blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin. Cancer Res. 19, 1644–1650 (2013).

    CAS  PubMed  Google Scholar 

  123. Struman, I. et al. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc. Natl Acad. Sci. USA 96, 1246–1251 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bentzien, F., Struman, I., Martini, J. F., Martial, J. & Weiner, R. Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1−/− mice. Cancer Res. 61, 7356–7362 (2001).

    CAS  PubMed  Google Scholar 

  125. Kim, J. et al. Antitumor activity of the 16-kDa prolactin fragment in prostate cancer. Cancer Res. 63, 386–393 (2003).

    CAS  PubMed  Google Scholar 

  126. Nguyen, N.-Q.-N. et al. Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16K hPRL. Mol. Ther. 15, 2094–2100 (2007).

    CAS  PubMed  Google Scholar 

  127. Hilfiker-Kleiner, D., Struman, I., Hoch, M., Podewski, E. & Sliwa, K. 16-kDa prolactin and bromocriptine in postpartum cardiomyopathy. Curr. Heart Fail. Rep. 9, 174–182 (2012).

    CAS  PubMed  Google Scholar 

  128. D'Angelo, G. et al. 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol. Endocrinol. 13, 692–704 (1999).

    CAS  PubMed  Google Scholar 

  129. Tabruyn, S. P., Nguyen, N.-Q.-N., Cornet, A. M., Martial, J. A. & Struman, I. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0–G1 and the G2–M phases. Mol. Endocrinol. 19, 1932–1942 (2005).

    CAS  PubMed  Google Scholar 

  130. Tabruyn, S. P. et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-κB. Mol. Endocrinol. 17, 1815–1823 (2003).

    CAS  PubMed  Google Scholar 

  131. Lee, S.-H., Kunz, J., Lin, S.-H. & Yu-Lee, L.-Y. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras–Tiam1–Rac1–Pak1 signaling pathway. Cancer Res. 67, 11045–11053 (2007).

    CAS  PubMed  Google Scholar 

  132. Gonzalez, C. et al. 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 145, 5714–5722 (2004).

    CAS  PubMed  Google Scholar 

  133. Tabruyn, S. P. et al. The angiostatic 16K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-κB activation. Mol. Endocrinol. 21, 1422–1429 (2007).

    CAS  PubMed  Google Scholar 

  134. Nguyen, N.-Q.-N. et al. The antiangiogenic 16K prolactin impairs functional tumor neovascularization by inhibiting vessel maturation. PLoS ONE 6, e27318 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bajou, K. et al. PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat. Med. 20, 741–747 (2014).

    CAS  PubMed  Google Scholar 

  136. Pan, H. et al. Molecular targeting of antiangiogenic factor 16K hPRL inhibits oxygen-induced retinopathy in mice. Invest. Ophthalmol. Vis. Sci. 45, 2413–2419 (2004).

    PubMed  Google Scholar 

  137. García, C. et al. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J. Clin. Invest. 118, 2291–2300 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. Arnold, E. et al. High levels of serum prolactin protect against diabetic retinopathy by increasing ocular vasoinhibins. Diabetes 59, 3192–3197 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Triebel, J., Huefner, M. & Ramadori, G. Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy. Eur. J. Endocrinol. 161, 345–353 (2009).

    CAS  PubMed  Google Scholar 

  140. Hilfiker-Kleiner, D. & Sliwa, K. Pathophysiology and epidemiology of peripartum cardiomyopathy. Nat. Rev. Cardiol. 11, 364–370 (2014).

    CAS  PubMed  Google Scholar 

  141. Horseman, N. D. & Gregerson, K. A. Prolactin actions. J. Mol. Endocrinol. 52, R95–R106 (2014).

    CAS  PubMed  Google Scholar 

  142. Leaños-Miranda, A., Campos-Galicia, I., Ramírez-Valenzuela, K. L., Chinolla-Arellano, Z. L. & Isordia-Salas, I. Circulating angiogenic factors and urinary prolactin as predictors of adverse outcomes in women with preeclampsia. Hypertension 61, 1118–1125 (2013).

    PubMed  Google Scholar 

  143. Toescu, V., Nuttall, S. L., Martin, U., Kendall, M. J. & Dunne, F. Oxidative stress and normal pregnancy. Clin. Endocrinol. (Oxf.) 57, 609–613 (2002).

    CAS  Google Scholar 

  144. Yamac, H., Bultmann, I., Sliwa, K. & Hilfiker-Kleiner, D. Prolactin: a new therapeutic target in peripartum cardiomyopathy. Heart 96, 1352–1357 (2010).

    CAS  PubMed  Google Scholar 

  145. Meyer, G. P. et al. Bromocriptine treatment associated with recovery from peripartum cardiomyopathy in siblings: two case reports. J. Med. Case Rep. 4, 80 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Habedank, D. et al. Recovery from peripartum cardiomyopathy after treatment with bromocriptine. Eur. J. Heart Fail. 10, 1149–1151 (2008).

    CAS  PubMed  Google Scholar 

  147. Hilfiker-Kleiner, D. et al. Recovery from postpartum cardiomyopathy in 2 patients by blocking prolactin release with bromocriptine. J. Am. Coll. Cardiol. 50, 2354–2355 (2007).

    PubMed  Google Scholar 

  148. Sliwa, K. et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation 121, 1465–1473 (2010).

    CAS  PubMed  Google Scholar 

  149. Sliwa, K. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 12, 767–778 (2010).

    PubMed  Google Scholar 

  150. Halkein, J. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest. 123, 2143–2154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Elms, A. F., Carlan, S. J., Rich, A. E. & Cerezo, L. Ovarian tumor-derived ectopic hyperprolactinemia. Pituitary 15, 552–555 (2012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.B. wrote the manuscript and researched data for the article. N.B., J.Y. and P.C. provided substantial contribution to discussions of the content. All authors contributed to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Nadine Binart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, V., Young, J., Chanson, P. et al. New insights in prolactin: pathological implications. Nat Rev Endocrinol 11, 265–275 (2015). https://doi.org/10.1038/nrendo.2015.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing