Key Points
-
Primary chylomicronaemia affects ∼1:600 adult individuals; of these ∼95% are affected by polygenic inherited susceptibility and ∼5% show monogenic autosomal recessive inheritance
-
The 'chylomicronaemia syndrome' refers to the presence of at least one clinical feature accompanying primary chylomicronaemia, such as eruptive xanthomas, lipaemia retinalis, pancreatitis or hepatosplenomegaly
-
>90% of monogenic chylomicronaemia cases are caused by mutations in LPL; however, causative mutations in other genes, such as APOC2, APOA5, LMF1 and GPIHBP1, have been identified
-
Increased understanding of the genetic basis of primary chylomicronaemia might result in a change to the classification of the disease that reflects the underlying molecular cause
-
Traditional management of primary chylomicronaemia has focused on diet, lifestyle and mitigation of secondary risk factors; pharmacologic management with fibrates, niacin, statins and ω-3 fatty acids has achieved variable, but, in general, limited success
-
Targeting the lipolytic pathway by use of gene therapy, inhibitors and antisense oligonucleotides might provide effective treatment options for this disease
Abstract
This Review discusses new developments in understanding the basis of chylomicronaemia—a challenging metabolic disorder for which there is an unmet clinical need. Chylomicronaemia presents in two distinct primary forms. The first form is very rare monogenic early-onset chylomicronaemia, which presents in childhood or adolescence and is often caused by homozygous mutations in the gene encoding lipoprotein lipase (LPL), its cofactors apolipoprotein C-II or apolipoprotein A-V, the LPL chaperone lipase maturation factor 1 or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1. The second form, polygenic late-onset chylomicronaemia, which is caused by an accumulation of several genetic variants, can be exacerbated by secondary factors, such as poor diet, obesity, alcohol intake and uncontrolled type 1 or type 2 diabetes mellitus, and is more common than early-onset chylomicronaemia. Both forms of chylomicronaemia are associated with an increased risk of life-threatening pancreatitis; the polygenic form might also be associated with an increased risk of cardiovascular disease. Treatment of chylomicronaemia focuses on restriction of dietary fat and control of secondary factors, as available pharmacological therapies are only minimally effective. Emerging therapies that might prove more effective than existing agents include LPL gene therapy, inhibition of microsomal triglyceride transfer protein and diacylglycerol O-acyltransferase 1, and interference with the production and secretion of apoC-III and angiopoietin-like protein 3.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study
Cardiovascular Diabetology Open Access 09 June 2022
-
Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia
Lipids in Health and Disease Open Access 10 February 2022
-
A new phenotypic classification system for dyslipidemias based on the standard lipid panel
Lipids in Health and Disease Open Access 27 November 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Hegele, R. A. et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2, 655–666 (2014).
Fredrickson, D. S. & Lees, R. S. A system for phenotyping hyperlipoproteinemia. Circulation 31, 321–327 (1965).
Chokshi, N., Blumenschein, S. D., Ahmad, Z. & Garg, A. Genotype–phenotype relationships in patients with type I hyperlipoproteinemia. J. Clin. Lipidol. 8, 287–295 (2014).
Gotoda, T. et al. Diagnosis and management of type I and type V hyperlipoproteinemia. J. Atheroscler. Thromb. 19, 1–12 (2012).
Yuan, G., Al-Shali, K. Z. & Hegele, R. A. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ 176, 1113–1120 (2007).
Rahalkar, A. R. & Hegele, R. A. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol. Genet. Metab. 93, 282–294 (2008).
Hegele, R. A. & Pollex, R. L. Hypertriglyceridemia: phenomics and genomics. Mol. Cell. Biochem. 326, 35–43 (2009).
Hegele, R. A. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10, 109–121 (2009).
Johansen, C. T., Kathiresan, S. & Hegele, R. A. Genetic determinants of plasma triglycerides. J. Lipid Res. 52, 189–206 (2011).
Sugandhan, S., Khandpur, S. & Sharma, V. K. Familial chylomicronemia syndrome. Pediatr. Dermatol. 24, 323–325 (2007).
Brunzell, J. D. & Bierman, E. L. Chylomicronemia syndrome. Interaction of genetic and acquired hypertriglyceridemia. Med. Clin. North Am. 66, 455–468 (1982).
Leaf, D. A. Chylomicronemia and the chylomicronemia syndrome: a practical approach to management. Am. J. Med. 121, 10–12 (2008).
Rouis, M. et al. Therapeutic response to medium-chain triglycerides and ω-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler. Thromb. Vasc. Biol. 17, 1400–1406 (1997).
Whitcomb, D. C. Clinical practice. Acute pancreatitis. N. Engl. J. Med. 354, 2142–2150 (2006).
Valdivielso, P., Ramirez-Bueno, A. & Ewald, N. Current knowledge of hypertriglyceridemic pancreatitis. Eur. J. Intern. Med. 25, 689–694 (2014).
Ranson, J. H. Etiological and prognostic factors in human acute pancreatitis: a review. Am. J. Gastroenterol. 77, 633–638 (1982).
Balthazar, E. J., Robinson, D. L., Megibow, A. J. & Ranson, J. H. Acute pancreatitis: value of CT in establishing prognosis. Radiology 174, 331–336 (1990).
Fortson, M. R., Freedman, S. N. & Webster, P. D. 3rd. Clinical assessment of hyperlipidemic pancreatitis. Am. J. Gastroenterol. 90, 2134–2139 (1995).
Sandhu, S., Al-Sarraf, A., Taraboanta, C., Frohlich, J. & Francis, G. A. Incidence of pancreatitis, secondary causes, and treatment of patients referred to a specialty lipid clinic with severe hypertriglyceridemia: a retrospective cohort study. Lipids Health Dis. 10, 157 (2011).
Christian, J. B. et al. Clinical and economic benefits observed when follow-up triglyceride levels are less than 500 mg/dL in patients with severe hypertriglyceridemia. J. Clin. Lipidol. 6, 450–461 (2012).
Feoli-Fonseca, J. C., Levy, E., Godard, M. & Lambert, M. Familial lipoprotein lipase deficiency in infancy: clinical, biochemical, and molecular study. J. Pediatr. 133, 417–423 (1998).
Khokhar, A. S. & Seidner, D. L. The pathophysiology of pancreatitis. Nutr. Clin. Pract. 19, 5–15 (2004).
Gaudet, D. et al. Medical resource use and costs associated with chylomicronemia. J. Med. Econ. 16, 657–666 (2013).
Benlian, P. et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N. Engl. J. Med. 335, 848–854 (1996).
Pirillo, A., Norata, G. D. & Catapano, A. L. Postprandial lipemia as a cardiometabolic risk factor. Curr. Med. Res. Opin. 30, 1489–1503 (2014).
Mohandas, M. K., Jemila, J., Ajith Krishnan, A. S. & George, T. T. Familial chylomicronemia syndrome. Indian J. Pediatr. 72, 181 (2005).
Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection andclinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).
Martin-Campos, J. M. et al. Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency. Clin. Chim. Acta 429, 61–68 (2014).
Stefanutti, C. et al. A three month-old infant with severe hyperchylomicronemia: molecular diagnosis and extracorporeal treatment. Atheroscler. Suppl. 14, 73–76 (2013).
Voss, C. V. et al. Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proc. Natl Acad. Sci. USA 108, 7980–7984 (2011).
Pasalic, D. et al. Missense mutation W86R in exon 3 of the lipoprotein lipase gene in a boy with chylomicronemia. Clin. Chim. Acta 343, 179–184 (2004).
Jap, T. S., Jenq, S. F., Wu, Y. C., Chiu, C. Y. & Cheng, H. M. Mutations in the lipoprotein lipase gene as a cause of hypertriglyceridemia and pancreatitis in Taiwan. Pancreas 27, 122–126 (2003).
Henderson, H. E. et al. Ile225Thr loop mutation in the lipoprotein lipase (LPL) gene is a de novo event. Am. J. Med. Genet. 78, 313–316 (1998).
Foubert, L. et al. Compound heterozygosity for frameshift mutations in the gene for lipoprotein lipase in a patient with early-onset chylomicronemia. Hum. Mutat. Suppl. 1, S141–S144 (1998).
Ma, Y. et al. A missense mutation (Asp250Asn) in exon 6 of the human lipoprotein lipase gene causes chylomicronemia in patients of different ancestries. Genomics 13, 649–653 (1992).
Murthy, V., Julien, P. & Gagne, C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther. 70, 101–135 (1996).
Okubo, M., Toromanovic, A., Ebara, T. & Murase, T. Apolipoprotein C-II: a novel large deletion in APOC2 caused by Alu–Alu homologous recombination in an infant with apolipoprotein C-II deficiency. Clin. Chim. Acta 438, 148–153 (2014).
Lam, C. W., Yuen, Y. P., Cheng, W. F., Chan, Y. W. & Tong, S. F. Missense mutation Leu72Pro located on the carboxyl terminal amphipathic helix of apolipoprotein C-II causes familial chylomicronemia syndrome. Clin. Chim. Acta 364, 256–259 (2006).
Streicher, R. et al. A single nucleotide substitution in the promoter region of the apolipoprotein C-II gene identified in individuals with chylomicronemia. J. Lipid Res. 37, 2599–2607 (1996).
Calandra, S., Priore Oliva, C., Tarugi, P. & Bertolini, S. APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr. Opin. Lipidol. 17, 122–127 (2006).
Nilsson, S. K., Heeren, J., Olivecrona, G. & Merkel, M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 219, 15–21 (2011).
Brahm, A. & Hegele, R. A. Hypertriglyceridemia. Nutrients 5, 981–1001 (2013).
Albers, K. et al. Homozygosity for a partial deletion of apoprotein A-V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fed infant. Atherosclerosis 233, 97–103 (2014).
Okubo, M. et al. A novel APOA5 splicing mutation IVS2+1g>a in a Japanese chylomicronemia patient. Atherosclerosis 207, 24–25 (2009).
Young, S. G. et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J. Lipid Res. 52, 1869–1884 (2011).
Plengpanich, W. et al. Multimerization of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain. J. Biol. Chem. 289, 19491–19499 (2014).
Gin, P. et al. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Hum. Mol. Genet. 21, 2961–2972 (2012).
Rios, J. J. et al. Deletion of GPIHBP1 causing severe chylomicronemia. J. Inherit. Metab. Dis. 35, 531–540 (2012).
Beigneux, A. P. GPIHBP1 and the processing of triglyceride-rich lipoproteins. Clin. Lipidol. 5, 575–582 (2010).
Olivecrona, G. et al. Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J. Lipid Res. 51, 1535–1545 (2010).
Beigneux, A. P. et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler. Thromb. Vasc. Biol. 29, 956–962 (2009).
Beigneux, A. P., Davies, B. S., Bensadoun, A., Fong, L. G. & Young, S. G. GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J. Lipid Res. 50 (Suppl.), S57–S62 (2009).
Wang, J. & Hegele, R. A. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis. 6, 23 (2007).
Young, S. G. et al. GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chylomicrons. Curr. Opin. Lipidol. 18, 389–396 (2007).
Peterfy, M. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism. Biochim. Biophys. Acta 1821, 790–794 (2012).
Johansen, C. T. & Hegele, R. A. Genetic bases of hypertriglyceridemic phenotypes. Curr. Opin. Lipidol. 22, 247–253 (2011).
Johansen, C. T. & Hegele, R. A. Allelic and phenotypic spectrum of plasma triglycerides. Biochim. Biophys. Acta 1821, 833–842 (2012).
Johansen, C. T. & Hegele, R. A. The complex genetic basis of plasma triglycerides. Curr. Atheroscler. Rep. 14, 227–234 (2012).
Johansen, C. T. et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 31, 1916–1926 (2011).
Johansen, C. T. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 42, 684–687 (2010).
Johansen, C. T. et al. Excess of rare variants in non-genome-wide association study candidate genes in patients with hypertriglyceridemia. Circ. Cardiovasc. Genet. 5, 66–72 (2012).
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
Goldberg, I. J., Eckel, R. H. & McPherson, R. Triglycerides and heart disease: still a hypothesis? Arterioscler. Thromb. Vasc. Biol. 31, 1716–1725 (2011).
Beil, U., Grundy, S. M., Crouse, J. R. & Zech, L. Triglyceride and cholesterol metabolism in primary hypertriglyceridemia. Arteriosclerosis 2, 44–57 (1982).
Basel-Vanagaite, L. et al. Transient infantile hypertriglyceridemia, fatty liver, and hepatic fibrosis caused by mutated GPD1, encoding glycerol-3-phosphate dehydrogenase 1. Am. J. Hum. Genet. 90, 49–60 (2012).
Rahalkar, A. R. et al. Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review. Can. J. Physiol. Pharmacol. 87, 151–160 (2009).
Johansen, C. T. et al. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J. Lipid Res. 55, 765–772 (2014).
Jialal, I., Amess, W. & Kaur, M. Management of hypertriglyceridemia in the diabetic patient. Curr. Diab. Rep. 10, 316–320 (2010).
Leaf, D. A., Connor, W. E., Illingworth, D. R., Bacon, S. P. & Sexton, G. The hypolipidemic effects of gemfibrozil in type V hyperlipidemia. A double-blind, crossover study. JAMA 262, 3154–3160 (1989).
Gotto, A. M. Jr & Moon, J. E. Pharmacotherapies for lipid modification: beyond the statins. Nat. Rev. Cardiol. 10, 560–570 (2013).
Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).
Sahebkar, A., Chew, G. T. & Watts, G. F. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog. Lipid Res. 56, 47–66 (2014).
Kamanna, V. S. & Kashyap, M. L. Mechanism of action of niacin. Am. J. Cardiol. 101, 20B–26B (2008).
Goldberg, A. et al. Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia. Am. J. Cardiol. 85, 1100–1105 (2000).
Maki, K. C., Bays, H. E. & Dicklin, M. R. Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. J. Clin. Lipidol. 6, 413–426 (2012).
Chan, D. C. et al. Effect of atorvastatin on chylomicron remnant metabolism in visceral obesity: a study employing a new stable isotope breath test. J. Lipid Res. 43, 706–712 (2002).
Tremblay, A. J., Lamarche, B., Hogue, J. C. & Couture, P. Effects of ezetimibe and simvastatin on apolipoprotein B metabolism in males with mixed hyperlipidemia. J. Lipid Res. 50, 1463–1471 (2009).
Davidson, M. H. Mechanisms for the hypotriglyceridemic effect of marine ω-3 fatty acids. Am. J. Cardiol. 98, 27i–33i (2006).
Skulas-Ray, A. C., West, S. G., Davidson, M. H. & Kris-Etherton, P. M. ω-3 fatty acid concentrates in the treatment of moderate hypertriglyceridemia. Expert Opin. Pharmacother. 9, 1237–1248 (2008).
Connor, W. E., DeFrancesco, C. A. & Connor, S. L. N-3 fatty acids from fish oil. Effects on plasma lipoproteins and hypertriglyceridemic patients. Ann. NY Acad. Sci. 683, 16–34 (1993).
Berglund, L., Brunzell, J. D., Goldberg, A. C., Goldberg, I. J. & Stalenhoef, A. Treatment options for hypertriglyceridemia: from risk reduction to pancreatitis. Best Pract. Res. Clin. Endocrinol. Metab. 28, 423–437 (2014).
Slivkoff-Clark, K. M., James, A. P. & Mamo, J. C. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men. Nutr. Metab. (Lond.) 9, 9 (2012).
Park, Y. & Harris, W. S. ω-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J. Lipid Res. 44, 455–463 (2003).
Pschierer, V., Richter, W. O. & Schwandt, P. Primary chylomicronemia in patients with severe familial hypertriglyceridemia responds to long-term treatment with (n-3) fatty acids. J. Nutr. 125, 1490–1494 (1995).
Richter, W. O., Jacob, B. G., Ritter, M. M. & Schwandt, P. Treatment of primary chylomicronemia due to familial hypertriglyceridemia by ω-3 fatty acids. Metabolism 41, 1100–1105 (1992).
Sisman, G. et al. Familial chylomicronemia syndrome related chronic pancreatitis: a single-center study. Hepatobiliary Pancreat. Dis. Int. 13, 209–214 (2014).
Hen, K., Bogdanski, P. & Pupek-Musialik, D. Successful treatment of severe hypertriglyceridemia with plasmapheresis—case report [Polish]. Pol. Merkur Lekarski 26, 62–64 (2009).
Basar, R. et al. Therapeutic apheresis for severe hypertriglyceridemia in pregnancy. Arch. Gynecol. Obstet. 287, 839–843 (2013).
Lennertz, A., Parhofer, K. G., Samtleben, W. & Bosch, T. Therapeutic plasma exchange in patients with chylomicronemia syndrome complicated by acute pancreatitis. Ther. Apher. 3, 227–233 (1999).
Manzella, D. J., Scalise, D. H. & Melero, M. J. Vacuum sign of cerebrospinal fluid flow [Spanish]. Medicina (B. Aires) 74, 54 (2014).
Seda, G., Meyer, J. M., Amundson, D. E. & Daheshia, M. Plasmapheresis in the management of severe hypertriglyceridemia. Crit. Care Nurse 33, 18–23 (2013).
Izquierdo-Ortiz, M. J. & Abaigar-Luquin, P. Severe hypertriglyceridaemia. Treatment with plasmapheresis. Nefrologia 32, 417–418 (2012).
Syed, H., Bilusic, M., Rhondla, C. & Tavaria, A. Plasmapheresis in the treatment of hypertriglyceridemia-induced pancreatitis: a community hospital's experience. J. Clin. Apher. 25, 229–234 (2010).
Ewald, N. & Kloer, H. U. Severe hypertriglyceridemia: an indication for apheresis? Atheroscler. Suppl. 10, 49–52 (2009).
Iskandar, S. B. & Olive, K. E. Plasmapheresis as an adjuvant therapy for hypertriglyceridemia-induced pancreatitis. Am. J. Med. Sci. 328, 290–294 (2004).
Dominguez-Munoz, J. E. et al. Hyperlipidemia in acute pancreatitis. Relationship with etiology, onset, and severity of the disease. Int. J. Pancreatol. 10, 261–267 (1991).
Chen, J. H., Yeh, J. H., Lai, H. W. & Liao, C. S. Therapeutic plasma exchange in patients with hyperlipidemic pancreatitis. World J. Gastroenterol. 10, 2272–2274 (2004).
Piolot, A., Nadler, F., Cavallero, E., Coquard, J. L. & Jacotot, B. Prevention of recurrent acute pancreatitis in patients with severe hypertriglyceridemia: value of regular plasmapheresis. Pancreas 13, 96–99 (1996).
Ewald, N. & Kloer, H. U. Treatment options for severe hypertriglyceridemia (SHTG): the role of apheresis. Clin. Res. Cardiol. Suppl. 7 (Suppl. 1), 31–35 (2012).
Thuzar, M., Shenoy, V. V., Malabu, U. H., Schrale, R. & Sangla, K. S. Extreme hypertriglyceridemia managed with insulin. J. Clin. Lipidol. 8, 630–634 (2014).
Rader, D. J. & Kastelein, J. J. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 129, 1022–1032 (2014).
Wierzbicki, A. S., Hardman, T. C. & Viljoen, A. New lipid-lowering drugs: an update. Int. J. Clin. Pract. 66, 270–280 (2012).
Marbach, J. A., McKeon, J. L., Ross, J. L. & Duffy, D. Novel treatments for familial hypercholesterolemia: pharmacogenetics at work. Pharmacotherapy 34, 961–972 (2014).
Sacks, F. M., Stanesa, M. & Hegele, R. A. Severe hypertriglyceridemia with pancreatitis: thirteen years' treatment with lomitapide. JAMA Intern. Med. 174, 443–447 (2014).
Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).
Vuorio, A., Tikkanen, M. J. & Kovanen, P. T. Inhibition of hepatic microsomal triglyceride transfer protein—a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc. Health Risk Manag. 10, 263–270 (2014).
deGoma, E. M. Lomitapide for the management of homozygous familial hypercholesterolemia. Rev. Cardiovasc. Med. 15, 109–118 (2014).
Gaudet, D., Methot, J. & Kastelein, J. Gene therapy for lipoprotein lipase deficiency. Curr. Opin. Lipidol. 23, 310–320 (2012).
Carpentier, A. C. et al. Effect of alipogene tiparvovec (AAV1-LPLS447X) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J. Clin. Endocrinol. Metab. 97, 1635–1644 (2012).
Gaudet, D. et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 20, 361–369 (2013).
Rip, J. et al. AAV1-LPLS447X gene therapy reduces hypertriglyceridemia in apoE2 knock in mice. Biochim. Biophys. Acta 1761, 1163–1168 (2006).
Wierzbicki, A. S. & Viljoen, A. Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency. Expert Opin. Biol. Ther. 13, 7–10 (2013).
Schober, G. et al. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. J. Lipid Res. 54, 1369–1384 (2013).
Naik, R. et al. Therapeutic strategies for metabolic diseases: small-molecule diacylglycerol acyltransferase (DGAT) inhibitors. ChemMedChem 9, 2410–2424 (2014).
DeVita, R. J. & Pinto, S. Current status of the research and development of diacylglycerol O-acyltransferase 1 (DGAT1) inhibitors. J. Med. Chem. 56, 9820–9825 (2013).
Cao, J. et al. Targeting acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) with small molecule inhibitors for the treatment of metabolic diseases. J. Biol. Chem. 286, 41838–41851 (2011).
Denison, H. et al. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes. Metab. 16, 334–343 (2014).
Denison, H. et al. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes. Metab. 15, 136–143 (2013).
Meyers, C. et al. The DGAT1 inhibitor LCQ908 decreases triglyceride levels in patients with the familial chylomicronemia syndrome. J. Clin. Lipidol. 6, 266–267 (2012).
Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).
Furtado, J. D., Wedel, M. K. & Sacks, F. M. Antisense inhibition of apoB synthesis with mipomersen reduces plasma apoC-III and apoC-III-containing lipoproteins. J. Lipid Res. 53, 784–791 (2012).
Huff, M. W. & Hegele, R. A. Apolipoprotein C-III: going back to the future for a lipid drug target. Circ. Res. 112, 1405–1408 (2013).
Jorgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjaerg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371, 32–41 (2014).
Graham, M. J. et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ. Res. 112, 1479–1490 (2013).
Gaudet, D. et al. Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med. 371, 2200–2206 (2014).
Mattijssen, F. & Kersten, S. Regulation of triglyceride metabolism by angiopoietin-like proteins. Biochim. Biophys. Acta 1821, 782–789 (2012).
Sehgal, A., Vaishnaw, A. & Fitzgerald, K. Liver as a target for oligonucleotide therapeutics. J. Hepatol. 59, 1354–1359 (2013).
Isis starts phase I trial of ISIS-ANGPTL3Rx to treat hyperlipidemia patients. Drugdevelopment-technology.com [online], (2014).
Zimmer, M. et al. CAT-2003 is a novel small molecule that inhibits proprotein convertase subtilisin/kexin type 9 production and lowers non-high-density lipoprotein cholesterol. Presented at the Arteriosclerosis, Thrombosis and Vascular Biology Scientific Sessions 2014.
US National Library of Medicine. ClinicalTrials.gov [online], (2015).
Acknowledgements
R.A.H. is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Martha Blackburn Chair in Cardiovascular Research, and operating grants from the Canadian Institutes for Health Research (MOP-13430 and MOP-79533), the Heart and Stroke Foundation of Ontario (T6066 and 000353) and Genome Canada through Genome Quebec.
Author information
Authors and Affiliations
Contributions
A.J.B. and R.A.H. researched data for the article, provided substantial contributions to discussions of the content, wrote and reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
R.A.H. declares that he is a consultant and speaker's bureau member for Aegerion, Amgen, Eli Lilly, Pfizer, Sanofi and Valeant. A.J.B. declares no competing interests.
Rights and permissions
About this article
Cite this article
Brahm, A., Hegele, R. Chylomicronaemia—current diagnosis and future therapies. Nat Rev Endocrinol 11, 352–362 (2015). https://doi.org/10.1038/nrendo.2015.26
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrendo.2015.26
This article is cited by
-
Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia
Lipids in Health and Disease (2022)
-
Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study
Cardiovascular Diabetology (2022)
-
Apolipoproteins in vascular biology and atherosclerotic disease
Nature Reviews Cardiology (2022)
-
A new phenotypic classification system for dyslipidemias based on the standard lipid panel
Lipids in Health and Disease (2021)
-
Development of a novel PRO instrument for use in familial chylomicronemia syndrome
Journal of Patient-Reported Outcomes (2021)