Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy

Key Points

  • Reported rises in the prevalence of diabetic cardiomyopathy among developed nations have occurred in parallel with increased rates of obesity, insulin resistance and hyperinsulinaemia

  • Insulin resistance and/or hyperinsulinaemia seem to underpin the development of diabetic cardiomyopathy, which is initially characterized by diastolic dysfunction in the absence of coronary artery disease and hypertension

  • Pathophysiological mechanisms include impaired insulin signalling, cardiac mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, impaired myocardial calcium handling, abnormal coronary microcirculation, inappropriate neurohumoral activation and maladaptive immune responses

  • Insulin resistance, or hyperinsulinaemia, independently predisposes to the development of diabetic cardiomyopathy and targeting insulin resistance or hyperinsulinaemia could be a potential therapeutic strategy to prevent the development of diabetic cardiomyopathy

Abstract

Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mechanisms implicated in the development of diabetic cardiomyopathy.
Figure 2: The development and progression of diabetic cardiomyopathy.
Figure 3: Insulin resistance and T2DM leads to system metabolic disorders in the cardiomyocyte.

Similar content being viewed by others

References

  1. Isfort, M., Stevens, S. C., Schaffer, S., Jong, C. J. & Wold, L. E. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail. Rev. 19, 35–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Adeghate, E. & Singh, J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail. Rev. 19, 15–23 (2014).

    Article  PubMed  Google Scholar 

  3. Dhalla, N. S., Takeda, N., Rodriguez-Leyva, D. & Elimban, V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail. Rev. 19, 87–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Velez, M., Kohli, S. & Sabbah, H. N. Animal models of insulin resistance and heart failure. Heart Fail. Rev. 19, 1–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Jia, G., Aroor, A. R., Martinez-Lemus, L. A. & Sowers, J. R. Overnutrition, mTOR signaling, and cardiovascular diseases. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1198–R1206 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rubler, S. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–602 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. Maisch, B., Alter, P. & Pankuweit, S. Diabetic cardiomyopathy — fact or fiction? Herz 36, 102–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Voulgari, C., Papadogiannis, D. & Tentolouris, N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc. Health Risk Manag. 6, 883–903 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Factor, S. M., Minase, T. & Sonnenblick, E. H. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am. Heart J. 99, 446–458 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Falcao-Pires, I. & Leite-Moreira, A. F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 17, 325–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Roberts, A. W., Clark, A. L. & Witte, K. K. Review article: left ventricular dysfunction and heart failure in metabolic syndrome and diabetes without overt coronary artery disease — do we need to screen our patients? Diab. Vasc. Dis. Res. 6, 153–163 (2009).

    Article  PubMed  Google Scholar 

  12. Wong, A. K., AlZadjali, M. A., Choy, A. M. & Lang, C. C. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc. Ther. 26, 203–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Aroor, A. R., Mandavia, C. H. & Sowers, J. R. Insulin resistance and heart failure: molecular mechanisms. Heart Fail. Clin. 8, 609–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Witteles, R. M. & Fowler, M. B. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J. Am. Coll. Cardiol. 51, 93–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Dhalla, N. S., Pierce, G. N., Innes, I. R. & Beamish, R. E. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can. J. Cardiol. 1, 263–281 (1985).

    CAS  PubMed  Google Scholar 

  16. Kim, J. A., Jang, H. J., Martinez-Lemus, L. A. & Sowers, J. R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Endocrinol. Metab. 302, E201–E208 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Jia, G. et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension 65, 531–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mandavia, C. H., Aroor, A. R., Demarco, V. G. & Sowers, J. R. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci. 92, 601–608 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Regan, T. J. Congestive heart failure in the diabetic. Annu. Rev. Med. 34, 161–168 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Schaffer, S. W. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol. Cell. Biochem. 107, 1–20 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Battiprolu, P. K. et al. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci. 92, 609–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Mytas, D. Z. et al. Diabetic myocardial disease: pathophysiology, early diagnosis and therapeutic options. J. Diabetes Complications 23, 273–282 (2009).

    Article  PubMed  Google Scholar 

  24. Harmancey, R. et al. Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB J. 26, 3118–3126 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mandavia, C. H., Pulakat, L., DeMarco, V. & Sowers, J. R. Over-nutrition and metabolic cardiomyopathy. Metabolism 61, 1205–1210 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fang, Z. Y., Prins, J. B. & Marwick, T. H. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 25, 543–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Bugger, H. & Abel, E. D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57, 660–671 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. DeMarco, V. G., Aroor, A. R. & Sowers, J. R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol. 10, 364–376 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang, J., Song, Y., Wang, Q., Kralik, P. M. & Epstein, P. N. Causes and characteristics of diabetic cardiomyopathy. Rev. Diabet. Stud. 3, 108–117 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dhalla, N. S., Liu, X., Panagia, V. & Takeda, N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc. Res. 40, 239–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J. et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv. Drug Deliv. Rev. 61, 1343–1352 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Factor, S. M. et al. Coronary microvascular abnormalities in the hypertensive-diabetic rat. A primary cause of cardiomyopathy? Am. J. Pathol. 116, 9–20 (1984).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Hotamisligil, G. S. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int. J. Obes. (Lond.) 32, S52–S54 (2008).

    Article  CAS  Google Scholar 

  34. Henstridge, D. C., Whitham, M. & Febbraio, M. A. Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol. Metab. 3, 781–793 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jain, S. S. et al. High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 63, 1907–1913 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Adameova, A. & Dhalla, N. S. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail. Rev. 19, 25–33 (2014).

    Article  PubMed  Google Scholar 

  37. Kubli, D. A. & Gustafsson, A. B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 111, 1208–1221 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460–3470 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Mei, Y., Thompson, M. D., Cohen, R. A. & Tong, X. Endoplasmic reticulum stress and related pathological processes. J. Pharmacol. Biomed. Anal. 1, 1000107 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Yi, C. H., Vakifahmetoglu-Norberg, H. & Yuan, J. Integration of apoptosis and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 375–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Jia, G. & Sowers, J. R. Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim. Biophys. Acta 1852, 219–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Wensley, I., Salaveria, K., Bulmer, A. C., Donner, D. G. & du Toit, E. F. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp. Physiol. 98, 1552–1564 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Falskov, B. et al. The effect of chronic heart failure and type 2 diabetes on insulin-stimulated endothelial function is similar and additive. Vasc. Health Risk Manag. 7, 771–776 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xie, Z. et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60, 1770–1778 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  46. Zhou, X. et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension 55, 880–888 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Hayden, M. R., Habibi, J., Joginpally, T., Karuparthi, P. R. & Sowers, J. R. Ultrastructure study of transgenic Ren2 rat aorta — part 1: endothelium and intima. CardioRenal Med. 2, 66–82 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blaha, M. J. et al. The relationship between insulin resistance and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 34, 749–751 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Olesen, P., Nguyen, K., Wogensen, L., Ledet, T. & Rasmussen, L. M. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am. J. Physiol. Heart Circ. Physiol. 292, H1058–H1064 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, L. Q. et al. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS ONE 6, e29037 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Iyngkaran, P., Anavekar, N., Majoni, W. & Thomas, M. C. The role and management of sympathetic overactivity in cardiovascular and renal complications of diabetes. Diabetes Metab. 39, 290–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118, 863–871 (2008).

    Article  PubMed  Google Scholar 

  53. Nistala, R. & Sowers, J. R. Hypertension: synergy of antihypertensives in elderly patients with CKD. Nat. Rev. Nephrol. 9, 13–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Tirosh, A., Garg, R. & Adler, G. K. Mineralocorticoid receptor antagonists and the metabolic syndrome. Curr. Hypertens. Rep. 12, 252–257 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. McMaster, W. G., Kirabo, A., Madhur, M. S. & Harrison, D. G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 116, 1022–1033 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hofmann, U. & Frantz, S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ. Res. 116, 354–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Mori, J. et al. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103–H1113 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Asrih, M. et al. Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm. 2013, 367245 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Sell, H., Habich, C. & Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Yu, Q., Vazquez, R., Zabadi, S., Watson, R. R. & Larson, D. F. T-lymphocytes mediate left ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice. Matrix Biol. 29, 511–518 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cao, Y., Xu, W. & Xiong, S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis. PLoS ONE 8, e74955 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. He, S., Li, M., Ma, X., Lin, J. & Li, D. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 30, 2621–2630 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Erdei, T. et al. Pathophysiological rationale and diagnostic targets for diastolic stress testing. Heart 101, 1355–1360 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Dori, G., Rudman, M., Lichtenstein, O. & Schliamser, J. E. Ejection fraction in patients with heart failure and preserved ejection fraction is greater than that in controls — a mechanism facilitating left ventricular filling and maximizing cardiac output. Med. Hypotheses 79, 384–387 (2012).

    Article  PubMed  Google Scholar 

  67. De Boeck, B. W., Cramer, M. J., Oh, J. K., van der Aa, R. P. & Jaarsma, W. Spectral pulsed tissue Doppler imaging in diastole: a tool to increase our insight in and assessment of diastolic relaxation of the left ventricle. Am. Heart J. 146, 411–419 (2003).

    Article  PubMed  Google Scholar 

  68. Bostick, B. et al. Mineralocorticoid receptor blockade prevents western diet-induced diastolic dysfunction in female mice. Am. J. Physiol. Heart Circ. Physiol. 308, H1126–H1156 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bostick, B. et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 63, 1000–1011 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ernande, L. & Derumeaux, G. Diabetic cardiomyopathy: myth or reality? Arch. Cardiovasc. Dis. 105, 218–225 (2012).

    Article  PubMed  Google Scholar 

  71. Battiprolu, P. K., Gillette, T. G., Wang, Z. V., Lavandero, S. & Hill, J. A. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov. Today Dis. Mech. 7, e135–e143 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. D'Souza, A. et al. Chronic effects of mild hyperglycaemia on left ventricle transcriptional profile and structural remodelling in the spontaneously type 2 diabetic Goto-Kakizaki rat. Heart Fail. Rev. 19, 65–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Boudina, S. & Abel, E. D. Diabetic cardiomyopathy revisited. Circulation 115, 3213–3223 (2007).

    Article  PubMed  Google Scholar 

  74. Manrique, C. et al. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a Western diet. Endocrinology 154, 3632–3642 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rutter, M. K. et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 107, 448–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Mihailidou, A. S. & Ashton, A. W. Cardiac effects of aldosterone: does gender matter? Steroids 91, 32–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Barrett Mueller, K. et al. Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 155, 4461–4472 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chen, L. et al. Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism 64, 338–347 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Hammer, S. et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J. Am. Coll. Cardiol. 52, 1006–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Hare, J. L. et al. Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circ. Heart Fail. 4, 441–449 (2011).

    Article  PubMed  Google Scholar 

  81. Schrauwen-Hinderling, V. B. et al. Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content. J. Clin. Endocrinol. Metab. 95, 1932–1938 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Schrauwen-Hinderling, V. B. et al. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc. Diabetol. 10, 47 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nickel, A., Loffler, J. & Maack, C. Myocardial energetics in heart failure. Basic Res. Cardiol. 108, 358 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Senanayake, E. L. et al. Multicentre double-blind randomized controlled trial of perhexiline as a metabolic modulator to augment myocardial protection in patients with left ventricular hypertrophy undergoing cardiac surgery. Eur. J. Cardiothorac. Surg. 48, 354–362 (2015).

    Article  PubMed  Google Scholar 

  85. Gao, D., Ning, N., Niu, X., Hao, G. & Meng, Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97, 278–286 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Sulaiman, M. et al. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 298, H833–H843 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Rabassa, M., Zamora-Ros, R., Urpi-Sarda, M. & Andres-Lacueva, C. Resveratrol metabolite profiling in clinical nutrition research — from diet to uncovering disease risk biomarkers: epidemiological evidence. Ann. NY Acad. Sci. 1348, 107–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Maier, L. S. et al. RAnoLazIne for the treatment of Diastolic Heart Failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 1, 115–122 (2013).

    Article  PubMed  Google Scholar 

  89. Doehner, W., Frenneaux, M. & Anker, S. D. Metabolic impairment in heart failure: the myocardial and systemic perspective. J. Am. Coll. Cardiol. 64, 1388–1400 (2014).

    Article  PubMed  Google Scholar 

  90. Dhalla, N. S., Temsah, R. M. & Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655–673 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Y. J., Tappia, P. S., Neki, N. S. & Dhalla, N. S. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail. Rev. 19, 113–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Szeto, H. H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 171, 2029–2050 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Huynh, K. et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 55, 1544–1553 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Mortensen, S. A. et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2, 641–649 (2014).

    Article  PubMed  Google Scholar 

  95. Mamas, M. A. et al. Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J. Card. Fail. 16, 761–768 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Sacca, L. Heart failure as a multiple hormonal deficiency syndrome. Circ. Heart Fail. 2, 151–156 (2009).

    Article  PubMed  Google Scholar 

  97. Sacca, L. & Napoli, R. Insulin resistance in chronic heart failure: a difficult bull to take by the horns. Nutr. Metab. Cardiovasc. Dis. 19, 303–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. von Bibra, H. & St John Sutton, M. Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr. Heart Fail. Rep. 8, 242–251 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wong, A. K. et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur. J. Heart Fail. 14, 1303–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Kolwicz, S. C. Jr., Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Inzucchi, S. E. et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab. Vasc. Dis. Res. 12, 90–100 (2015).

    Article  PubMed  CAS  Google Scholar 

  102. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1504720 (2015).

  103. Huynh, K., Bernardo, B. C., McMullen, J. R. & Ritchie, R. H. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 142, 375–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Drawnel, F. M. et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 9, 810–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Meloni, M. et al. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 61, 229–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Katare, R. et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ. Res. 108, 1238–1251 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Greco, S. et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 61, 1633–1641 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Brenda Hunter (Diabetes and Cardiovascular Center, University of Missouri School of Medicine, USA) for editorial assistance. The authors' research was supported by the NIH (grants R01 HL73101-01A and R01 HL107910-01) for J.R.S and the Veterans Affairs Merit System (grant 0018) for J.R.S.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to James R. Sowers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, G., DeMarco, V. & Sowers, J. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12, 144–153 (2016). https://doi.org/10.1038/nrendo.2015.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing