Key Points
-
Reported rises in the prevalence of diabetic cardiomyopathy among developed nations have occurred in parallel with increased rates of obesity, insulin resistance and hyperinsulinaemia
-
Insulin resistance and/or hyperinsulinaemia seem to underpin the development of diabetic cardiomyopathy, which is initially characterized by diastolic dysfunction in the absence of coronary artery disease and hypertension
-
Pathophysiological mechanisms include impaired insulin signalling, cardiac mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, impaired myocardial calcium handling, abnormal coronary microcirculation, inappropriate neurohumoral activation and maladaptive immune responses
-
Insulin resistance, or hyperinsulinaemia, independently predisposes to the development of diabetic cardiomyopathy and targeting insulin resistance or hyperinsulinaemia could be a potential therapeutic strategy to prevent the development of diabetic cardiomyopathy
Abstract
Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Isfort, M., Stevens, S. C., Schaffer, S., Jong, C. J. & Wold, L. E. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail. Rev. 19, 35–48 (2014).
Adeghate, E. & Singh, J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail. Rev. 19, 15–23 (2014).
Dhalla, N. S., Takeda, N., Rodriguez-Leyva, D. & Elimban, V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail. Rev. 19, 87–99 (2014).
Velez, M., Kohli, S. & Sabbah, H. N. Animal models of insulin resistance and heart failure. Heart Fail. Rev. 19, 1–13 (2014).
Jia, G., Aroor, A. R., Martinez-Lemus, L. A. & Sowers, J. R. Overnutrition, mTOR signaling, and cardiovascular diseases. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1198–R1206 (2014).
Rubler, S. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–602 (1972).
Maisch, B., Alter, P. & Pankuweit, S. Diabetic cardiomyopathy — fact or fiction? Herz 36, 102–115 (2011).
Voulgari, C., Papadogiannis, D. & Tentolouris, N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc. Health Risk Manag. 6, 883–903 (2010).
Factor, S. M., Minase, T. & Sonnenblick, E. H. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am. Heart J. 99, 446–458 (1980).
Falcao-Pires, I. & Leite-Moreira, A. F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 17, 325–344 (2012).
Roberts, A. W., Clark, A. L. & Witte, K. K. Review article: left ventricular dysfunction and heart failure in metabolic syndrome and diabetes without overt coronary artery disease — do we need to screen our patients? Diab. Vasc. Dis. Res. 6, 153–163 (2009).
Wong, A. K., AlZadjali, M. A., Choy, A. M. & Lang, C. C. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc. Ther. 26, 203–213 (2008).
Aroor, A. R., Mandavia, C. H. & Sowers, J. R. Insulin resistance and heart failure: molecular mechanisms. Heart Fail. Clin. 8, 609–617 (2012).
Witteles, R. M. & Fowler, M. B. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J. Am. Coll. Cardiol. 51, 93–102 (2008).
Dhalla, N. S., Pierce, G. N., Innes, I. R. & Beamish, R. E. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can. J. Cardiol. 1, 263–281 (1985).
Kim, J. A., Jang, H. J., Martinez-Lemus, L. A. & Sowers, J. R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Endocrinol. Metab. 302, E201–E208 (2012).
Jia, G. et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension 65, 531–539 (2015).
Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).
Mandavia, C. H., Aroor, A. R., Demarco, V. G. & Sowers, J. R. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci. 92, 601–608 (2013).
Regan, T. J. Congestive heart failure in the diabetic. Annu. Rev. Med. 34, 161–168 (1983).
Schaffer, S. W. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol. Cell. Biochem. 107, 1–20 (1991).
Battiprolu, P. K. et al. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci. 92, 609–615 (2013).
Mytas, D. Z. et al. Diabetic myocardial disease: pathophysiology, early diagnosis and therapeutic options. J. Diabetes Complications 23, 273–282 (2009).
Harmancey, R. et al. Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB J. 26, 3118–3126 (2012).
Mandavia, C. H., Pulakat, L., DeMarco, V. & Sowers, J. R. Over-nutrition and metabolic cardiomyopathy. Metabolism 61, 1205–1210 (2012).
Fang, Z. Y., Prins, J. B. & Marwick, T. H. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 25, 543–567 (2004).
Bugger, H. & Abel, E. D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57, 660–671 (2014).
DeMarco, V. G., Aroor, A. R. & Sowers, J. R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol. 10, 364–376 (2014).
Wang, J., Song, Y., Wang, Q., Kralik, P. M. & Epstein, P. N. Causes and characteristics of diabetic cardiomyopathy. Rev. Diabet. Stud. 3, 108–117 (2006).
Dhalla, N. S., Liu, X., Panagia, V. & Takeda, N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc. Res. 40, 239–247 (1998).
Liu, J. et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv. Drug Deliv. Rev. 61, 1343–1352 (2009).
Factor, S. M. et al. Coronary microvascular abnormalities in the hypertensive-diabetic rat. A primary cause of cardiomyopathy? Am. J. Pathol. 116, 9–20 (1984).
Hotamisligil, G. S. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int. J. Obes. (Lond.) 32, S52–S54 (2008).
Henstridge, D. C., Whitham, M. & Febbraio, M. A. Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol. Metab. 3, 781–793 (2014).
Jain, S. S. et al. High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 63, 1907–1913 (2014).
Adameova, A. & Dhalla, N. S. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail. Rev. 19, 25–33 (2014).
Kubli, D. A. & Gustafsson, A. B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 111, 1208–1221 (2012).
Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460–3470 (2013).
Mei, Y., Thompson, M. D., Cohen, R. A. & Tong, X. Endoplasmic reticulum stress and related pathological processes. J. Pharmacol. Biomed. Anal. 1, 1000107 (2013).
Yi, C. H., Vakifahmetoglu-Norberg, H. & Yuan, J. Integration of apoptosis and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 375–387 (2011).
Jia, G. & Sowers, J. R. Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim. Biophys. Acta 1852, 219–224 (2015).
Wensley, I., Salaveria, K., Bulmer, A. C., Donner, D. G. & du Toit, E. F. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp. Physiol. 98, 1552–1564 (2013).
Falskov, B. et al. The effect of chronic heart failure and type 2 diabetes on insulin-stimulated endothelial function is similar and additive. Vasc. Health Risk Manag. 7, 771–776 (2011).
Xie, Z. et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60, 1770–1778 (2011).
Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).
Zhou, X. et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension 55, 880–888 (2010).
Hayden, M. R., Habibi, J., Joginpally, T., Karuparthi, P. R. & Sowers, J. R. Ultrastructure study of transgenic Ren2 rat aorta — part 1: endothelium and intima. CardioRenal Med. 2, 66–82 (2012).
Blaha, M. J. et al. The relationship between insulin resistance and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 34, 749–751 (2011).
Olesen, P., Nguyen, K., Wogensen, L., Ledet, T. & Rasmussen, L. M. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am. J. Physiol. Heart Circ. Physiol. 292, H1058–H1064 (2007).
Yuan, L. Q. et al. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS ONE 6, e29037 (2011).
Iyngkaran, P., Anavekar, N., Majoni, W. & Thomas, M. C. The role and management of sympathetic overactivity in cardiovascular and renal complications of diabetes. Diabetes Metab. 39, 290–298 (2013).
Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118, 863–871 (2008).
Nistala, R. & Sowers, J. R. Hypertension: synergy of antihypertensives in elderly patients with CKD. Nat. Rev. Nephrol. 9, 13–15 (2013).
Tirosh, A., Garg, R. & Adler, G. K. Mineralocorticoid receptor antagonists and the metabolic syndrome. Curr. Hypertens. Rep. 12, 252–257 (2010).
McMaster, W. G., Kirabo, A., Madhur, M. S. & Harrison, D. G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 116, 1022–1033 (2015).
Hofmann, U. & Frantz, S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ. Res. 116, 354–367 (2015).
Mori, J. et al. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103–H1113 (2013).
Asrih, M. et al. Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm. 2013, 367245 (2013).
Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).
Sell, H., Habich, C. & Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709–716 (2012).
Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).
Yu, Q., Vazquez, R., Zabadi, S., Watson, R. R. & Larson, D. F. T-lymphocytes mediate left ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice. Matrix Biol. 29, 511–518 (2010).
Cao, Y., Xu, W. & Xiong, S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis. PLoS ONE 8, e74955 (2013).
He, S., Li, M., Ma, X., Lin, J. & Li, D. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 30, 2621–2630 (2010).
Erdei, T. et al. Pathophysiological rationale and diagnostic targets for diastolic stress testing. Heart 101, 1355–1360 (2015).
Dori, G., Rudman, M., Lichtenstein, O. & Schliamser, J. E. Ejection fraction in patients with heart failure and preserved ejection fraction is greater than that in controls — a mechanism facilitating left ventricular filling and maximizing cardiac output. Med. Hypotheses 79, 384–387 (2012).
De Boeck, B. W., Cramer, M. J., Oh, J. K., van der Aa, R. P. & Jaarsma, W. Spectral pulsed tissue Doppler imaging in diastole: a tool to increase our insight in and assessment of diastolic relaxation of the left ventricle. Am. Heart J. 146, 411–419 (2003).
Bostick, B. et al. Mineralocorticoid receptor blockade prevents western diet-induced diastolic dysfunction in female mice. Am. J. Physiol. Heart Circ. Physiol. 308, H1126–H1156 (2015).
Bostick, B. et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 63, 1000–1011 (2014).
Ernande, L. & Derumeaux, G. Diabetic cardiomyopathy: myth or reality? Arch. Cardiovasc. Dis. 105, 218–225 (2012).
Battiprolu, P. K., Gillette, T. G., Wang, Z. V., Lavandero, S. & Hill, J. A. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov. Today Dis. Mech. 7, e135–e143 (2010).
D'Souza, A. et al. Chronic effects of mild hyperglycaemia on left ventricle transcriptional profile and structural remodelling in the spontaneously type 2 diabetic Goto-Kakizaki rat. Heart Fail. Rev. 19, 65–74 (2014).
Boudina, S. & Abel, E. D. Diabetic cardiomyopathy revisited. Circulation 115, 3213–3223 (2007).
Manrique, C. et al. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a Western diet. Endocrinology 154, 3632–3642 (2013).
Rutter, M. K. et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 107, 448–454 (2003).
Mihailidou, A. S. & Ashton, A. W. Cardiac effects of aldosterone: does gender matter? Steroids 91, 32–37 (2014).
Barrett Mueller, K. et al. Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 155, 4461–4472 (2014).
Chen, L. et al. Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism 64, 338–347 (2015).
Hammer, S. et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J. Am. Coll. Cardiol. 52, 1006–1012 (2008).
Hare, J. L. et al. Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circ. Heart Fail. 4, 441–449 (2011).
Schrauwen-Hinderling, V. B. et al. Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content. J. Clin. Endocrinol. Metab. 95, 1932–1938 (2010).
Schrauwen-Hinderling, V. B. et al. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc. Diabetol. 10, 47 (2011).
Nickel, A., Loffler, J. & Maack, C. Myocardial energetics in heart failure. Basic Res. Cardiol. 108, 358 (2013).
Senanayake, E. L. et al. Multicentre double-blind randomized controlled trial of perhexiline as a metabolic modulator to augment myocardial protection in patients with left ventricular hypertrophy undergoing cardiac surgery. Eur. J. Cardiothorac. Surg. 48, 354–362 (2015).
Gao, D., Ning, N., Niu, X., Hao, G. & Meng, Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97, 278–286 (2011).
Sulaiman, M. et al. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 298, H833–H843 (2010).
Rabassa, M., Zamora-Ros, R., Urpi-Sarda, M. & Andres-Lacueva, C. Resveratrol metabolite profiling in clinical nutrition research — from diet to uncovering disease risk biomarkers: epidemiological evidence. Ann. NY Acad. Sci. 1348, 107–115 (2015).
Maier, L. S. et al. RAnoLazIne for the treatment of Diastolic Heart Failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 1, 115–122 (2013).
Doehner, W., Frenneaux, M. & Anker, S. D. Metabolic impairment in heart failure: the myocardial and systemic perspective. J. Am. Coll. Cardiol. 64, 1388–1400 (2014).
Dhalla, N. S., Temsah, R. M. & Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655–673 (2000).
Xu, Y. J., Tappia, P. S., Neki, N. S. & Dhalla, N. S. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail. Rev. 19, 113–121 (2014).
Szeto, H. H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 171, 2029–2050 (2014).
Huynh, K. et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 55, 1544–1553 (2012).
Mortensen, S. A. et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2, 641–649 (2014).
Mamas, M. A. et al. Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J. Card. Fail. 16, 761–768 (2010).
Sacca, L. Heart failure as a multiple hormonal deficiency syndrome. Circ. Heart Fail. 2, 151–156 (2009).
Sacca, L. & Napoli, R. Insulin resistance in chronic heart failure: a difficult bull to take by the horns. Nutr. Metab. Cardiovasc. Dis. 19, 303–305 (2009).
von Bibra, H. & St John Sutton, M. Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr. Heart Fail. Rep. 8, 242–251 (2011).
Wong, A. K. et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur. J. Heart Fail. 14, 1303–1310 (2012).
Kolwicz, S. C. Jr., Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).
Inzucchi, S. E. et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab. Vasc. Dis. Res. 12, 90–100 (2015).
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1504720 (2015).
Huynh, K., Bernardo, B. C., McMullen, J. R. & Ritchie, R. H. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 142, 375–415 (2014).
Drawnel, F. M. et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 9, 810–821 (2014).
Meloni, M. et al. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 61, 229–240 (2012).
Katare, R. et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ. Res. 108, 1238–1251 (2011).
Greco, S. et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 61, 1633–1641 (2012).
Acknowledgements
The authors thank Brenda Hunter (Diabetes and Cardiovascular Center, University of Missouri School of Medicine, USA) for editorial assistance. The authors' research was supported by the NIH (grants R01 HL73101-01A and R01 HL107910-01) for J.R.S and the Veterans Affairs Merit System (grant 0018) for J.R.S.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Jia, G., DeMarco, V. & Sowers, J. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12, 144–153 (2016). https://doi.org/10.1038/nrendo.2015.216
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrendo.2015.216
This article is cited by
-
Association of non-insulin-based insulin resistance indices with disease severity and adverse outcome in idiopathic pulmonary arterial hypertension: a multi-center cohort study
Cardiovascular Diabetology (2024)
-
The association between triglyceride glucose-body mass index and all-cause mortality in critically ill patients with atrial fibrillation: a retrospective study from MIMIC-IV database
Cardiovascular Diabetology (2024)
-
Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway
Cardiovascular Diabetology (2024)
-
The relationship between HbA1c control pattern and atherosclerosis progression of diabetes: a prospective study of Chinese population
Diabetology & Metabolic Syndrome (2024)
-
The worsening effect of paroxysmal atrial fibrillation on left ventricular function and deformation in type 2 diabetes mellitus patients: a 3.0 T cardiovascular magnetic resonance feature tracking study
Cardiovascular Diabetology (2024)