Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nongenomic actions of thyroid hormone

Key Points

  • The nongenomic actions of thyroid hormone include the modulation of angiogenesis and stimulation of proliferation of tumour cells and osteocytes; cytoskeletal microfilaments and mitochondrial respiration can also be nongenomically regulated

  • Nongenomic actions are initiated at receptors other than the intranuclear thyroid hormone receptors that mediate genomic effects initiated by T3

  • These receptors might be structurally related to nuclear thyroid hormone receptors, such as truncated TRα isoforms in mitochondria, in the cytoplasm or at the plasma membrane

  • The receptors can also be structurally unrelated to thyroid hormone receptors, for example, the receptor on plasma membrane integrin αvβ3

  • T4 itself might initiate nongenomic functions mediated by integrin αvβ3

  • The nongenomic and genomic actions of thyroid hormone can overlap, for example, T4 regulates intracellular trafficking of proteins, including hormone receptors, and consequently the phosphorylation of intranuclear thyroid hormone receptors

Abstract

The nongenomic actions of thyroid hormone begin at receptors in the plasma membrane, mitochondria or cytoplasm. These receptors can share structural homologies with nuclear thyroid hormone receptors (TRs) that mediate transcriptional actions of T3, or have no homologies with TR, such as the plasma membrane receptor on integrin αvβ3. Nongenomic actions initiated at the plasma membrane by T4 via integrin αvβ3 can induce gene expression that affects angiogenesis and cell proliferation, therefore, both nongenomic and genomic effects can overlap in the nucleus. In the cytoplasm, a truncated TRα isoform mediates T4-dependent regulation of intracellular microfilament organization, contributing to cell and tissue structure. p30 TRα1 is another shortened TR isoform found at the plasma membrane that binds T3 and mediates nongenomic hormonal effects in bone cells. T3 and 3,5-diiodo-L-thyronine are important to the complex nongenomic regulation of cellular respiration in mitochondria. Thus, nongenomic actions expand the repertoire of cellular events controlled by thyroid hormone and can modulate TR-dependent nuclear events. Here, we review the experimental approaches required to define nongenomic actions of the hormone, enumerate the known nongenomic effects of the hormone and their molecular basis, and discuss the possible physiological or pathophysiological consequences of these actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nongenomic actions of thyroid hormone.
Figure 2: T4 interactions with human TRΔα1 ligand binding domain.
Figure 3: Mechanisms of direct actions of iodothyronines T3 and T2 on mitochondria.

Similar content being viewed by others

References

  1. Cheng, S. Y., Leonard, J. L. & Davis, P. J. Molecular aspects of thyroid hormone actions. Endocr. Rev. 31, 139–170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Davis, P. J., Davis, F. B., Mousa, S. A., Luidens, M. K. & Lin, H. Y. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu. Rev. Pharmacol. Toxicol. 51, 99–115 (2011).

    CAS  PubMed  Google Scholar 

  3. Sterling, K., Brenner, M. A. & Sakurada, T. Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science 210, 340–342 (1980).

    CAS  PubMed  Google Scholar 

  4. Siegrist-Kaiser, C. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M. & Leonard, J. L. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J. Biol. Chem. 265, 5296–5302 (1990).

    CAS  PubMed  Google Scholar 

  5. Mylotte, K. M. et al. Milrinone and thyroid hormone stimulate myocardial membrane Ca2+-ATPase activity and share structural homologies. Proc. Natl Acad. Sci. USA 82, 7974–7978 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Davis, P. J., Davis, F. B. & Lawrence, W. D. Thyroid hormone regulation of membrane Ca2+-ATPase activity. Endocr. Res. 15, 651–682 (1989).

    CAS  PubMed  Google Scholar 

  7. Lin, H. Y. et al. Nongenomic regulation by thyroid hormone of plasma membrane ion and small molecule pumps. Discov. Med. 14, 199–206 (2012).

    PubMed  Google Scholar 

  8. Davis, F. B., Cody, V., Davis, P. J., Borzynski, L. J. & Blas, S. D. Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J. Biol. Chem. 258, 12373–12377 (1983).

    CAS  PubMed  Google Scholar 

  9. Nieman, L. K. et al. Effect of end-stage renal disease on responsiveness to calmodulin and thyroid hormone of calcium-ATPase in human red blood cells. Kidney Int. Suppl. 16, S167–S170 (1983).

    CAS  PubMed  Google Scholar 

  10. Lei, J., Bhargava, M. & Ingbar, D. H. Cell-specific signal transduction pathways regulating Na+-K+-ATPase. Focus on 'short-term effects of thyroid hormones on the Na+-K+-ATPase activity of chick embryo hepatocytes during development: focus on signal transduction'. Am. J. Physiol. Cell Physiol. 296, C1–C3 (2009).

    CAS  PubMed  Google Scholar 

  11. Lei, J., Mariash, C. N. & Ingbar, D. H. 3,3′,5-triiodo-l-thyronine up-regulation of Na,K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J. Biol. Chem. 279, 47589–47600 (2004).

    CAS  PubMed  Google Scholar 

  12. Kahaly, G. J. & Dillmann, W. H. Thyroid hormone action in the heart. Endocr. Rev. 26, 704–728 (2005).

    CAS  PubMed  Google Scholar 

  13. Lin, H. Y. et al. Potentiation by thyroid hormone of human IFN-γ-induced HLA-DR expression. J. Immunol. 161, 843–849 (1998).

    CAS  PubMed  Google Scholar 

  14. Grasselli, E. et al. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J. Endocrinol. 210, 59–69 (2011).

    CAS  PubMed  Google Scholar 

  15. Lin, H. Y., Davis, F. B., Gordinier, J. K., Martino, L. J. & Davis, P. J. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am. J. Physiol. 276, C1014–C1024 (1999).

    CAS  PubMed  Google Scholar 

  16. Lin, H. Y., Shih, A., Davis, F. B. & Davis, P. J. Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochem. J. 338, 427–432 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shih, A., Lin, H. Y., Davis, F. B. & Davis, P. J. Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry 40, 2870–2878 (2001).

    CAS  PubMed  Google Scholar 

  18. Davis, F. B. et al. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ. Res. 94, 1500–1506 (2004).

    CAS  PubMed  Google Scholar 

  19. Cao, H. J., Lin, H. Y., Luidens, M. K., Davis, F. B. & Davis, P. J. Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-β1 (Trβ1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr. Res. 34, 31–42 (2009).

    PubMed  Google Scholar 

  20. Lin, H. Y. et al. L-thyroxine versus 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am. J. Physiol. Cell Physiol. 296, C980–C991 (2009).

    CAS  PubMed  Google Scholar 

  21. Tang, H. Y., Lin, H. Y., Zhang, S., Davis, F. B. & Davis, P. J. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145, 3265–3272 (2004).

    CAS  PubMed  Google Scholar 

  22. Hammes, S. R. & Davis, P. J. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract. Res. Clin. Endocrinol. Metab. 29, 581–593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bharali, D. J., Yalcin, M., Davis, P. J. & Mousa, S. A. Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomed. (Lond.) 8, 1943–1954 (2013).

    CAS  Google Scholar 

  24. Bergh, J. J. et al. Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146, 2864–2871 (2005).

    CAS  PubMed  Google Scholar 

  25. Davis, P. J. et al. Cancer cell gene expression modulated from plasma membrane integrin αvβ3 by thyroid hormone and nanoparticulate tetrac. Front. Endocrinol. (Lausanne) 5, 240 (2014).

    Google Scholar 

  26. Davis, P. J. et al. Corrigendum: 'cancer cell gene expression modulated from plasma membrane integrin αvβ3 by thyroid hormone and nanoparticulate tetrac'. Front. Endocrinol. (Lausanne) 6, 98 (2015).

    Google Scholar 

  27. Lin, H. Y. et al. Nuclear monomeric integrin αv in cancer cells is a coactivator regulated by thyroid hormone. FASEB J. 27, 3209–3216 (2013).

    CAS  PubMed  Google Scholar 

  28. Goolden, A. W., Gartside, J. M., Jackson, D. J. & Osorio, C. Uptake of 131I triiodothyronine by red cells. A diagnostic test of thyroid function. Lancet 2, 218–220 (1962).

    CAS  PubMed  Google Scholar 

  29. Walfish, P. G., Britton, A., Volpe, R. & Ezrin, C. Experience with an in vitro test of thyroid function — the red blood cell uptake of l-triiodothyronine labelled with radioactive iodine. Can. Med. Assoc. J. 84, 637–641 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalyanaraman, H. et al. Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci. Signal. 7, ra48 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Chen, Y. et al. Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection. PLoS ONE 7, e41445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vié, M. P. et al. Purification, molecular cloning, and functional expression of the human nicodinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol. Endocrinol. 11, 1728–1736 (1997).

    PubMed  Google Scholar 

  33. Osty, J., Rappaport, L., Samuel, J. L. & Lennon, A. M. Characterization of a cytosolic triiodothyronine binding protein in atrium and ventricle of rat heart with different sensitivity toward thyroid hormone levels. Endocrinology 122, 1027–1033 (1988).

    CAS  PubMed  Google Scholar 

  34. Nishii, Y. et al. Changes in cytosolic 3,5,3′-tri-iodo-l-thyronine (T3) binding activity during administration of L-thyroxine to thyroidectomized rats: cytosolic T3-binding protein and its activator act as intracellular regulators for nuclear T3 binding. J. Endocrinol. 123, 99–104 (1989).

    CAS  PubMed  Google Scholar 

  35. Ashizawa, K. & Cheng, S. Y. Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc. Natl Acad. Sci. USA 89, 9277–9281 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takeshige, K. et al. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells. Endocr. J. 61, 561–570 (2014).

    CAS  PubMed  Google Scholar 

  37. Fanjul, A. N. & Farias, R. N. Cold-sensitive cytosolic 3,5,3′-triiodo-l-thyronine-binding protein and pyruvate kinase from human erythrocytes share similar regulatory properties of hormone binding by glycolytic intermediates. J. Biol. Chem. 268, 175–179 (1993).

    CAS  PubMed  Google Scholar 

  38. Hallen, A., Cooper, A. J., Jamie, J. F. & Karuso, P. Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/mu-crystallin under physiological conditions. Neurochem. Res. 40, 1252–1266 (2015).

    CAS  PubMed  Google Scholar 

  39. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    CAS  PubMed  Google Scholar 

  40. Lin, H. Y. et al. Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov. Med. 11, 337–347 (2011).

    PubMed  Google Scholar 

  41. Cody, V., Davis, P. J. & Davis, F. B. Molecular modeling of the thyroid hormone interactions with αvβ3 integrin. Steroids 72, 165–170 (2007).

    CAS  PubMed  Google Scholar 

  42. Hoffman, S. J. et al. Rapid inhibition of thyroxine-induced bone resorption in the rat by an orally active vitronectin receptor antagonist. J. Pharmacol. Exp. Ther. 302, 205–211 (2002).

    CAS  PubMed  Google Scholar 

  43. Lin, H. Y. et al. Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput. Biol. 7, e1001073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, X., Zheng, N., Shi, Y. N., Yuan, J. & Li, L. Thyroid hormone induced angiogenesis through the integrin αvβ3/protein kinase D/histone deacetylase 5 signaling pathway. J. Mol. Endocrinol. 52, 245–254 (2014).

    CAS  PubMed  Google Scholar 

  45. D'Arezzo, S. et al. Rapid nongenomic effects of 3,5,3′-triiodo-l-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145, 5694–5703 (2004).

    CAS  PubMed  Google Scholar 

  46. Lei, J., Mariash, C. N., Bhargava, M., Wattenberg, E. V. & Ingbar, D. H. T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L749–L754 (2008).

    CAS  PubMed  Google Scholar 

  47. Yonkers, M. A. & Ribera, A. B. Sensory neuron sodium current requires nongenomic actions of thyroid hormone during development. J. Neurophysiol. 100, 2719–2725 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Yonkers, M. A. & Ribera, A. B. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Dev. 4, 20 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Cao, J. H. et al. L-thyroxine attenuates pyramidal neuron excitability in rat acute prefrontal cortex slices. Immunol. Endocr. Metab. Agents Med. Chem. 11, 152–156 (2011).

    CAS  Google Scholar 

  50. Carvalho, F. A. et al. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 4, 4609–4620 (2010).

    CAS  PubMed  Google Scholar 

  51. Odievre, M. H. et al. Modulation of erythroid adhesion receptor expression by hydroxyurea in children with sickle cell disease. Haematologica 93, 502–510 (2008).

    CAS  PubMed  Google Scholar 

  52. Zanatta, A. P., Zanatta, L., Goncalves, R., Zamoner, A. & Silva, F. R. Integrin participates in the effect of thyroxine on plasma membrane in immature rat testis. Biochim. Biophys. Acta 1830, 2629–2637 (2013).

    CAS  PubMed  Google Scholar 

  53. Scarlett, A. et al. Thyroid hormone stimulation of extracellular signal-regulated kinase and cell proliferation in human osteoblast-like cells is initiated at integrin αVβ3. J. Endocrinol. 196, 509–517 (2008).

    CAS  PubMed  Google Scholar 

  54. Cayrol, F. et al. Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood 125, 841–851 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barbakadze, T., Natsvlishvili, N. & Mikeladze, D. Thyroid hormones differentially regulate phosphorylation of ERK and Akt via integrin αvβ3 receptor in undifferentiated and differentiated PC-12 cells. Cell Biochem. Funct. 32, 282–286 (2014).

    CAS  PubMed  Google Scholar 

  56. Schmohl, K. A. et al. Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocr. Relat. Cancer 22, 941–952 (2015).

    CAS  PubMed  Google Scholar 

  57. Zvibel, I., Atias, D., Phillips, A., Halpern, Z. & Oren, R. Thyroid hormones induce activation of rat hepatic stellate cells through increased expression of p75 neurotrophin receptor and direct activation of Rho. Lab. Invest. 90, 674–684 (2010).

    CAS  PubMed  Google Scholar 

  58. Dekkers, B. G. et al. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L301–L306 (2015).

    CAS  PubMed  Google Scholar 

  59. Stenzel, D., Wilsch-Brauninger, M., Wong, F. K., Heuer, H. & Huttner, W. B. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141, 795–806 (2014).

    CAS  PubMed  Google Scholar 

  60. Mousa, S. A., O'Connor, L., Davis, F. B. & Davis, P. J. Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147, 1602–1607 (2006).

    CAS  PubMed  Google Scholar 

  61. Mousa, S. A. et al. The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J. Cardiovasc. Pharmacol. 46, 356–360 (2005).

    CAS  PubMed  Google Scholar 

  62. Mousa, S. S., Davis, F. B., Davis, P. J. & Mousa, S. A. Human platelet aggregation and degranulation is induced in vitro by l-thyroxine, but not by 3,5,3′-triiodo-l-thyronine or diiodothyropropionic acid (DITPA). Clin. Appl. Thromb. Hemost. 16, 288–293 (2010).

    PubMed  Google Scholar 

  63. Horacek, J. et al. Prothrombotic changes due to an increase in thyroid hormone levels. Eur. J. Endocrinol. 172, 537–542 (2015).

    CAS  PubMed  Google Scholar 

  64. Yalcin, M. et al. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J. Clin. Endocrinol. Metab. 95, 1972–1980 (2010).

    CAS  PubMed  Google Scholar 

  65. Glinskii, A. B. et al. Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8, 3562–3570 (2009).

    CAS  PubMed  Google Scholar 

  66. Mousa, S. A. et al. Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 76, 39–45 (2012).

    PubMed  Google Scholar 

  67. Yalcin, M. et al. Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles. Horm. Cancer 4, 176–185 (2013).

    CAS  PubMed  Google Scholar 

  68. Yalcin, M. et al. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 29, 3825–3831 (2009).

    CAS  PubMed  Google Scholar 

  69. Yoshida, T., Gong, J., Xu, Z., Wei, Y. & Duh, E. J. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp. Eye Res. 94, 41–48 (2012).

    CAS  PubMed  Google Scholar 

  70. Freindorf, M. et al. Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J. Biomed. Biotechnol. 2012, 959057 (2012).

    PubMed  PubMed Central  Google Scholar 

  71. Yalcin, M. et al. Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 20, 281–286 (2010).

    CAS  PubMed  Google Scholar 

  72. Meng, R. et al. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells. PLoS ONE 6, e27547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schweizer, U., Johannes, J., Bayer, D. & Braun, D. Structure and function of thyroid hormone plasma membrane transporters. Eur. Thyroid J. 3, 143–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Visser, W. E., Friesema, E. C. & Visser, T. J. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fu, J., Refetoff, S. & Dumitrescu, A. M. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr. Opin. Endocrinol. Diabetes Obes. 20, 434–440 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

    CAS  PubMed  Google Scholar 

  77. Horn, S. & Heuer, H. Thyroid hormone action during brain development: more questions than answers. Mol. Cell. Endocrinol. 315, 19–26 (2010).

    CAS  PubMed  Google Scholar 

  78. Schroeder, A. C. & Privalsky, M. L. Thyroid hormones, T3 and T4, in the brain. Front. Endocrinol. (Lausanne) 5, 40 (2014).

    Google Scholar 

  79. Morte, B. & Bernal, J. Thyroid hormone action: astrocyte–neuron communication. Front. Endocrinol. (Lausanne) 5, 82 (2014).

    Google Scholar 

  80. Leonard, J. L. Regulation of T3 production in the brain. Acta Med. Austriaca 19 (Suppl. 1), 5–8 (1992).

    PubMed  Google Scholar 

  81. Visser, T. J. Pathways of thyroid hormone metabolism. Acta Med. Austriaca 23, 10–16 (1996).

    CAS  PubMed  Google Scholar 

  82. Kuiper, G. G., Kester, M. H., Peeters, R. P. & Visser, T. J. Biochemical mechanisms of thyroid hormone deiodination. Thyroid 15, 787–798 (2005).

    CAS  PubMed  Google Scholar 

  83. Farwell, A. P., Lynch, R. M., Okulicz, W. C., Comi, A. M. & Leonard, J. L. The actin cytoskeleton mediates the hormonally regulated translocation of type II iodothyronine 5′-deiodinase in astrocytes. J. Biol. Chem. 265, 18546–18553 (1990).

    CAS  PubMed  Google Scholar 

  84. Farwell, A. P. & Leonard, J. L. in Recent Research Developments in Neuroendocrinology — Thyroid Hormone and Brain Maturation (ed. Hendrich, C. E.) 113–130 (Research Signpost, 1997).

    Google Scholar 

  85. Faivre-Sarrailh, C. & Rabie, A. Developmental study of factors controlling microtubule in vitro cold-stability in rat cerebrum. Brain Res. 470, 199–204 (1988).

    CAS  PubMed  Google Scholar 

  86. Farwell, A. P., Dubord-Tomasetti, S. A., Pietrzykowski, A. Z. & Leonard, J. L. Dynamic nongenomic actions of thyroid hormone in the developing rat brain. Endocrinology 147, 2567–2574 (2006).

    CAS  PubMed  Google Scholar 

  87. Venstrom, K. A. & Reichardt, L. F. Extracellular matrix 2: role of extracellular matrix molecules and their receptors in the nervous system. FASEB J. 7, 996–1003 (1993).

    CAS  PubMed  Google Scholar 

  88. Liesi, P. Extracellular matrix and neuronal movement. Experientia 46, 900–907 (1990).

    CAS  PubMed  Google Scholar 

  89. Liesi, P. & Silver, J. Is astrocyte laminin involved in axon guidance in the mammalian CNS? Dev. Biol. 130, 774–785 (1988).

    CAS  PubMed  Google Scholar 

  90. Liesi, P. Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones. EMBO J. 4, 2505–2511 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hager, G., Dodt, H. U., Zieglgänsberger, W. & Liesi, P. Novel forms of neuronal migration in the rat cerebellum. J. Neurosci. Res. 40, 207–219 (1995).

    CAS  PubMed  Google Scholar 

  92. Farwell, A. P. & Dubord-Tomasetti, S. A. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology 140, 4221–4227 (1999).

    CAS  PubMed  Google Scholar 

  93. Ruoslahti, E. Integrins. J. Clin. Invest. 87, 1–5 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hynes, R. O. Integrin: versitility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    CAS  PubMed  Google Scholar 

  95. Maartens, A. P. & Brown, N. H. Anchors and signals: the diverse roles of integrins in development. Curr. Top. Dev. Biol. 112, 233–272 (2015).

    CAS  PubMed  Google Scholar 

  96. Farwell, A. P., Tranter, M. P. & Leonard, J. L. Thyroxine-dependent regulation of integrin–laminin interactions in astrocytes. Endocrinology 136, 3909–3915 (1995).

    CAS  PubMed  Google Scholar 

  97. Farwell, A. P. & Dubord, S. A. Thyroid hormone regulates neurite outgrowth and neuronal migration onto laminin. Thyroid 6, S-27 (1996).

    Google Scholar 

  98. Farwell, A. P. & Dubord-Tomasetti, S. A. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology 140, 5014–5021 (1999).

    CAS  PubMed  Google Scholar 

  99. Dodd, J. & Jessel, T. M. Axon guidance and the patterning of neuronal projections in vertebrates. Science 242, 692–699 (1988).

    CAS  PubMed  Google Scholar 

  100. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    CAS  PubMed  Google Scholar 

  101. McKerracher, L., Chamoux, M. & Arregui, C. O. Role of laminin and integrin interactions in growth cone guidance. Mol. Neurobiol. 12, 95–116 (1996).

    CAS  PubMed  Google Scholar 

  102. Schmidt, C. E., Dai, J., Lauffenburger, D. A., Sheetz, M. P. & Horwitz, A. F. Integrin–cytoskeletal interactions in neuronal growth cones. J. Neurosci. 15, 3400–3407 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Farwell, A. P., Dubord-Tomasetti, S. A., Pietrzykowski, A. Z., Stachelek, S. J. & Leonard, J. L. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′-triiodothyronine. Brain Res. Dev. Brain Res. 154, 121–135 (2005).

    CAS  PubMed  Google Scholar 

  104. Safran, M., Farwell, A., Rokos, H. & Leonard, J. Structural requirements of iodothyronines for the rapid inactivation and internalization of type II iodothyronine 5′-deiodinase in glial cells. J. Biol. Chem. 268, 14224–14229 (1993).

    CAS  PubMed  Google Scholar 

  105. Chassande, O. et al. Identification of transcripts initiated from an internal promoter in the c-erbAα locus that encode inhibitors of retinoic acid receptor-α and triiodothyronine receptor activities. Mol. Endocrinol. 11, 1278–1290 (1997).

    CAS  PubMed  Google Scholar 

  106. Ribeiro, R. C. et al. X-ray crystallographic and functional studies of thyroid hormone receptor. J. Steroid Biochem. Mol. Biol. 65, 133–141 (1998).

    CAS  PubMed  Google Scholar 

  107. Wagner, R. L. et al. A structural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 (1995).

    CAS  PubMed  Google Scholar 

  108. Wagner, R. L. et al. Hormone selectivity in thyroid hormone receptors. Mol. Endocrinol. 15, 398–410 (2001).

    CAS  PubMed  Google Scholar 

  109. Furuya, F. et al. Nuclear receptor corepressor is a novel regulator of phosphatidylinositol 3-kinase signaling. Mol. Cell. Biol. 27, 6116–6126 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu, C., Willingham, M. C., Furuya, F. & Cheng, S. Y. Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors. Endocrinology 149, 3339–3345 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fozzatti, L., Lu, C., Kim, D. W. & Cheng, S. Y. Differential recruitment of nuclear coregulators directs the isoform-dependent action of mutant thyroid hormone receptors. Mol. Endocrinol. 25, 908–921 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hanna, S. & El-Sibai, M. Signaling networks of Rho GTPases in cell motility. Cell. Signal. 25, 1955–1961 (2013).

    CAS  PubMed  Google Scholar 

  113. Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).

    CAS  PubMed  Google Scholar 

  114. Verga Falzacappa, C. et al. Thyroid hormone receptor TRβ1 mediates Akt activation by T3 in pancreatic β cells. J. Mol. Endocrinol. 38, 221–233 (2007).

    PubMed  Google Scholar 

  115. Martin, N. P. et al. A rapid cytoplasmic mechanism for PI3 kinase regulation by the nuclear thyroid hormone receptor, TRβ, and genetic evidence for its role in the maturation of mouse hippocampal synapses in vivo. Endocrinology 155, 3713–3724 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Hiroi, Y. et al. Rapid nongenomic actions of thyroid hormone. Proc. Natl Acad. Sci. USA 103, 14104–14109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Magnus-Levy, A. Uber den respiratorischen Gaswechechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen pathologischen Zustanden. Berlin Klinische Wochenschrift 32, 650–652 (1895).

    Google Scholar 

  118. Yehuda-Shnaidman, E., Kalderon, B. & Bar-Tana, J. Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr. Rev. 35, 35–58 (2014).

    CAS  PubMed  Google Scholar 

  119. Cioffi, F., Senese, R., Lanni, A. & Goglia, F. Thyroid hormones and mitochondria: with a brief look at derivatives and analogues. Mol. Cell. Endocrinol. 379, 51–61 (2013).

    CAS  PubMed  Google Scholar 

  120. Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell. Endocrinol. 342, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  121. Sterling, K. & Milch, P. O. Thyroid hormone binding by a component of mitochondrial membrane. Proc. Natl Acad. Sci. USA 72, 3225–3229 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Goglia, F., Torresani, J., Bugli, P., Barletta, A. & Liverini, G. In vitro binding of triiodothyronine to rat liver mitochondria. Pflugers Arch. 390, 120–124 (1981).

    CAS  PubMed  Google Scholar 

  123. Morel, G., Ricard-Blum, S. & Ardail, D. Kinetics of internalization and subcellular binding sites for T3 in mouse liver. Biol. Cell 86, 167–174 (1996).

    CAS  PubMed  Google Scholar 

  124. Wrutniak, C. et al. A 43-kDa protein related to c-Erb A α1 is located in the mitochondrial matrix of rat liver. J. Biol. Chem. 270, 16347–16354 (1995).

    CAS  PubMed  Google Scholar 

  125. Wrutniak-Cabello, C., Casas, F. & Cabello, G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 26, 67–77 (2001).

    CAS  PubMed  Google Scholar 

  126. Casas, F. et al. A variant form of the nuclear triiodothyronine receptor c-Erb A α1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell. Biol. 19, 7913–7924 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pessemesse, L. et al. p28, a truncated form of TRα1 regulates mitochondrial physiology. FEBS Lett. 588, 4037–4043 (2014).

    CAS  PubMed  Google Scholar 

  128. Horst, C., Rokos, H. & Seitz, H. J. Rapid stimulation of hepatic oxygen consumption by 3,5-di-iodo-l-thyronine. Biochem. J. 261, 945–950 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tata, J. R., Ernster, L. & Lindberg, O. Control of basal metabolic rate by thyroid hormones and cellular function. Nature 193, 1058–1060 (1962).

    CAS  PubMed  Google Scholar 

  130. Moreno, M., Lanni, A., Lombardi, A. & Goglia, F. How the thyroid controls metabolism in the rat: different roles for triiodothyronine and diiodothyronines. J. Physiol. 505, 529–538 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tata, J. R. Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature 197, 1167–1168 (1963).

    CAS  PubMed  Google Scholar 

  132. Lombardi, A. et al. 3,5-diiodo-l-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats. PLoS ONE 10, e0116498 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Padron, A. S. et al. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J. Endocrinol. 221, 415–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Goglia, F., Lanni, A., Horst, C., Moreno, M. & Thoma, R. In vitro binding of 3,5-di-iodo-l-thyronine to rat liver mitochondria. J. Mol. Endocrinol. 13, 275–282 (1994).

    CAS  PubMed  Google Scholar 

  135. Arnold, S., Goglia, F. & Kadenbach, B. 3,5-diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem. 252, 325–330 (1998).

    CAS  PubMed  Google Scholar 

  136. Navarrete-Ramirez, P., Luna, M., Valverde, R. C. & Orozco, A. 3,5-di-iodothyronine stimulates tilapia growth through an alternate isoform of thyroid hormone receptor β1. J. Mol. Endocrinol. 52, 1–9 (2014).

    CAS  PubMed  Google Scholar 

  137. Lanni, A. et al. 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J. 19, 1552–1554 (2005).

    CAS  PubMed  Google Scholar 

  138. Moreno, M. et al. 3,5-diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J. 25, 3312–3324 (2011).

    CAS  PubMed  Google Scholar 

  139. de Lange, P. et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-l-thyronine in rats. Diabetes 60, 2730–2739 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem. 288, 30365–30372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shang, G. et al. 3,5-diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim. Biophys. Acta 1832, 674–684 (2013).

    CAS  PubMed  Google Scholar 

  142. Jonas, W. et al. 3,5-diiodo-l-thyronine (3,5-T2) exerts thyromimetic effects on hypothalamus–pituitary–thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156, 389–399 (2015).

    PubMed  Google Scholar 

  143. Goldberg, I. J. et al. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153, 5143–5149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Luidens, M. K., Mousa, S. A., Davis, F. B., Lin, H. Y. & Davis, P. J. Thyroid hormone and angiogenesis. Vascul. Pharmacol. 52, 142–145 (2010).

    CAS  PubMed  Google Scholar 

  145. Bogaard, H. J. et al. Severe pulmonary hypertension: the role of metabolic and endocrine disorders. Pulm. Circ. 2, 148–154 (2012).

    PubMed  PubMed Central  Google Scholar 

  146. Al Husseini, A. et al. Thyroid hormone is highly permissive in angioproliferative pulmonary hypertension in rats. Eur. Respir. J. 41, 104–114 (2013).

    CAS  PubMed  Google Scholar 

  147. Lin, H. Y., Glinsky, G. V., Mousa, S. A. & Davis, P. J. Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget 6, 14735–14743 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Mousa, S. A. et al. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis 17, 463–469 (2014).

    CAS  PubMed  Google Scholar 

  149. Cohen, K. et al. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget 5, 6312–6322 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Cohen, K. et al. Relevance of the thyroid hormones–αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leuk. Lymphoma 56, 1107–1114 (2015).

    CAS  PubMed  Google Scholar 

  151. Davis, P. J., Hercbergs, A., Luidens, M. K. & Lin, H. Y. Recurrence of differentiated thyroid carcinoma during full TSH suppression: is the tumor now thyroid hormone dependent? Horm. Cancer 6, 7–12 (2015).

    CAS  PubMed  Google Scholar 

  152. Lin, H. Y. et al. The pro-apoptotic action of stilbene-induced COX-2 in cancer cells: convergence with the anti-apoptotic effect of thyroid hormone. Cell Cycle 8, 1877–1882 (2009).

    CAS  PubMed  Google Scholar 

  153. Rudinger, A., Mylotte, K. M., Davis, P. J., Davis, F. B. & Blas, S. D. Rabbit myocardial membrane Ca2+-adenosine triphosphatase activity: stimulation in vitro by thyroid hormone. Arch. Biochem. Biophys. 229, 379–385 (1984).

    CAS  PubMed  Google Scholar 

  154. Zinman, T., Shneyvays, V., Tribulova, N., Manoach, M. & Shainberg, A. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J. Cell. Physiol. 207, 220–231 (2006).

    CAS  PubMed  Google Scholar 

  155. Forini, F. et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155, 4581–4590 (2014).

    PubMed  Google Scholar 

  156. Bertrand, C. et al. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging. PLoS ONE 8, e75111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cohen, K. et al. Relevance of the thyroid hormones–αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leuk. Lymphoma 56, 1107–1114 (2014).

    PubMed  Google Scholar 

  158. Gnoni, G. V. et al. 3,5,3′triiodo-l-thyronine induces SREBP-1 expression by non-genomic actions in human HEP G2 cells. J. Cell. Physiol. 227, 2388–2397 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. A. Keating (Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, USA) provided invaluable editorial assistance to the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Paul J. Davis.

Ethics declarations

Competing interests

P.J.D. is co-inventor of a nanoparticulate formulation of tetrac and a minority stockholder in the company that owns the patent. F.G. and J.L.L. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, P., Goglia, F. & Leonard, J. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12, 111–121 (2016). https://doi.org/10.1038/nrendo.2015.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing