Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein acetylation in metabolism — metabolites and cofactors

Key Points

  • Acetylation is a key post-translational modification that integrates metabolic flux and physiological processes within cells, including circadian rhythm, cell cycle and energy production

  • Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) are responsible for reversible changes in protein acetylation status

  • Metabolites or cofactors, including nicotinamide adenine dinucleotide (NAD+), nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status with cellular and organismal homeostasis

  • The association between NAD+ and sirtuin-mediated mitochondrial improvements is clinically relevant, but the translational potential between other metabolites and cofactors and acetylation and/or deactylation reactions is less clear

Abstract

Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of acetylation and deacetylation.
Figure 2: Regulation of energy metabolism by zinc-dependent KDACs.
Figure 3: NAD+ and acetyl-CoA subcellular distributions in mammals and yeast.
Figure 4: Cytosolic–mitochondrial NAD+/NADH shuttles in yeast and mammalian cells.
Figure 5: Pathways leading to the NAD+ production.
Figure 6: Cross-compartmental junctions in cellular NAD+ metabolism.
Figure 7: Metabolic signalling and NAD+ homeostasis during health and disease.

Similar content being viewed by others

References

  1. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Canto, C., Sauve, A. A. & Bai, P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 34, 1168–1201 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Beausoleil, S. A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, 90 (2011).

    Article  PubMed Central  CAS  Google Scholar 

  5. Starheim, K. K., Gevaert, K. & Arnesen, T. Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37, 152–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, X.-J. & Grégoire, S. Metabolism, cytoskeleton and cellular signalling in the grip of protein Nε- and O-acetylation. EMBO Rep. 8, 556–562 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kaelin, W. G. & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Menzies, K. & Auwerx, J. An acetylation rheostat for the control of muscle energy homeostasis. J. Mol. Endocrinol. 51, T101–T113 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-Carrillo, A., Wangh, L. J. & Allfrey, V. G. Processing of newly synthesized histone molecules. Science 190, 117–128 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Carrozza, M. J., Utley, R. T., Workman, J. L. & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19, 321–329 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu, X. et al. Transcriptional repression by histone deacetylases in plants. Mol. Plant 7, 764–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hall, J. A., Dominy, J. E., Lee, Y. & Puigserver, P. The sirtuin family's role in aging and age-associated pathologies. J. Clin. Invest. 123, 973–979 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Rodgers, J. T. & Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. USA 104, 12861–12866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Menzies, K. J., Singh, K., Saleem, A. & Hood, D. A. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem. 288, 6968–6979 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675–690 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Gerhart-Hines, Z. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26, 1913–1923 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cantó, C. & Auwerx, J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol. Rev. 64, 166–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dominy, J. E. Jr et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 48, 900–913 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659–672 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Feldman, J. L., Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350–31356 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yoshizawa, T. et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 19, 712–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. (2014).

  43. Shin, J. et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654–665 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mohrin, M. et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vakhrusheva, O. et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703–710 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Jing, E., Gesta, S. & Kahn, C. R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105–114 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lin, R. et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51, 506–518 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jiang, W. et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43, 33–44 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bobrowska, A., Donmez, G., Weiss, A., Guarente, L. & Bates, G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS ONE 7, e34805 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Beirowski, B. et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc. Natl Acad. Sci. USA 108, E952–E961 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taes, I. et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum. Mol. Genet. 22, 1783–1790 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 27, 8807–8814 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shimazu, T. et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654–661 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802–812 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jing, E. et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl Acad. Sci. USA 108, 14608–14613 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fernandez-Marcos, P. J. et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2, 425 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Argmann, C. & Auwerx, J. Insulin secretion: SIRT4 gets in on the act. Cell 126, 837–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Laurent, G. et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Park, J. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919–930 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rardin, M. J. et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920–933 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yu, J. et al. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 2806 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560–570 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Canto, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mihaylova, M. M. & Shaw, R. J. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol. Metab. 24, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Haberland, M., Carrer, M., Mokalled, M. H., Montgomery, R. L. & Olson, E. N. Redundant control of adipogenesis by histone deacetylases 1 and 2. J. Biol. Chem. 285, 14663–14670 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mihaylova, M. M. & Shaw, R. J. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol. Metab. 24, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Sun, Z. et al. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J. Biol. Chem. 286, 33301–33309 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fajas, L. et al. The retinoblastoma–histone deacetylase 3 complex inhibits PPARγ and adipocyte differentiation. Dev. Cell 3, 903–910 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Montgomery, R. L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Grégoire, S. et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol. 27, 1280–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sun, Z. et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18, 934–942 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Knutson, S. K. et al. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 27, 1017–1028 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Verdin, E., Dequiedt, F. & Kasler, H. G. Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Potthoff, M. J. et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yamamoto, H. et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Jo, Y.-S. et al. Phosphorylation of the nuclear receptor co-repressor 1 by protein kinase B (PKB/Akt) switches its co-repressor targets in the liver. Hepatology http://dx.doi.org/10.1002/hep.27907.

  84. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Winkler, R. et al. Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis. Diabetes 61, 513–523 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Funato, H., Oda, S., Yokofujita, J., Igarashi, H. & Kuroda, M. Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS ONE 6, e18950 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lundh, M. et al. Lysine deacetylases are produced in pancreatic β cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53, 2569–2578 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, Y. et al. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547–551 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sakai, M. et al. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis. Nat. Med. 18, 612–617 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Coste, A. et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proc. Natl Acad. Sci. USA 105, 17187–17192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun, C. et al. PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1α. Cell Rep. 9, 2250–2262 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Ravnskjaer, K. et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J. Clin. Invest. 123, 4318–4328 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Xu, W. et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26, 229–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, L., Tang, Y., Cole, P. A. & Marmorstein, R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struct. Biol. 18, 741–747 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yamauchi, T. et al. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat. Genet. 30, 221–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Takahashi, N. et al. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor γ. J. Biol. Chem. 277, 16906–16912 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Zhou, X. Y. et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat. Med. 10, 633–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392–404 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gelman, L. et al. p300 interacts with the N- and C-terminal part of PPARγ2 in a ligand-independent and -dependent manner, respectively. J. Biol. Chem. 274, 7681–7688 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Canto, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Alano, C. C., Ying, W. & Swanson, R. A. Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J. Biol. Chem. 279, 18895–18902 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Revollo, J. R., Grimm, A. A. & Imai, S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Houtkooper, R. H., Canto, C., Wanders, R. J. & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J. & Tabak, H. F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480–3486 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Barile, M., Passarella, S., Danese, G. & Quagliariello, E. Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase. Biochem. Mol. Biol. Int. 38, 297–306 (1996).

    CAS  PubMed  Google Scholar 

  109. Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhang, T. et al. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J. Biol. Chem. 287, 12405–12416 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Di Lisa, F., Menabo, R., Canton, M., Barile, M. & Bernardi, P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276, 2571–2575 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Pittelli, M. et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285, 34106–34114 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Alano, C. C. et al. Differences among cell types in NAD+ compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes. J. Neurosci. Res. 85, 3378–3385 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Tischler, M. E., Friedrichs, D., Coll., K. & Williamson, J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch. Biochem. Biophys. 184, 222–236 (1977).

    Article  CAS  PubMed  Google Scholar 

  116. Pittelli, M. et al. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol. Pharmacol. 80, 1136–1146 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Bogan, K. L. & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Rongvaux, A., Andris, F., Van Gool, F. & Leo, O. Reconstructing eukaryotic NAD metabolism. Bioessays 25, 683–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Chi, Y. & Sauve, A. A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 16, 657–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Bender, D. A. Biochemistry of tryptophan in health and disease. Mol. Aspects Med. 6, 101–197 (1983).

    Article  CAS  PubMed  Google Scholar 

  121. Rongvaux, A. et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32, 3225–3234 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Emanuelli, M. et al. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J. Biol. Chem. 276, 406–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Yalowitz, J. A. et al. Characterization of human brain nicotinamide 5′-mononucleotide adenylyltransferase-2 and expression in human pancreas. Biochem. J. 377, 317–326 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zhang, X. et al. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J. Biol. Chem. 278, 13503–13511 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Revollo, J. R. et al. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661–673 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. van der Veer, E. et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 282, 10841–10845 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Rongvaux, A. et al. Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J. Immunol. 181, 4685–4695 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Lu, S. P., Kato, M. & Lin, S. J. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J. Biol. Chem. 284, 17110–17119 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Nikiforov, A., Dolle, C., Niere, M. & Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286, 21767–21778 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).

    CAS  PubMed  Google Scholar 

  132. Bieganowski, P. & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss–Handler independent route to NAD+ in fungi and humans. Cell 117, 495–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Sasaki, Y., Araki, T. & Milbrandt, J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci. 26, 8484–8491 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721–731 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cerutti, R. et al. NAD+-dependent activation of sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042–1049 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Kameshita, I., Matsuda, Z., Taniguchi, T. & Shizuta, Y. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J. Biol. Chem. 259, 4770–4776 (1984).

    CAS  PubMed  Google Scholar 

  138. Diani-Moore, S. et al. Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. J. Biol. Chem. 285, 38801–38810 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Chiang, Y. J. et al. Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice. Mol. Cell. Biol. 26, 2037–2043 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Malavasi, F. et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841–886 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Pirinen, E. et al. PharmacologicaliInhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Barbosa, M. T. et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 21, 3629–3639 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Aksoy, P. et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem. Biophys. Res. Commun. 349, 353–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Aksoy, P., White, T. A., Thompson, M. & Chini, E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Comm. 345, 1386–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Lehmann, M. et al. ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange. Nucleic Acids Res. 43, 129–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753–1757 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Costford, S. R. et al. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab. 298, E117–E126 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Williamson, D. H., Lund, P. & Krebs, H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Agrimi, G. et al. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis. Appl. Environ. Microbiol. 77, 2239–2246 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 93, 107–135 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Pastore, S. & Hood, D. A. Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice. J. Appl. Physiol. (1985) 114, 1076–1084 (2013).

    Article  CAS  Google Scholar 

  155. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Peek, C. B. et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Borra, M. T., Langer, M. R., Slama, J. T. & Denu, J. M. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43, 9877–9887 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Qin, W. et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Yang, S. J. et al. Nicotinamide improves glucose metabolism and affects the hepatic NAD–sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem. 25, 66–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Kang-Lee, Y. A. et al. Metabolic effects of nicotinamide administration in rats. J. Nutr. 113, 215–221 (1983).

    Article  CAS  PubMed  Google Scholar 

  165. Yi, C. H. et al. Metabolic regulation of protein N-α-acetylation by Bcl-xL promotes cell survival. Cell 146, 607–620 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Friis, R. M. et al. A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res. 37, 3969–3980 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Zhang, M., Galdieri, L. & Vancura, A. The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol. Cell Biol. 33, 4701–4717 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wagner, G. R. & Payne, R. M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Weinert, B. T. et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Paik, W. K., Pearson, D., Lee, H. W. & Kim, S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 213, 513–522 (1970).

    Article  CAS  PubMed  Google Scholar 

  174. Tanner, K. G. et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274, 18157–18160 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Talcott, B. & Moore, M. S. Getting across the nuclear pore complex. Trends Cell Biol. 9, 312–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Schwer, B. et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8, 604–606 (2009).

    Article  PubMed  CAS  Google Scholar 

  179. Hebert, A. S. et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Pougovkina, O. et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23, 3513–3522 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. De Virgilio, C. et al. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8, 1043–1051 (1992).

    Article  CAS  PubMed  Google Scholar 

  182. Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    CAS  PubMed  Google Scholar 

  184. van den Berg, M. A. et al. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271, 28953–28959 (1996).

    Article  CAS  PubMed  Google Scholar 

  185. Kratzer, S. & Schuller, H. J. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae. Gene 161, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  186. Kals, M., Natter, K., Thallinger, G. G., Trajanoski, Z. & Kohlwein, S. D. YPL.db2: the Yeast Protein Localization database, version 2.0. Yeast 22, 213–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K. & Yamamoto, T. T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 11420–11426 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Luong, A., Hannah, V. C., Brown, M. S. & Goldstein, J. L. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 275, 26458–26466 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Ariyannur, P. S. et al. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J. Comp. Neurol. 518, 2952–2977 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Starai, V. J., Takahashi, H., Boeke, J. D. & Escalante-Semerena, J. C. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163, 545–555 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Kaplan, J. H. Molecular biology of carrier proteins. Cell 72, 13–18 (1993).

    Article  CAS  PubMed  Google Scholar 

  193. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Shimazu, T., Hirschey, M. D., Huang, J.-Y., Ho, L. T. Y. & Verdin, E. Acetate metabolism and aging: an emerging connection. Mech. Ageing Dev. 131, 511–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Dyck, J. R. et al. Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem. J. 350, 599–608 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Sacksteder, K. A., Morrell, J. C., Wanders, R. J., Matalon, R. & Gould, S. J. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency. J. Biol. Chem. 274, 24461–24468 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Voilley, N. et al. Cloning and expression of rat pancreatic β-cell malonyl-CoA decarboxylase. Biochem. J. 340, 213–217 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Young, M. E. et al. Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am. J. Physiol. Endocrinol. Metab. 280, E471–E479 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Sakamoto, J., Barr, R. L., Kavanagh, K. M. & Lopaschuk, G. D. Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 278, H1196–H1204 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Dean, D. et al. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 49, 1295–1300 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Chow, J. D. et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419–431 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Galdieri, L. & Vancura, A. Acetyl-CoA carboxylase regulates global histone acetylation. J. Biol. Chem. 287, 23865–23876 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Galdieri, L., Chang, J., Mehrotra, S. & Vancura, A. Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation. J. Biol. Chem. 288, 27986–27998 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Lee, T. I. et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405, 701–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Hallows, W. C. et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139–149 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Kim, S. et al. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340, 99–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Hirschey, M. D., Shimazu, T., Huang, J. Y., Schwer, B. & Verdin, E. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 267–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Roche, T. E. et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 70, 33–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Cooper, R. H., Randle, P. J. & Denton, R. M. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem. J. 143, 625–641 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Jing, E. et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62, 3404–3417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Mori, J. et al. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103–H1113 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Fan, J. et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534–548 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Berndsen, C. E., Albaugh, B. N., Tan, S. & Denu, J. M. Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46, 623–629 (2007).

    Article  PubMed  CAS  Google Scholar 

  217. Tanner, K. G., Langer, M. R., Kim, Y. & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048–22055 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Liu, X. et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Albaugh, B. N., Kolonko, E. M. & Denu, J. M. Kinetic mechanism of the Rtt109–Vps75 histone acetyltransferase–chaperone complex. Biochemistry 49, 6375–6385 (2010).

    Article  PubMed  CAS  Google Scholar 

  220. Gao, L. et al. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 853, 303–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  221. Zhao, Y. et al. Zinc deprivation mediates alcohol-induced hepatocyte IL-8 analog expression in rodents via an epigenetic mechanism. Am. J. Pathol. 179, 693–702 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Kiilerich, S. et al. Zinc depletion in alcoholic liver diseases. Scand. J. Gastroenterol. 15, 363–367 (1980).

    Article  CAS  PubMed  Google Scholar 

  223. McClain, C. J., Antonow, D. R., Cohen, D. A. & Shedlofsky, S. I. Zinc metabolism in alcoholic liver disease. Alcohol Clin. Exp. Res. 10, 582–589 (1986).

    Article  CAS  PubMed  Google Scholar 

  224. Wang, L., Zhou, Z., Saari, J. T. & Kang, Y. J. Alcohol-induced myocardial fibrosis in metallothionein-null mice: prevention by zinc supplementation. Am. J. Pathol. 167, 337–344 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Zhou, Z. et al. Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am. J. Pathol. 166, 1681–1690 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Chakrabarty, S. P. & Balaram, H. Reversible binding of zinc in Plasmodium falciparum Sir2: structure and activity of the apoenzyme. Biochim. Biophys. Acta 1804, 1743–1750 (2010).

    Article  CAS  PubMed  Google Scholar 

  227. Du, X. et al. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40, 14166–14172 (2001).

    Article  CAS  PubMed  Google Scholar 

  228. Sheng, X. & Liu, Y. A QM/MM study of the catalytic mechanism of nicotinamidase. Org. Biomol. Chem. 12, 1265–1277 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Nangle, S. N. et al. Molecular assembly of the period–cryptochrome circadian transcriptional repressor complex. eLife 3, e03674 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Schmalen, I. et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157, 1203–1215 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Freedman, S. J. et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 α. Proc. Natl Acad. Sci. USA 99, 5367–5372 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Akhtar, A. & Becker, P. B. The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. EMBO Rep. 2, 113–118 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Yang, X.-J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23, 366–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Wolever, T. M., Josse, R. G., Leiter, L. A. & Chiasson, J. L. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism 46, 805–811 (1997).

    Article  CAS  PubMed  Google Scholar 

  236. Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).

    Article  CAS  PubMed  Google Scholar 

  237. Boffa, L. C., Vidali, G., Mann, R. S. & Allfrey, V. G. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J. Biol. Chem. 253, 3364–3366 (1978).

    CAS  PubMed  Google Scholar 

  238. Sealy, L. & Chalkley, R. The effect of sodium butyrate on histone modification. Cell 14, 115–121 (1978).

    Article  CAS  PubMed  Google Scholar 

  239. Candido, E. P., Reeves, R. & Davie, J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105–113 (1978).

    Article  CAS  PubMed  Google Scholar 

  240. Cahill, G. F. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Cahill, G. F. et al. Hormone–fuel interrelationships during fasting. J. Clin. Invest. 45, 1751–1769 (1966).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Robinson, A. M. & Williamson, D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60, 143–187 (1980).

    Article  CAS  PubMed  Google Scholar 

  243. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Scheibye-Knudsen, M., Fang, E. F., Croteau, D. L. & Bohr, V. A. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy 10, 1468–1469 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Guarente, L. Linking DNA damage, NAD+/SIRT1, and aging. Cell Metab. 20, 706–707 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 6, e19194 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear–mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S.-i. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7, e42357 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Mendelsohn, A. R. & Larrick, J. W. Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels. Rejuvenation Res. 17, 62–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  251. Ramsey, K. M., Mills, K. F., Satoh, A. & Imai, S.-i. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  252. Kraus, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. van de Weijer, T. et al. Evidence for a direct effect of the NAD+ precursor Acipimox on muscle mitochondrial function in humans. Diabetes 64, 1193–1201 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol. Aging 34, 1581–1588 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Benavente, C. A., Schnell, S. A. & Jacobson, E. L. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS ONE 7, e42276 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Tummala, K. S. et al. Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26, 826–839 (2014).

    Article  CAS  PubMed  Google Scholar 

  258. Mukhopadhyay, P. et al. Poly (ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis. Hepatology 59, 1998–2009 (2014).

    Article  PubMed  CAS  Google Scholar 

  259. Escande, C. et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084–1093 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Jayawardena, R. et al. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol. Metab. Syndr. 4, 13 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Dawson, A. G. Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells. Trends Biochem. Sci. 4, 171–176.

  262. Baeza, J., Smallegan, M. J. & Denu, J. M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122–128 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Olia, A. S. et al. Nonenzymatic protein acetylation detected by NAPPA protein arrays. ACS Chem. Biol. 10, 2034–2047 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Weinert, B. T. et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 51, 265–272 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.J.M. is the recipient of a Heart and Stroke Foundation of Canada research fellowship award. H.Z. is supported by scholarships from the China Scholarship Council and CARIGEST SA. E.K. is supported by the Fondation Romande pour la Recherche sur le Diabète, Switzerland. J.A. is the Nestlé Chair in Energy Metabolism at École Polytechnique Fédéral de Lausanne. Work in the laboratory is supported by the École Polytechnique Fédérale de Lausanne, the National Institutes of Health (R01AG043930), the Swiss National Science Foundation (31003A-124713) and Systems X (51RTP0-151019), and Krebsforschung Schweiz (KFS-3082-02-2013).

Author information

Authors and Affiliations

Authors

Contributions

K.J.M., H.Z. and E.K. contributed equally to this article. K.J.M., H.Z. and E.K. researched data for the article and wrote the manuscript. All authors made substantial contribution to discussion of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Johan Auwerx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

The cellular location, activity, targets and null phenotype of lysine acetyltransferases. (DOCX 57 kb)

Supplementary Table 2

The cellular location, activity, targets and null phenotype of lysine deactelyases. (DOCX 87 kb)

Supplementary Table 3

The enzyme activity of class I, II and IV subfamily of lysine deactelyases. (DOCX 26 kb)

Supplementary Figure 1

Mechanism of nonenzymatic acetylation. The reaction starts with a nucleophilic attack of the carbonyl carbon of an acetyl-CoA molecule’s acetyl group by the positively charged ɛ-amino group of lysine. This leads to formation of an unstable intermediate, which then, by displacing the thioester bond, leaves an acetylated lysine and CoA. Abbreviation: CoA, coenzyme A. (PDF 5804 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menzies, K., Zhang, H., Katsyuba, E. et al. Protein acetylation in metabolism — metabolites and cofactors. Nat Rev Endocrinol 12, 43–60 (2016). https://doi.org/10.1038/nrendo.2015.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing