Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic functions of FABPs—mechanisms and therapeutic implications

Key Points

  • Fatty acid-binding proteins (FABPs) are versatile proteins that can modulate lipid fluxes, trafficking, signalling and metabolism

  • Fatty acid-binding protein, adipocyte (FABP4) regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis

  • FABP4 is actively secreted by adipocytes and its levels are increased in obesity; in humans, elevated circulating FABP4 levels are associated with obesity, metabolic disease and cardiac dysfunction

  • Circulating FABP4 is secreted through a vesicular pathway and has pleiotropic roles that include the stimulation of hepatic glucose production

  • Targeting FABP4 offers a novel therapeutic approach for the treatment of many metabolic diseases

  • The signalling components of hormonal FABP4 and determinants of FABP-mediated functions in the context of specific lipid or other cargo are issues that must be addressed in future research

Abstract

Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon and domain structure of FABP4.
Figure 2: Summary of FABP4 intracellular functions.
Figure 3: The association of circulating levels of FABP4 with different human diseases.
Figure 4: Pleiotropic functions of circulating FABP4.
Figure 5: Regulated vesicular secretion of FABP4.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Poveda, J. A. et al. Lipid modulation of ion channels through specific binding sites. Biochim. Biophys. Acta 1838, 1560–1567 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wahli, W. & Michalik, L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 23, 351–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Dresner, A. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103, 253–259 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, J. K. et al. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest. 108, 437–446 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Solinas, G., Naugler, W., Galimi, F., Lee, M. S. & Karin, M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc. Natl Acad. Sci. USA 103, 16454–16459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen, M. T. et al. JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361–35371 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Severeid, L., Connor, W. E. & Long, J. P. The depressant effect of fatty acids on the isolated rabbit heart. Proc. Soc. Exp. Biol. Med. 131, 1239–1243 (1969).

    Article  CAS  PubMed  Google Scholar 

  11. Gordon, G. B. Saturated free fatty acid toxicity. II. Lipid accumulation, ultrastructural alterations, and toxicity in mammalian cells in culture. Exp. Mol. Pathol. 27, 262–276 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Ockner, R. K., Manning, J. A., Poppenhausen, R. B. & Ho, W. K. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177, 56–58 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Ockner, R. K. & Manning, J. A. Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J. Clin. Invest. 54, 326–338 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furuhashi, M. & Hotamisligil, G. S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ockner, R. K. & Manning, J. A. Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. J. Clin. Invest. 58, 632–641 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, L. O., Klett, E. L. & Coleman, R. A. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta 1801, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Ockner, R. K., Manning, J. A. & Kane, J. P. Fatty acid binding protein. Isolation from rat liver, characterization, and immunochemical quantification. J. Biol. Chem. 257, 7872–7878 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Gordon, J. I., Alpers, D. H., Ockner, R. K. & Strauss, A. W. The nucleotide sequence of rat liver fatty acid binding protein mRNA. J. Biol. Chem. 258, 3356–3363 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Bass, N. M., Raghupathy, E., Rhoads, D. E., Manning, J. A. & Ockner, R. K. Partial purification of molecular weight 12,000 fatty acid binding proteins from rat brain and their effect on synaptosomal Na+-dependent amino acid uptake. Biochemistry 23, 6539–6544 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Haq, R. U., Shrago, E., Christodoulides, L. & Ketterer, B. Purification and characterization of fatty acid binding protein in mammalian lung. Exp. Lung Res. 9, 43–55 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Sweetser, D. A., Lowe, J. B. & Gordon, J. I. The nucleotide sequence of the rat liver fatty acid-binding protein gene. Evidence that exon 1 encodes an oligopeptide domain shared by a family of proteins which bind hydrophobic ligands. J. Biol. Chem. 261, 5553–5561 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Sacchettini, J. C., Said, B., Schulz, H. & Gordon, J. I. Rat heart fatty acid-binding protein is highly homologous to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. J. Biol. Chem. 261, 8218–8223 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Madsen, P., Rasmussen, H. H., Leffers, H., Honore, B. & Celis, J. E. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J. Invest. Dermatol. 99, 299–305 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Kurtz, A. et al. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–2649 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe, R. et al. Molecular cloning of a cDNA encoding a novel fatty acid-binding protein from rat skin. Biochem. Biophys. Res. Commun. 200, 253–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Spiegelman, B. M. & Green, H. Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J. Biol. Chem. 255, 8811–8818 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A. & Kelly, T. J. Jr. Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc. Natl Acad. Sci. USA 81, 5468–5472 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haq, R. U., Christodoulides, L., Ketterer, B. & Shrago, E. Characterization and purification of fatty acid-binding protein in rat and human adipose tissue. Biochim. Biophys. Acta 713, 193–198 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. LaLonde, J. M., Bernlohr, D. A. & Banaszak, L. J. The up-and-down β-barrel proteins. FASEB J. 8, 1240–1247 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Storch, J. & Thumser, A. E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 285, 32679–32683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zezulak, K. M. & Green, H. Specificity of gene expression in adipocytes. Mol. Cell Biol. 5, 419–421 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bernlohr, D. A., Doering, T. L., Kelly, T. J. Jr & Lane, M. D. Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem. Biophys. Res. Commun. 132, 850–855 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Matarese, V. & Bernlohr, D. A. Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid- and retinoic acid-binding protein. J. Biol. Chem. 263, 14544–14551 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Blake, W. L. & Clarke, S. D. Induction of adipose fatty acid binding protein (a-FABP) by insulin-like growth factor-1 (IGF-1) in 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 173, 87–91 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Amri, E. Z., Ailhaud, G. & Grimaldi, P. Regulation of adipose cell differentiation. II. Kinetics of induction of the aP2 gene by fatty acids and modulation by dexamethasone. J. Lipid Res. 32, 1457–1463 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Amri, E. Z., Bertrand, B., Ailhaud, G. & Grimaldi, P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32, 1449–1456 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Distel, R. J., Robinson, G. S. & Spiegelman, B. M. Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J. Biol. Chem. 267, 5937–5941 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ 2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Pelton, P. D., Zhou, L., Demarest, K. T. & Burris, T. P. PPARγ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem. Biophys. Res. Commun. 261, 456–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Shum, B. O. et al. The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. J. Clin. Invest. 116, 2183–2192 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wootan, M. G., Bass, N. M., Bernlohr, D. A. & Storch, J. Fatty acid binding sites of rodent adipocyte and heart fatty acid binding proteins: characterization using fluorescent fatty acids. Biochemistry 29, 9305–9311 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, Z., Bernlohr, D. A. & Banaszak, L. J. The adipocyte lipid-binding protein at 1.6-A resolution. Crystal structures of the apoprotein and with bound saturated and unsaturated fatty acids. J. Biol. Chem. 268, 7874–7884 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Richieri, G. V., Ogata, R. T. & Kleinfeld, A. M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269, 23918–23930 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Wootan, M. G., Bernlohr, D. A. & Storch, J. Mechanism of fluorescent fatty acid transfer from adipocyte fatty acid binding protein to membranes. Biochemistry 32, 8622–8627 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Gericke, A., Smith, E. R., Moore, D. J., Mendelsohn, R. & Storch, J. Adipocyte fatty acid-binding protein: interaction with phospholipid membranes and thermal stability studied by FTIR spectroscopy. Biochemistry 36, 8311–8317 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Herr, F. M., Matarese, V., Bernlohr, D. A. & Storch, J. Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes. Biochemistry 34, 11840–11845 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. LiCata, V. J. & Bernlohr, D. A. Surface properties of adipocyte lipid-binding protein: response to lipid binding, and comparison with homologous proteins. Proteins 33, 577–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Banaszak, L. et al. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv. Protein Chem. 45, 89–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Jenkins-Kruchten, A. E. et al. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J. Biol. Chem. 278, 47636–47643 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hellberg, K. et al. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal. Protein Sci. 19, 1480–1489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borchers, T. & Spener, F. Involvement of arginine in the binding of heme and fatty acids to fatty acid-binding protein from bovine liver. Mol. Cell Biochem. 123, 23–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Jenkins, A. E., Hockenberry, J. A., Nguyen, T. & Bernlohr, D. A. Testing of the portal hypothesis: analysis of a V32G, F57G, K58G mutant of the fatty acid binding protein of the murine adipocyte. Biochemistry 41, 2022–2027 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Sha, R. S., Kane, C. D., Xu, Z., Banaszak, L. J. & Bernlohr, D. A. Modulation of ligand binding affinity of the adipocyte lipid-binding protein by selective mutation. Analysis in vitro and in situ. J. Biol. Chem. 268, 7885–7892 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Grimsrud, P. A., Picklo, M. J. Sr, Griffin, T. J. & Bernlohr, D. A. Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol. Cell Proteomics 6, 624–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chabowski, A., Gorski, J., Luiken, J. J., Glatz, J. F. & Bonen, A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot. Essent. Fatty Acids 77, 345–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Glatz, J. F., Luiken, J. J. & Bonen, A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90, 367–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Spitsberg, V. L., Matitashvili, E. & Gorewit, R. C. Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur. J. Biochem. 230, 872–878 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Woodford, J. K., Jefferson, J. R., Wood, W. G., Hubbell, T. & Schroeder, F. Expression of liver fatty acid binding protein alters plasma membrane lipid composition and structure in transfected L-cell fibroblasts. Biochim. Biophys. Acta 1145, 257–265 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Iso, T. et al. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler. Thromb. Vasc. Biol. 33, 2549–2557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murphy, E. J., Prows, D. R., Stiles, T. & Schroeder, F. Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids 35, 729–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Maeda, K. et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. 1, 107–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Coe, N. R., Simpson, M. A. & Bernlohr, D. A. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 40, 967–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Shaughnessy, S., Smith, E. R., Kodukula, S., Storch, J. & Fried, S. K. Adipocyte metabolism in adipocyte fatty acid binding protein knockout mice (aP2−/−) after short-term high-fat feeding: functional compensation by the keratinocyte [correction of keritinocyte] fatty acid binding protein. Diabetes 49, 904–911 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Scheja, L. et al. Altered insulin secretion associated with reduced lipolytic efficiency in aP2−/− mice. Diabetes 48, 1987–1994 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Hertzel, A. V. et al. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am. J. Physiol. Endocrinol. Metab. 290, E814–E823 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Storch, J. & Thumser, A. E. The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 1486, 28–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Schroeder, F. et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43, 1–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, H., Starodub, O., McIntosh, A., Kier, A. B. & Schroeder, F. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J. Biol. Chem. 277, 29139–29151 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Yu, S., Levi, L., Siegel, R. & Noy, N. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ). J. Biol. Chem. 287, 42195–42205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, S., Levi, L., Casadesus, G., Kunos, G. & Noy, N. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain. J. Biol. Chem. 289, 12748–12758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan, N. S. et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol. Cell Biol. 22, 5114–5127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Adida, A. & Spener, F. Adipocyte-type fatty acid-binding protein as inter-compartmental shuttle for peroxisome proliferator activated receptor γ agonists in cultured cell. Biochim. Biophys. Acta 1761, 172–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ayers, S. D., Nedrow, K. L., Gillilan, R. E. & Noy, N. Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARγ by FABP4. Biochemistry 46, 6744–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Makowski, L., Brittingham, K. C., Reynolds, J. M., Suttles, J. & Hotamisligil, G. S. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor γ and IκB kinase activities. J. Biol. Chem. 280, 12888–12895 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Hotamisligil, G. S. et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274, 1377–1379 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Bernlohr, D. A., Coe, N. R., Simpson, M. A. & Hertzel, A. V. Regulation of gene expression in adipose cells by polyunsaturated fatty acids. Adv. Exp. Med. Biol. 422, 145–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Uysal, K. T., Scheja, L., Wiesbrock, S. M., Bonner-Weir, S. & Hotamisligil, G. S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141, 3388–3396 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Maeda, K. et al. Role of the fatty acid binding protein mal1 in obesity and insulin resistance. Diabetes 52, 300–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Cao, H. et al. Regulation of metabolic responses by adipocyte/macrophage fatty acid-binding proteins in leptin-deficient mice. Diabetes 55, 1915–1922 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Erbay, E. et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383–1391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Shen, W. J., Sridhar, K., Bernlohr, D. A. & Kraemer, F. B. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc. Natl Acad. Sci. USA 96, 5528–5532 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith, A. J. et al. Physical association between the adipocyte fatty acid-binding protein and hormone-sensitive lipase: a fluorescence resonance energy transfer analysis. J. Biol. Chem. 279, 52399–52405 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Hampton, M. et al. Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal. PLoS ONE 6, e27021 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A. & Evans, R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Fu, Y., Luo, N., Lopes-Virella, M. F. & Garvey, W. T. The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis 165, 259–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Q. Y. & Nambi, P. Sirolimus upregulates aP2 expression in human monocytes and macrophages. Transplant Proc. 36, 3229–3231 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, Q. Y., Quinet, E. & Nambi, P. Adipocyte fatty acid-binding protein (aP2), a newly identified LXR target gene, is induced by LXR agonists in human THP-1 cells. Mol. Cell Biochem. 302, 203–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Babaev, V. R. et al. Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-γ-regulated genes. Arterioscler. Thromb. Vasc. Biol. 31, 1283–1290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garin-Shkolnik, T., Rudich, A., Hotamisligil, G. S. & Rubinstein, M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63, 900–911 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Zimmer, J. S., Dyckes, D. F., Bernlohr, D. A. & Murphy, R. C. Fatty acid binding proteins stabilize leukotriene A4: competition with arachidonic acid but not other lipoxygenase products. J. Lipid Res. 45, 2138–2144 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Dickinson Zimmer, J. S., Voelker, D. R., Bernlohr, D. A. & Murphy, R. C. Stabilization of leukotriene A4 by epithelial fatty acid-binding protein in the rat basophilic leukemia cell. J. Biol. Chem. 279, 7420–7426 (2004).

    Article  PubMed  CAS  Google Scholar 

  95. Spite, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J. Immunol. 187, 1942–1949 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Layne, M. D. et al. Role of macrophage-expressed adipocyte fatty acid binding protein in the development of accelerated atherosclerosis in hypercholesterolemic mice. FASEB J. 15, 2733–2735 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Chan, K. L. et al. Palmitoleate reverses high fat-induced pro-inflammatory macrophage polarization via AMPK. J. Biol. Chem. http://dx.doi.org/10.1074/jbc.M115.646992.

  98. Xu, H. et al. Uncoupling lipid metabolism from inflammation through fatty acid binding protein-dependent expression of UCP2. Mol. Cell Biol. 35, 1055–1065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thompson, B. R., Mazurkiewicz-Munoz, A. M., Suttles, J., Carter-Su, C. & Bernlohr, D. A. Interaction of adipocyte fatty acid-binding protein (AFABP) and JAK2: AFABP/aP2 as a regulator of JAK2 signaling. J. Biol. Chem. 284, 13473–13480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Semenkovich, C. F. Insulin resistance and atherosclerosis. J. Clin. Invest. 116, 1813–1822 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Perrella, M. A. et al. Absence of adipocyte fatty acid binding protein prevents the development of accelerated atherosclerosis in hypercholesterolemic mice. FASEB J. 15, 1774–1776 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Makowski, L. et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med. 7, 699–705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Boord, J. B. et al. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 22, 1686–1691 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Furuhashi, M. et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447, 959–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boord, J. B. et al. Combined adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism, atherosclerosis, and survival in apolipoprotein E-deficient mice. Circulation 110, 1492–1498 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rolph, M. S. et al. Regulation of dendritic cell function and T cell priming by the fatty acid-binding protein AP2. J. Immunol. 177, 7794–7801 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Reynolds, J. M. et al. Deficiency of fatty acid-binding proteins in mice confers protection from development of experimental autoimmune encephalomyelitis. J. Immunol. 179, 313–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Elmasri, H. et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J. 23, 3865–3873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harjes, U., Bridges, E., McIntyre, A., Fielding, B. A. & Harris, A. L. Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J. Biol. Chem. 289, 23168–23176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Daly, C. et al. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 18, 1060–1071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Elmasri, H. et al. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis 15, 457–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ghelfi, E. et al. Fatty acid binding protein 4 regulates VEGF-induced airway angiogenesis and inflammation in a transgenic mouse model: implications for asthma. Am. J. Pathol. 182, 1425–1433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Saint-Geniez, M. et al. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice. PLoS ONE 9, e96253 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cataltepe, O. et al. Fatty acid binding protein 4 is expressed in distinct endothelial and non-endothelial cell populations in glioblastoma. Neuropathol. Appl. Neurobiol. 38, 400–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, D. et al. Expression of fatty acid binding protein 4 is involved in the cell growth of oral squamous cell carcinoma. Oncol. Rep. 31, 1116–1120 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Pelsers, M. M. et al. Liver fatty acid-binding protein as a sensitive serum marker of acute hepatocellular damage in liver transplant recipients. Clin. Chem. 48, 2055–2057 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Knowlton, A. A., Apstein, C. S., Saouf, R. & Brecher, P. Leakage of heart fatty acid binding protein with ischemia and reperfusion in the rat. J. Mol. Cell Cardiol. 21, 577–583 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Tanaka, T., Hirota, Y., Sohmiya, K., Nishimura, S. & Kawamura, K. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin. Biochem. 24, 195–201 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Kleine, A. H., Glatz, J. F., Van Nieuwenhoven, F. A. & Van der Vusse, G. J. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol. Cell. Biochem. 116, 155–162 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Kanda, T. et al. Intestinal fatty acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. Gastroenterology 110, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Schellekens, D. H. et al. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. J. Clin. Gastroenterol. 48, 253–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Akbal, E. et al. Liver fatty acid-binding protein is a diagnostic marker to detect liver injury due to chronic hepatitis C infection. Arch. Med. Res. 44, 34–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Foucaud, L. et al. Output of liver fatty acid-binding protein (L-FABP) in bile. Biochim. Biophys. Acta 1436, 593–599 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Specht, B. et al. Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type and adipocyte-type fatty acid-binding protein. J. Biol. Chem. 271, 19943–19949 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Brandt, R. et al. A 13-kilodalton protein purified from milk fat globule membranes is closely related to a mammary-derived growth inhibitor. Biochemistry 27, 1420–1425 (1988).

    Article  CAS  PubMed  Google Scholar 

  127. Bronsky, J. et al. Adiponectin, adipocyte fatty acid binding protein, and epidermal fatty acid binding protein: proteins newly identified in human breast milk. Clin. Chem. 52, 1763–1770 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Cao, H. et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 17, 768–778 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Xu, A. et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 52, 405–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Schlottmann, I., Ehrhart-Bornstein, M., Wabitsch, M., Bornstein, S. R. & Lamounier-Zepter, V. Calcium-dependent release of adipocyte fatty acid binding protein from human adipocytes. Int. J. Obes. (Lond.) 38, 1221–1227 (2014).

    Article  CAS  Google Scholar 

  131. Kaess, B. M. et al. Cardiometabolic correlates and heritability of fetuin-A, retinol-binding protein 4, and fatty-acid binding protein 4 in the Framingham Heart Study. J. Clin. Endocrinol. Metab. 97, E1943–E1947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chow, W. S. et al. Elevated circulating adipocyte-fatty acid binding protein levels predict incident cardiovascular events in a community-based cohort: a 12-year prospective study. J. Am. Heart Assoc. 2, e004176 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. von Eynatten, M. et al. Circulating adipocyte fatty acid-binding protein levels and cardiovascular morbidity and mortality in patients with coronary heart disease: a 10-year prospective study. Arterioscler. Thromb. Vasc. Biol. 32, 2327–2335 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Tso, A. W. et al. Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a Chinese cohort. Diabetes Care 30, 2667–2672 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Ishimura, S. et al. Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PLoS ONE 8, e81318 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tso, A. W. et al. Serum adipocyte fatty acid-binding protein associated with ischemic stroke and early death. Neurology 76, 1968–1975 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Balci, M. M. et al. Serum levels of adipocyte fatty acid-binding protein are independently associated with left ventricular mass and myocardial performance index in obstructive sleep apnea syndrome. J. Investig. Med. 60, 1020–1026 (2012).

    Article  PubMed  CAS  Google Scholar 

  138. Hancke, K., Grubeck, D., Hauser, N., Kreienberg, R. & Weiss, J. M. Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res. Treat. 119, 367–367 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Yoo, H. J. et al. Serum adipocyte fatty acid-binding protein is associated independently with vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography. J. Clin. Endocrinol. Metab. 96, E488–E492 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Schmilovitz-Weiss, H. et al. Serum adipocyte fatty acid binding protein in liver transplant recipients and the metabolic syndrome. Ann. Hepatol. 11, 343–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Haluzikova, D. et al. Serum concentrations of adipocyte fatty acid binding protein in patients with anorexia nervosa. Physiol. Res. 58, 577–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Comerford, K. B., Buchan, W. & Karakas, S. E. The effects of weight loss on FABP4 and RBP4 in obese women with metabolic syndrome. Horm. Metab. Res. 46, 224–231 (2014).

    CAS  PubMed  Google Scholar 

  143. Stejskal, D., Karpisek, M. & Bronsky, J. Serum adipocyte-fatty acid binding protein discriminates patients with permanent and temporary body weight loss. J. Clin. Lab. Anal. 22, 380–382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tuncman, G. et al. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc. Natl Acad. Sci. USA 103, 6970–6975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Saksi, J. et al. Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease and increased plaque stability. Circ. Cardiovasc. Genet. 7, 588–598 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Wang, J. et al. FABP4: a novel candidate gene for polycystic ovary syndrome. Endocrine 36, 392–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Bhushan, B. et al. Fatty-acid binding protein 4 gene polymorphisms and plasma levels in children with obstructive sleep apnea. Sleep Med. 12, 666–671 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Unger, R. H. & Cherrington, A. D. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Invest. 122, 4–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu, L. E. et al. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol. Metab. 3, 465–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kralisch, S. et al. Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice in vivo. Obesity (Silver Spring) 23, 1007–1013 (2015).

    Article  CAS  Google Scholar 

  151. Girona, J. et al. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway. PLoS ONE 8, e81914 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Aragones, G. et al. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. Cardiovasc. Diabetol. 11, 72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lamounier-Zepter, V. et al. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ. Res. 105, 326–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Lamounier-Zepter, V. et al. Interaction of epoxyeicosatrienoic acids and adipocyte fatty acid-binding protein in the modulation of cardiomyocyte contractility. Int. J. Obes. (Lond.) 39, 755–761 (2015).

    Article  CAS  Google Scholar 

  155. Riquelme, C. A. et al. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334, 528–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ertunc, M. E. et al. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J. Lipid Res. 56, 423–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kralisch, S. et al. Adipocyte fatty acid-binding protein is released from adipocytes by a non-conventional mechanism. Int. J. Obes. (Lond.) 38, 1251–1254 (2014).

    Article  CAS  Google Scholar 

  159. Lee, M. Y. et al. Chronic administration of BMS309403 improves endothelial function in apolipoprotein E-deficient mice and in cultured human endothelial cells. Br. J. Pharmacol. 162, 1564–1576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hoo, R. L. et al. Pharmacological inhibition of adipocyte fatty acid binding protein alleviates both acute liver injury and non-alcoholic steatohepatitis in mice. J. Hepatol. 58, 358–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Lehmann, F. et al. Discovery of inhibitors of human adipocyte fatty acid-binding protein, a potential type 2 diabetes target. Bioorg. Med. Chem. Lett. 14, 4445–4448 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Barf, T. et al. N.-Benzyl-indolo carboxylic acids: design and synthesis of potent and selective adipocyte fatty-acid binding protein (A-FABP) inhibitors. Bioorg. Med. Chem. Lett. 19, 1745–1748 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, X. et al. New aromatic substituted pyrazoles as selective inhibitors of human adipocyte fatty acid-binding protein. Bioorg. Med. Chem. Lett. 21, 2949–2952 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Chen, J., Wang, J. & Zhu, W. Binding modes of three inhibitors 8CA, F8A and I4A to A-FABP studied based on molecular dynamics simulation. PLoS ONE 9, e99862 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Xu, Q. et al. Design, synthesis and biological evaluation of thiazole- and indole-based derivatives for the treatment of type II diabetes. Eur. J. Med. Chem. 52, 70–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, Y. et al. Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening. J. Chem. Inf. Model 54, 3046–3050 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Cai, H. Y. et al. Benzbromarone, an old uricosuric drug, inhibits human fatty acid binding protein 4 in vitro and lowers the blood glucose level in db/db mice. Acta Pharmacol. Sin. 34, 1397–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Aouadi, M. et al. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proc. Natl Acad. Sci. USA 110, 8278–8283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458, 1180–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Won, Y. W. et al. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat. Mater. 13, 1157–1164 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Miao, X. et al. The mAb against adipocyte fatty acid-binding protein 2E4 attenuates the inflammation in the mouse model of high-fat diet-induced obesity via toll-like receptor 4 pathway. Mol. Cell. Endocrinol. 403, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Herroon, M. K. et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 4, 2108–2123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. NCBI. Fabp4 [Mus musculus] GenBank: CAJ18597.1 [online], (2005).

Download references

Acknowledgements

The authors thank members of the Hotamisligil and Bernlohr laboratories for helpful discussions. We thank A. P. Arruda for assistance in generating the initial figures, and K. Claiborn for critical reading and editing of the manuscript. The Hotamisligil laboratory is supported in this area by research funding from the NIH (grant number DK064360) and a sponsored research agreement with Union Chimique Belge. The Bernlohr laboratory is supported by the NIH (grant number DK053189).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed the content, and wrote, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Gökhan S. Hotamisligil or David A. Bernlohr.

Ethics declarations

Competing interests

G.S.H. receives research funding under a sponsored agreement with Union Chimique Belge. D.A.B. declares no competing interests.

Supplementary information

Supplementary file 1

The association of circulating FABP4 with different human diseases.This figure is an adaptation of Figure 3 in the main text, but includes a complete list of references for the association of circulating FABP4 with different human diseases. Abbreviations: FABP4, fatty acid binding protein 4; NAFLD, nonalcoholic fatty-liver disease. (PDF 96 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotamisligil, G., Bernlohr, D. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat Rev Endocrinol 11, 592–605 (2015). https://doi.org/10.1038/nrendo.2015.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing