Hormonal and neural mechanisms of food reward, eating behaviour and obesity

Key Points

  • The rise in the prevalence of obesity has prompted numerous research efforts dedicated to better understanding the mechanisms underlying this trend

  • A major focus of such research is the contribution of overeating, which can produce a positive energy balance and result in body weight gain

  • More recently, select endocrine factors associated with food intake and body weight have been shown to interact with neural systems of reward

  • Preclinical and clinical studies suggest that food reward and alterations in reward pathways may progress to food addiction

Abstract

With rising rates of obesity, research continues to explore the contributions of homeostatic and hedonic mechanisms related to eating behaviour. In this Review, we synthesize the existing information on select biological mechanisms associated with reward-related food intake, dealing primarily with consumption of highly palatable foods. In addition to their established functions in normal feeding, three primary peripheral hormones (leptin, ghrelin and insulin) play important parts in food reward. Studies in laboratory animals and humans also show relationships between hyperphagia or obesity and neural pathways involved in reward. These findings have prompted questions regarding the possibility of addictive-like aspects in food consumption. Further exploration of this topic may help to explain aberrant eating patterns, such as binge eating, and provide insight into the current rates of overweight and obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Potential relationships between endocrine factors and chemical signalling pathways, and effects on feeding behaviour.

References

  1. 1

    Kobeissy, F. H., Jeung, J. A., Warren, M. W., Geier, J. E. & Gold, M. S. Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats. Addict. Biol. 13, 15–25 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Gold, M. S. From bedside to bench and back again: a 30-year saga. Physiol. Behav. 104, 157–161 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Avena, N. M., Rada, P. & Hoebel, B. G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 32, 20–39 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Oswald, K. D., Murdaugh, D. L., King, V. L. & Boggiano, M. M. Motivation for palatable food despite consequences in an animal model of binge eating. Int. J. Eat. Disord. 44, 203–211 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Gearhardt, A. N. et al. An examination of the food addiction construct in obese patients with binge eating disorder. Int. J. Eat. Disord. 45, 657–663 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Davis, C. et al. Evidence that 'food addiction' is a valid phenotype of obesity. Appetite 57, 711–717 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Edge, P. J. & Gold, M. S. Drug withdrawal and hyperphagia: lessons from tobacco and other drugs. Curr. Pharm. Des. 17, 1173–1179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Keen-Rhinehart, E., Ondek, K. & Schneider, J. E. Neuroendocrine regulation of appetitive ingestive behavior. Front. Neurosci. 7, 213 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Suzuki, K., Simpson, K. A., Minnion, J. S., Shillito, J. C. & Bloom, S. R. The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 57, 359–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Sam, A. H., Troke, R. C., Tan, T. M. & Bewick, G. A. The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Rui, L. Brain regulation of energy balance and body weight. Rev. Endocr. Metab. Disord. 14, 387–407 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Scott, R., Tan, T. & Bloom, S. Gut hormones and obesity: physiology and therapies. Vitam. Horm. 91, 143–194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hommel, J. D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bruijnzeel, A. W., Corrie, L. W., Rogers, J. A. & Yamada, H. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats. Behav. Brain Res. 219, 254–264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Morton, G. J., Blevins, J. E., Kim, F., Matsen, M. & Figlewicz, D. P. The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am. J. Physiol. Endocrinol. Metab. 297, E202–E210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Leinninger, G. M. et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab. 10, 89–98 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Kumer, S. C. & Vrana, K. E. Intricate regulation of tyrosine hydroxylase activity and gene expression. J. Neurochem. 67, 443–462 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Opland, D. et al. Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol. Metab. 2, 423–434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Leshan, R. L. et al. Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine- and amphetamine-regulated transcript neurons of the extended central amygdala. J. Neurosci. 30, 5713–5723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Thompson, J. L. & Borgland, S. L. Presynaptic leptin action suppresses excitatory synaptic transmission onto ventral tegmental area dopamine neurons. Biol. Psychiatry 73, 860–868 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Bruijnzeel, A. W., Qi, X. & Corrie, L. W. Anorexic effects of intra-VTA leptin are similar in low-fat and high-fat-fed rats but attenuated in a subgroup of high-fat-fed obese rats. Pharmacol. Biochem. Behav. 103, 573–581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Scarpace, P. J. et al. Leptin overexpression in VTA trans-activates the hypothalamus whereas prolonged leptin action in either region cross-desensitizes. Neuropharmacology 65, 90–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Matheny, M., Shapiro, A., Tumer, N. & Scarpace, P. J. Region-specific diet-induced and leptin-induced cellular leptin resistance includes the ventral tegmental area in rats. Neuropharmacology 60, 480–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Rothemund, Y. et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37, 410–421 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Grosshans, M. et al. Association of leptin with food cue-induced activation in human reward pathways. Arch. Gen. Psychiatry 69, 529–537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Rosenbaum, M., Sy, M., Pavlovich, K., Leibel, R. L. & Hirsch, J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J. Clin. Invest. 118, 2583–2591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Hinkle, W., Cordell, M., Leibel, R., Rosenbaum, M. & Hirsch, J. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS ONE 8, e59114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Geliebter, A., Hashim, S. A. & Gluck, M. E. Appetite-related gut peptides, ghrelin, PYY, and GLP-1 in obese women with and without binge eating disorder (BED). Physiol. Behav. 94, 696–699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Geliebter, A., Yahav, E. K., Gluck, M. E. & Hashim, S. A. Gastric capacity, test meal intake, and appetitive hormones in binge eating disorder. Physiol. Behav. 81, 735–740 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Geliebter, A., Gluck, M. E. & Hashim, S. A. Plasma ghrelin concentrations are lower in binge-eating disorder. J. Nutr. 135, 1326–1330 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Monteleone, P. et al. Circulating ghrelin is decreased in non-obese and obese women with binge eating disorder as well as in obese non-binge eating women, but not in patients with bulimia nervosa. Psychoneuroendocrinology 30, 243–250 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Lindqvist, A., de la Cour, C. D., Stegmark, A., Hakanson, R. & Erlanson-Albertsson, C. Overeating of palatable food is associated with blunted leptin and ghrelin responses. Regul. Pept. 130, 123–132 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Perello, M. et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol. Psychiatry 67, 880–886 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Skibicka, K. P., Hansson, C., Alvarez-Crespo, M., Friberg, P. A. & Dickson, S. L. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180, 129–137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Egecioglu, E. et al. Ghrelin increases intake of rewarding food in rodents. Addict. Biol. 15, 304–311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Jerlhag, E., Janson, A. C., Waters, S. & Engel, J. A. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE 7, e49557 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Skibicka, K. P. et al. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake. Neuropharmacology 73, 274–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Skibicka, K. P., Hansson, C., Egecioglu, E. & Dickson, S. L. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict. Biol. 17, 95–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Skibicka, K. P., Shirazi, R. H., Hansson, C. & Dickson, S. L. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward. Endocrinology 153, 1194–1205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Kawahara, Y. et al. Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology 67, 395–402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Monteleone, P. et al. Gastroenteric hormone responses to hedonic eating in healthy humans. Psychoneuroendocrinology 38, 1435–1441 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Monteleone, P. et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. J. Clin. Endocrinol. Metab. 97, E917–E924 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Banks, W. A., Owen, J. B. & Erickson, M. A. Insulin in the brain: there and back again. Pharmacol. Ther. 136, 82–93 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Figlewicz, D. P., Evans, S. B., Murphy, J., Hoen, M. & Baskin, D. G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 964, 107–115 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Labouèbe, G. et al. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat. Neurosci. 16, 300–308 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Figlewicz, D. P., Bennett, J. L., Aliakbari, S., Zavosh, A. & Sipols, A. J. Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self-administration in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R388–R394 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Mebel, D. M., Wong, J. C., Dong, Y. J. & Borgland, S. L. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur. J. Neurosci. 36, 2336–2346 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Könner, A. C. et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 13, 720–728 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Jauch-Chara, K. et al. Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes 61, 2261–2268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Hallschmid, M., Higgs, S., Thienel, M., Ott, V. & Lehnert, H. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes 61, 782–789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Kroemer, N. B. et al. (Still) longing for food: insulin reactivity modulates response to food pictures. Hum. Brain Mapp. 34, 2367–2380 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Stice, E., Figlewicz, D. P., Gosnell, B. A., Levine, A. S. & Pratt, W. E. The contribution of brain reward circuits to the obesity epidemic. Neurosci. Biobehav. Rev. 37, 2047–2058 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Kenny, P. J. Reward mechanisms in obesity: new insights and future directions. Neuron 69, 664–679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Volkow, N. D. & Wise, R. A. How can drug addiction help us understand obesity? Nat. Neurosci. 8, 555–560 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    [No authors listed] The neural basis of feeding and reward. Festschrift dedicated to Dr Bart Hoebel. January 14, 2011. Princeton, New Jersey, USA. Physiol. Behav. 104, 1–177 (2011).

  61. 61

    Blumenthal, D. M. & Gold, M. S. Neurobiology of food addiction. Curr. Opin. Clin. Nutr. Metab. Care 13, 359–365 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    DiLeone, R. J., Taylor, J. R. & Picciotto, M. R. The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat. Neurosci. 15, 1330–1335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Pedram, P. et al. Food addiction: its prevalence and significant association with obesity in the general population. PLoS ONE 8, e74832 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Volkow, N. D., Wang, G. J., Tomasi, D. & Baler, R. D. Obesity and addiction: neurobiological overlaps. Obes. Rev. 14, 2–18 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ochner, C. N., Barrios, D. M., Lee, C. D. & Pi-Sunyer, F. X. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol. Behav. 120, 106–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Brain Res. Rev. 31, 6–41 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Hajnal, A. & Norgren, R. Accumbens dopamine mechanisms in sucrose intake. Brain Res. 904, 76–84 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Bassareo, V. & Di Chiara, G. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89, 637–641 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Hernández, L., Paredes, D. & Rada, P. Feeding behavior as seen through the prism of brain microdialysis. Physiol. Behav. 104, 47–56 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Beeler, J. A., Frazier, C. R. & Zhuang, X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front. Integr. Neurosci. 6, 49 (2012).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Geiger, B. M. et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J. 22, 2740–2746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Geiger, B. M. et al. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159, 1193–1199 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Rada, P., Bocarsly, M. E., Barson, J. R., Hoebel, B. G. & Leibowitz, S. F. Reduced accumbens dopamine in Sprague–Dawley rats prone to overeating a fat-rich diet. Physiol. Behav. 101, 394–400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Hansen, H. H., Jensen, M. M., Overgaard, A., Weikop, P. & Mikkelsen, J. D. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat. Pharmacol. Biochem. Behav. 110, 265–271 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Alsiö, J. et al. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience 171, 779–787 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Alsiö, J. et al. Exposure to a high-fat high-sugar diet causes strong up-regulation of proopiomelanocortin and differentially affects dopamine D1 and D2 receptor gene expression in the brainstem of rats. Neurosci. Lett. 559, 18–23 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    van de Giessen, E., la Fleur, S. E., de Bruin, K., van den Brink, W. & Booij, J. Free-choice and no-choice high-fat diets affect striatal dopamine D2/3 receptor availability, caloric intake, and adiposity. Obesity (Silver Spring) 20, 1738–1740 (2012).

    CAS  Google Scholar 

  78. 78

    van de Giessen, E. et al. High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity. Int. J. Obes. (Lond.) 37, 754–757 (2013).

    CAS  Google Scholar 

  79. 79

    Speed, N. et al. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS ONE 6, e25169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Fetissov, S. O., Meguid, M. M., Sato, T. & Zhang, L. H. Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R905–R910 (2002).

    PubMed  PubMed Central  Google Scholar 

  81. 81

    Trifilieff, P. & Martinez, D. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology 76, 498–509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Marco, A., Schroeder, M. & Weller, A. Feeding and reward: ontogenetic changes in an animal model of obesity. Neuropharmacology 62, 2447–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Kim, K. S. et al. Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J. Biol. Chem. 285, 8905–8917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Corwin, R. L. & Wojnicki, F. H. Baclofen, raclopride, and naltrexone differentially affect intake of fat and sucrose under limited access conditions. Behav. Pharmacol. 20, 537–548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Pritchett, C. E. & Hajnal, A. Obesogenic diets may differentially alter dopamine control of sucrose and fructose intake in rats. Physiol. Behav. 104, 111–116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Wong, K. J., Wojnicki, F. H. & Corwin, R. L. Baclofen, raclopride, and naltrexone differentially affect intake of fat/sucrose mixtures under limited access conditions. Pharmacol. Biochem. Behav. 92, 528–536 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Koerber, J., Goodman, D., Barnes, J. L. & Grimm, J. W. The dopamine D2 antagonist eticlopride accelerates extinction and delays reacquisition of food self-administration in rats. Behav. Pharmacol. 24, 633–639 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    van de Giessen, E., de Bruin, K., la Fleur, S. E., van den Brink, W. & Booij, J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats. Eur. Neuropsychopharmacol. 22, 290–299 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Avena, N. M., Bocarsly, M. E., Rada, P., Kim, A. & Hoebel, B. G. After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol. Behav. 94, 309–315 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Avena, N. M., Rada, P. & Hoebel, B. G. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience 156, 865–871 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Baik, J. H. Dopamine signaling in reward-related behaviors. Front. Neural Circuits 7, 152 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Pickering, C., Alsiö, J., Hulting, A. L. & Schiöth, H. B. Withdrawal from free-choice high-fat high-sugar diet induces craving only in obesity-prone animals. Psychopharmacology (Berl.) 204, 431–443 (2009).

    CAS  Google Scholar 

  93. 93

    de Jong, J. W., Meijboom, K. E., Vanderschuren, L. J. & Adan, R. A. Low control over palatable food intake in rats is associated with habitual behavior and relapse vulnerability: individual differences. PLoS ONE 8, e74645 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Colantuoni, C. et al. Excessive sugar intake alters binding to dopamine and μ-opioid receptors in the brain. Neuroreport 12, 3549–3452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Bello, N. T., Lucas, L. R. & Hajnal, A. Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 13, 1575–1578 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Hajnal, A. & Norgren, R. Repeated access to sucrose augments dopamine turnover in the nucleus accumbens. Neuroreport 13, 2213–2216 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Bello, N. T., Sweigart, K. L., Lakoski, J. M., Norgren, R. & Hajnal, A. Restricted feeding with scheduled sucrose access results in an upregulation of the rat dopamine transporter. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1260–R1268 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Chandler-Laney, P. C. et al. A history of caloric restriction induces neurochemical and behavioral changes in rats consistent with models of depression. Pharmacol. Biochem. Behav. 87, 104–114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Davis, J. F. et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav. Neurosci. 122, 1257–1263 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Rada, P., Avena, N. M. & Hoebel, B. G. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134, 737–744 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Avena, N. M., Rada, P., Moise, N. & Hoebel, B. G. Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 139, 813–820 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Liang, N. C., Hajnal, A. & Norgren, R. Sham feeding corn oil increases accumbens dopamine in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1236–R1239 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Avena, N. & Hoebel, B. in Food and Addiction: A Comprehensive Handbook Ch. 31 (eds Brownell, K. & Gold, M.) 206–213 (Oxford University Press, 2012).

    Google Scholar 

  104. 104

    Colantuoni, C. et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes. Res. 10, 478–488 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Avena, N. M., Long, K. A. & Hoebel, B. G. Sugar-dependent rats show enhanced responding for sugar after abstinence: evidence of a sugar deprivation effect. Physiol. Behav. 84, 359–362 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Wilson, G. T. Eating disorders, obesity and addiction. Eur. Eat. Disord. Rev. 18, 341–351 (2010).

    PubMed  PubMed Central  Google Scholar 

  107. 107

    Ziauddeen, H., Farooqi, I. S. & Fletcher, P. C. Obesity and the brain: how convincing is the addiction model? Nat. Rev. Neurosci. 13, 279–286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Wang, G. J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001).

    CAS  Google Scholar 

  109. 109

    Haltia, L. T. et al. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 61, 748–756 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Volkow, N. D. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42, 1537–1543 (2008).

    PubMed  PubMed Central  Google Scholar 

  111. 111

    Dunn, J. P. et al. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care 35, 1105–1111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Volkow, N. D. et al. Brain dopamine is associated with eating behaviors in humans. Int. J. Eat. Disord. 33, 136–142 (2003).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Wang, G. J. et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity (Silver Spring) 19, 1601–1608 (2011).

    CAS  Google Scholar 

  114. 114

    Broft, A. et al. Striatal dopamine in bulimia nervosa: a PET imaging study. Int. J. Eat. Disord. 45, 648–656 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. 115

    Wilcox, C. E., Braskie, M. N., Kluth, J. T. & Jagust, W. J. Overeating behavior and striatal dopamine with 6-[F]-fluoro-l-m-tyrosine PET. J. Obes. http://dx.doi.org/10.1155/2010/909348 (2010).

  116. 116

    Lee, B. et al. Striatal dopamine D2/D3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J. Neurosci. 29, 14734–14740 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Buckholtz, J. W. et al. Dopaminergic network differences in human impulsivity. Science 329, 532 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Eisenberg, D. T. et al. Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. Behav. Brain Funct. 3, 2 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Noble, E. P. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 116B, 103–125 (2003).

    PubMed  PubMed Central  Google Scholar 

  120. 120

    Hardman, C. A., Rogers, P. J., Timpson, N. J. & Munafo, M. R. Lack of association between DRD2 and OPRM1 genotypes and adiposity. Int. J. Obes. (Lond.) 38, 730–736 (2014).

    CAS  Google Scholar 

  121. 121

    Epstein, L. H. et al. Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav. Neurosci. 121, 877–886 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Winkler, J. K. et al. TaqIA polymorphism in dopamine D2 receptor gene complicates weight maintenance in younger obese patients. Nutrition 28, 996–1001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Stice, E., Spoor, S., Bohon, C. & Small, D. M. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322, 449–452 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Stice, E., Yokum, S., Bohon, C., Marti, N. & Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50, 1618–1625 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Davis, C. et al. Binge eating disorder and the dopamine D2 receptor: genotypes and sub-phenotypes. Prog. Neuropsychopharmacol. Biol. Psychiatry 38, 328–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Carpenter, C. L., Wong, A. M., Li, Z., Noble, E. P. & Heber, D. Association of dopamine D2 receptor and leptin receptor genes with clinically severe obesity. Obesity (Silver Spring) 21, E467–E473 (2013).

    CAS  Google Scholar 

  127. 127

    Chen, A. L. et al. Correlation of the Taq1 dopamine D2 receptor gene and percent body fat in obese and screened control subjects: a preliminary report. Food Funct. 3, 40–48 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Comings, D. E., Gade, R., MacMurray, J. P., Muhleman, D. & Peters, W. R. Genetic variants of the human obesity (OB) gene: association with body mass index in young women, psychiatric symptoms, and interaction with the dopamine D2 receptor (DRD2) gene. Mol. Psychiatry 1, 325–335 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Jenkinson, C. P. et al. Association of dopamine D2 receptor polymorphisms Ser311Cys and TaqIA with obesity or type 2 diabetes mellitus in Pima Indians. Int. J. Obes. Relat. Metab. Disord. 24, 1233–1238 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Roth, C. L., Hinney, A., Schur, E. A., Elfers, C. T. & Reinehr, T. Association analyses for dopamine receptor gene polymorphisms and weight status in a longitudinal analysis in obese children before and after lifestyle intervention. BMC Pediatr. 13, 197 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Ariza, M. et al. Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4–7R) and executive function: their interaction with obesity. PLoS ONE 7, e41482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Snyder, S. H. & Pasternak, G. W. Historical review: opioid receptors. Trends Pharmacol. Sci. 24, 198–205 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Blasio, A., Steardo, L., Sabino, V. & Cottone, P. Opioid system in the medial prefrontal cortex mediates binge-like eating. Addict. Biol. http://dx.doi.org/10.1111/adb.12033 (2013).

  134. 134

    Chang, G. Q., Karatayev, O., Barson, J. R., Chang, S. Y. & Leibowitz, S. F. Increased enkephalin in brain of rats prone to overconsuming a fat-rich diet. Physiol. Behav. 101, 360–369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Cooper, S. J., Jackson, A. & Kirkham, T. C. Endorphins and food intake: kappa opioid receptor agonists and hyperphagia. Pharmacol. Biochem. Behav. 23, 889–901 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Kelley, A. E. et al. Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav. 76, 365–377 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Kelley, A. E., Will, M. J., Steininger, T. L., Zhang, M. & Haber, S. N. Restricted daily consumption of a highly palatable food (chocolate Ensure®) alters striatal enkephalin gene expression. Eur. J. Neurosci. 18, 2592–2598 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Zhang, M., Balmadrid, C. & Kelley, A. E. Nucleus accumbens opioid, GABAergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav. Neurosci. 117, 202–211 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Woolley, J. D., Lee, B. S., Taha, S. A. & Fields, H. L. Nucleus accumbens opioid signaling conditions short-term flavor preferences. Neuroscience 146, 19–30 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Katsuura, Y. & Taha, S. A. Modulation of feeding and locomotion through mu and delta opioid receptor signaling in the nucleus accumbens. Neuropeptides 44, 225–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Katsuura, Y., Heckmann, J. A. & Taha, S. A. μ-Opioid receptor stimulation in the nucleus accumbens elevates fatty tastant intake by increasing palatability and suppressing satiety signals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R244–R254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Mena, J. D., Sadeghian, K. & Baldo, B. A. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex. J. Neurosci. 31, 3249–3260 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Hagan, M. M. & Moss, D. E. An animal model of bulimia nervosa: opioid sensitivity to fasting episodes. Pharmacol. Biochem. Behav. 39, 421–422 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Boggiano, M. M. et al. Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav. Neurosci. 119, 1207–1214 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Naleid, A. M., Grace, M. K., Chimukangara, M., Billington, C. J. & Levine, A. S. Paraventricular opioids alter intake of high-fat but not high-sucrose diet depending on diet preference in a binge model of feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R99–R105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Katsuura, Y. & Taha, S. A. Mu opioid receptor antagonism in the nucleus accumbens shell blocks consumption of a preferred sucrose solution in an anticipatory contrast paradigm. Neuroscience 261, 144–152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Rao, R. E., Wojnicki, F. H., Coupland, J., Ghosh, S. & Corwin, R. L. Baclofen, raclopride, and naltrexone differentially reduce solid fat emulsion intake under limited access conditions. Pharmacol. Biochem. Behav. 89, 581–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Giuliano, C., Robbins, T. W., Nathan, P. J., Bullmore, E. T. & Everitt, B. J. Inhibition of opioid transmission at the μ-opioid receptor prevents both food seeking and binge-like eating. Neuropsychopharmacology 37, 2643–2652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Lenard, N. R., Zheng, H. & Berthoud, H. R. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats. Int. J. Obes. (Lond.) 34, 1001–1010 (2010).

    CAS  Google Scholar 

  150. 150

    Shin, A. C., Pistell, P. J., Phifer, C. B. & Berthoud, H. R. Reversible suppression of food reward behavior by chronic mu-opioid receptor antagonism in the nucleus accumbens. Neuroscience 170, 580–588 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Cottone, P., Sabino, V., Steardo, L. & Zorrilla, E. P. Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly preferred food. Neuropsychopharmacology 33, 524–535 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Yeomans, M. R. & Gray, R. W. Selective effects of naltrexone on food pleasantness and intake. Physiol. Behav. 60, 439–446 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Yeomans, M. R. & Gray, R. W. Effects of naltrexone on food intake and changes in subjective appetite during eating: evidence for opioid involvement in the appetizer effect. Physiol. Behav. 62, 15–21 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Bertino, M., Beauchamp, G. K. & Engelman, K. Naltrexone, an opioid blocker, alters taste perception and nutrient intake in humans. Am. J. Physiol. 261, R59–R63 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Hetherington, M. M., Vervaet, N., Blass, E. & Rolls, B. J. Failure of naltrexone to affect the pleasantness or intake of food. Pharmacol. Biochem. Behav. 40, 185–90 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Drewnowski, A., Krahn, D. D., Demitrack, M. A., Nairn, K. & Gosnell, B. A. Naloxone, an opiate blocker, reduces the consumption of sweet high-fat foods in obese and lean female binge eaters. Am. J. Clin. Nutr. 61, 1206–1212 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Mitchell, J. E. et al. A placebo-controlled, double-blind crossover study of naltrexone hydrochloride in outpatients with normal weight bulimia. J. Clin. Psychopharmacol. 9, 94–97 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Alger, S. A., Schwalberg, M. D., Bigaouette, J. M., Michalek, A. V. & Howard, L. J. Effect of a tricyclic antidepressant and opiate antagonist on binge-eating behavior in normoweight bulimic and obese, binge-eating subjects. Am. J. Clin. Nutr. 53, 865–871 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Chatoor, I., Herman, B. H. & Hartzler, J. Effects of the opiate antagonist, naltrexone, on binging antecedents and plasma β-endorphin concentrations. J. Am. Acad. Child Adolesc. Psychiatry 33, 748–752 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Marrazzi, M. A., Bacon, J. P., Kinzie, J. & Luby, E. D. Naltrexone use in the treatment of anorexia nervosa and bulimia nervosa. Int. Clin. Psychopharmacol. 10, 163–172 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Marrazzi, M. A., Markham, K. M., Kinzie, J. & Luby, E. D. Binge eating disorder: response to naltrexone. Int. J. Obes. Relat. Metab. Disord. 19, 143–145 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Jonas, J. M. & Gold, M. S. The use of opiate antagonists in treating bulimia: a study of low-dose versus high-dose naltrexone. Psychiatry Res. 24, 195–199 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Raingeard, I., Courtet, P., Renard, E. & Bringer, J. Naltrexone improves blood glucose control in type 1 diabetic women with severe and chronic eating disorders. Diabetes Care 27, 847–848 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Neumeister, A., Winkler, A. & Wober-Bingol, C. Addition of naltrexone to fluoxetine in the treatment of binge eating disorder. Am. J. Psychiatry 156, 797 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Daubenmier, J. et al. A new biomarker of hedonic eating? A preliminary investigation of cortisol and nausea responses to acute opioid blockade. Appetite 74, 92–100 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. 166

    McElroy, S. L. et al. A placebo-controlled pilot study of the novel opioid receptor antagonist ALKS-33 in binge eating disorder. Int. J. Eat. Disord. 46, 239–245 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. 167

    Davis, C. et al. Opiates, overeating and obesity: a psychogenetic analysis. Int. J. Obes. (Lond.) 35, 1347–1354 (2011).

    CAS  Google Scholar 

  168. 168

    Haghighi, A. et al. Opioid receptor μ 1 gene, fat intake and obesity in adolescence. Mol. Psychiatry 19, 63–68 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Davis, C. A. et al. Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity (Silver Spring) 17, 1220–1225 (2009).

    CAS  Google Scholar 

  170. 170

    Hatsukami, D., Owen, P., Pyle, R. & Mitchell, J. Similarities and differences on the MMPI between women with bulimia and women with alcohol or drug abuse problems. Addict. Behav. 7, 435–439 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Leon, G. R., Kolotkin, R. & Korgeski, G. MacAndrew Addiction Scale and other MMPI characteristics associated with obesity, anorexia and smoking behavior. Addict. Behav. 4, 401–407 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Scott, D. W. Alcohol and food abuse: some comparisons. Br. J. Addict. 78, 339–349 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Tuomisto, T. et al. Psychological and physiological characteristics of sweet food “addiction”. Int. J. Eat. Disord. 25, 169–175 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Cassin, S. E. & von Ranson, K. M. Is binge eating experienced as an addiction? Appetite 49, 687–690 (2007).

    PubMed  PubMed Central  Google Scholar 

  175. 175

    Goodman, A. Addiction: definition and implications. Br. J. Addict. 85, 1403–1408 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Curtis, C. & Davis, C. A qualitative study of binge eating and obesity from an addiction perspective. Eat. Disord. 22, 19–32 (2014).

    PubMed  PubMed Central  Google Scholar 

  177. 177

    Lent, M. R. & Swencionis, C. Addictive personality and maladaptive eating behaviors in adults seeking bariatric surgery. Eat. Behav. 13, 67–70 (2012).

    PubMed  PubMed Central  Google Scholar 

  178. 178

    Davis, C. et al. 'Food addiction' and its association with a dopaminergic multilocus genetic profile. Physiol. Behav. 118, 63–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Burmeister, J. M., Hinman, N., Koball, A., Hoffmann, D. A. & Carels, R. A. Food addiction in adults seeking weight loss treatment. Implications for psychosocial health and weight loss. Appetite 60, 103–110 (2013).

    PubMed  PubMed Central  Google Scholar 

  180. 180

    Gearhardt, A. N. et al. Neural correlates of food addiction. Arch. Gen. Psychiatry 68, 808–816 (2011).

    PubMed  PubMed Central  Google Scholar 

  181. 181

    Meule, A. Food addiction and body-mass-index: a non-linear relationship. Med. Hypotheses 79, 508–511 (2012).

    PubMed  PubMed Central  Google Scholar 

  182. 182

    Eichen, D. M., Lent, M. R., Goldbacher, E. & Foster, G. D. Exploration of “food addiction” in overweight and obese treatment-seeking adults. Appetite 67, 22–24 (2013).

    PubMed  PubMed Central  Google Scholar 

  183. 183

    Gearhardt, A. N., Roberto, C. A., Seamans, M. J., Corbin, W. R. & Brownell, K. D. Preliminary validation of the Yale Food Addiction Scale for children. Eat. Behav. 14, 508–512 (2013).

    PubMed  PubMed Central  Google Scholar 

  184. 184

    Mason, S. M., Flint, A. J., Field, A. E., Austin, S. B. & Rich-Edwards, J. W. Abuse victimization in childhood or adolescence and risk of food addiction in adult women. Obesity (Silver Spring) 21, E775–E781 (2013).

    Google Scholar 

  185. 185

    Meule, A., Lutz, A., Vögele, C. & Kübler, A. Women with elevated food addiction symptoms show accelerated reactions, but no impaired inhibitory control, in response to pictures of high-calorie food-cues. Eat. Behav. 13, 423–428 (2012).

    PubMed  PubMed Central  Google Scholar 

  186. 186

    Murphy, C. M., Stojek, M. K. & MacKillop, J. Interrelationships among impulsive personality traits, food addiction, and body mass index. Appetite 73, 45–50 (2014).

    PubMed  PubMed Central  Google Scholar 

  187. 187

    Gearhardt, A. N., White, M. A., Masheb, R. M. & Grilo, C. M. An examination of food addiction in a racially diverse sample of obese patients with binge eating disorder in primary care settings. Compr. Psychiatry 54, 500–505 (2013).

    PubMed  PubMed Central  Google Scholar 

  188. 188

    Meule, A. & Kübler, A. Food cravings in food addiction: the distinct role of positive reinforcement. Eat. Behav. 13, 252–255 (2012).

    PubMed  PubMed Central  Google Scholar 

  189. 189

    Bégin C. et al. Does food addiction distinguish a specific subgroup of overweight/obese overeating women? Health 4, 1492–1499 (2012).

    Google Scholar 

  190. 190

    Berridge, K. C., Robinson, T. E. & Aldridge, J. W. Dissecting components of reward: 'liking', 'wanting', and learning. Curr. Opin. Pharmacol. 9, 65–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Lent, M. R., Eichen, D. M., Goldbacher, E., Wadden, T. A. & Foster, G. D. Relationship of food addiction to weight loss and attrition during obesity treatment. Obesity (Silver Spring) 22, 52–55 (2014).

    Google Scholar 

  192. 192

    Ziauddeen, H. & Fletcher, P. C. Is food addiction a valid and useful concept? Obes. Rev. 14, 19–28 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Clark, S. M. & Saules, K. K. Validation of the Yale Food Addiction Scale among a weight-loss surgery population. Eat. Behav. 14, 216–219 (2013).

    PubMed  PubMed Central  Google Scholar 

  194. 194

    Meule, A., Heckel, D. & Kübler, A. Factor structure and item analysis of the Yale Food Addiction Scale in obese candidates for bariatric surgery. Eur. Eat. Disord. Rev. 20, 419–422 (2012).

    PubMed  PubMed Central  Google Scholar 

  195. 195

    Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. Preliminary validation of the Yale Food Addiction Scale. Appetite 52, 430–436 (2009).

    PubMed  PubMed Central  Google Scholar 

  196. 196

    Meule, A., Vögele, C. & Kübler, A. German Translation and Validation of the Yale Food Addiction Scale [German]. Diagnostica 58, 115–126 (2012).

    Google Scholar 

  197. 197

    Flint, A. J. et al. Food addiction scale measurement in 2 cohorts of middle-aged and older women. Am. J. Clin. Nutr. 99, 578–586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

S.M. and A.T. researched data for the Review. S.M., A.T. and N.M.A. were involved in the writing of the paper. All authors contributed to the review and editing of the manuscript.

Corresponding author

Correspondence to Nicole M. Avena.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murray, S., Tulloch, A., Gold, M. et al. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol 10, 540–552 (2014). https://doi.org/10.1038/nrendo.2014.91

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing