Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy

Key Points

  • Thyroid-associated ophthalmopathy (TAO) is a manifestation of the systemic malady Graves disease

  • Fibrocytes derived from monocyte progenitor cells apparently infiltrate the orbit in patients with TAO

  • By virtue of their diverse repertoire of molecule expression and responses to microenvironmental cues, fibrocytes could help orchestrate orbital tissue activation and remodelling

  • The signalling complex comprising TSHR and IGF-1R seems to contribute to activation of fibrocytes and orbital fibroblasts, and might be a target for novel therapeutic strategies for TAO

  • The involvement of fibrocytes in orbital Graves disease might offer clues to clarify the participation of these cells in other autoimmune inflammatory diseases

Abstract

Thyroid-associated ophthalmopathy (TAO) is a vexing and undertreated ocular component of Graves disease in which orbital tissues undergo extensive remodelling. My colleagues and I have introduced the concept that fibrocytes expressing the haematopoietic cell antigen CD34 (CD34+ fibrocytes), which are precursor cells of bone-marrow-derived monocyte lineage, express the TSH receptor (TSHR). These cells also produce several other proteins whose expression was traditionally thought to be restricted to the thyroid gland. TSHR-expressing fibrocytes in which the receptor is activated by its ligand generate extremely high levels of several inflammatory cytokines. Acting in concert with TSHR, the insulin-like growth factor 1 receptor (IGF-1R) expressed by orbital fibroblasts and fibrocytes seems to be necessary for TSHR-dependent cytokine production, as anti-IGF-1R blocking antibodies attenuate these proinflammatory actions of TSH. Furthermore, circulating fibrocytes are highly abundant in patients with TAO and seem to infiltrate orbital connective tissues, where they might transition to CD34+ fibroblasts. My research group has postulated that the infiltration of fibrocytes into the orbit, their unique biosynthetic repertoire and their proinflammatory and profibrotic phenotype account for the characteristic properties exhibited by orbital connective tissues that underlie susceptibility to TAO. These insights, which have emerged in the past few years, might be of use in therapeutically targeting pathogenic orbit-infiltrating fibrocytes selectively by utilizing novel biologic agents that interfere with TSHR and IGF-1R signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of CD34+ fibrocytes in patients with Graves disease and TAO.
Figure 2: Analysis of TSHR and thyroglobulin expression by human fibrocytes and fibroblasts.
Figure 3: TSHR expression on fibrocytes generated from peripheral blood mononuclear cells can initiate cytokine production.
Figure 4: mRNAs encoding proteins previously thought to be thyroid-specific are detectable in fibrocytes and CD34+ orbital fibroblasts.
Figure 5: Schematic representation of a theoretical model for TAO in which CD34+ fibrocytes are released from the bone marrow and infiltrate orbital connective tissues.

Similar content being viewed by others

References

  1. Brent, G. A. Graves' disease. N. Engl. J. Med. 358, 2594–2605 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Bahn, R. S. Graves' ophthalmopathy. N. Engl. J. Med. 362, 726–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rundle, F. F. & Wilson, C. W. Development and course of exophthalmos and ophthalmoplegia in Graves' disease with special reference to the effect of thyroidectomy. Clin. Sci. 5, 177–194 (1945).

    CAS  PubMed  Google Scholar 

  4. Smith, T. J., Bahn, R. S. & Gorman, C. A. Connective tissue, glycosaminoglycans, and diseases of the thyroid. Endocr. Rev. 10, 366–391 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, T. J. et al. Unique attributes of orbital fibroblasts and global alterations in IGF-1 receptor signaling could explain thyroid-associated ophthalmopathy. Thyroid 18, 983–988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tani, J., Gopinath, B., Nguyen, B. & Wall, J. R. Extraocular muscle autoimmunity and orbital flat inflammation in thyroid-associated ophthalmopathy. Expert Rev. Clin. Immunol. 3, 299–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. & Smith, T. J. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest. Ophthalmol. 55, 1735–1748 (2014).

    Article  CAS  Google Scholar 

  8. Lantz, M. et al. Overexpression of immediate early genes in active Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 90, 4784–4791 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Vondrichova, T. et al. COX-2 and SCD, markers of inflammation and adipogenesis, are related to disease activity in Graves' ophthalmopathy. Thyroid 17, 511–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Douglas, R. S. et al. Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J. Clin. Endocrinol. Metab. 95, 430–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Parmentier, M. et al. Molecular cloning of the thyrotropin receptor. Science 246, 1620–1622 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Davies, T. F., Ando, T., Lin, R. Y. & Latif, R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J. Clin. Invest. 115, 1972–1983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allgeier, A. et al. The human thyrotropin receptor activates G-proteins Gs and Gq/11 . J. Biol. Chem. 269, 13733–13735 (1994).

    CAS  PubMed  Google Scholar 

  14. Fuse, M. et al. Regulation of geranylgeranyl pyrophosphate synthase in the proliferation of rat FRTL-5 cells: involvement of both cAMP–PKA and PI3–AKT pathways. Biochem. Biophys. Res. Commun. 315, 1147–1153 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hara, T. et al. Thyrotropin regulates c-Jun N-terminal kinase (JNK) activity through two distinct signal pathways in human thyroid cells. Endocrinology 140, 1724–1730 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zaballos, M. A., Garcia, B. & Santisteban, P. Gβγ dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells. Mol. Endocrinol. 22, 1183–1199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saunier, B., Tournier, C., Jacquemin, C. & Pierre, M. Stimulation of mitogen-activated protein kinase by thyrotropin in primary cultured human thyroid follicles. J. Biol. Chem. 270, 3693–3697 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Suh, J. M. et al. Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J. Biol. Chem. 278, 21960–21971 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Morshed, S. A., Latif, R. & Davies, T. F. Characterization of thyrotropin receptor antibody-induced signaling cascades. Endocrinology 150, 519–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, B. R., Sanders, J. & Furmaniak, J. TSH receptor antibodies. Thyroid 17, 923–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Feliciello, A. et al. Expression of thyrotropin-receptor mRNA in healthy and Graves' disease retro-orbital tissue. Lancet 342, 337–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Gerding, M. N. et al. Association of thyrotrophin receptor antibodies with the clinical features of Graves' ophthalmopathy. Clin. Endocrinol. (Oxf.) 52, 267–271 (2000).

    Article  CAS  Google Scholar 

  23. Lytton, S. D. et al. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves' orbitopathy. J. Clin. Endocrinol. Metab. 95, 2123–2131 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ponto, K. A. et al. Clinical relevance of thyroid-stimulating immunoglobulins in Graves' ophthalmopathy. Ophthalmology 118, 2279–2285 (2011).

    Article  PubMed  Google Scholar 

  25. Diana, T. et al. Clinical relevance of thyroid-stimulating autoantibodies in pediatric Graves' disease—a multicenter study. J. Clin. Endocrinol. Metab. 99, 1648–1655 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Heufelder, A. E. & Bahn, R. S. Evidence for the presence of a functional TSH-receptor in retroocular fibroblasts from patients with Graves' ophthalmopathy. Exp. Clin. Endocrinol. 100, 62–67 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Valyasevi, R. W. et al. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J. Clin. Endocrinol. Metab. 84, 2557–2562 (1999).

    CAS  PubMed  Google Scholar 

  28. Slominski, A. et al. Expression of hypothalamic–pituitary–thyroid axis related genes in the human skin. J. Invest. Dermatol. 119, 1149–1455 (2002).

    Google Scholar 

  29. Shimura, H., Miyazaki, A., Haraguchi, K., Endo, T. & Onaya, T. Analysis of differentiation-induced expression mechanisms of thyrotropin receptor gene in adipocytes. Mol. Endocrinol. 12, 1473–1486 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Bell, A. et al. Functional TSH receptor in human abdominal preadipocytes and orbital fibroblasts. Am. J. Physiol. Cell Physiol. 279, C335–C340 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Cianfarani, F. et al. TSH receptor and thyroid-specific gene expression in human skin. J. Invest. Dermatol. 130, 93–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Endo, T., Ohta, K., Haraguchi, K. & Onaya, T. Cloning and functional expression of a thyrotropin receptor cDNA from rat fat cells. J. Biol. Chem. 270, 10833–10837 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Raychaudhuri, N., Fernando, R. & Smith, T. J. Thyrotropin regulates IL-6 expression in CD34+ fibrocytes: clear delineation of its cAMP-independent actions. PLoS ONE 8, E75100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rotella, C. M., Zonefrati, R., Toccafondi, R., Valente, W. A. & Kohn, L. D. Ability of monoclonal antibodies to the thyrotropin receptor to increase collagen synthesis in human fibroblasts: an assay which appears to measure exophthalmogenic immunoglobulins in Graves' sera. J. Clin. Endocrinol. Metab. 62, 357–367 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, S., Schiefer, R., Coenen, M. J. & Bahn, R. S. A stimulatory thyrotropin receptor antibody (M22) and thyrotropin increase interleukin-6 expression and secretion in Graves' orbital preadipocyte fibroblasts. Thyroid 20, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, L. et al. Thyrotropin receptor activation increases hyaluronan production in preadipocyte fibroblasts: contributory role in hyaluronan accumulation in thyroid dysfunction. J. Biol. Chem. 284, 26447–26455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, S., Iyer, S., Bauer, H., Coenen, M. & Bahn, R. S. A stimulatory thyrotropin receptor antibody enhances hyaluronic acid synthesis in graves' orbital fibroblasts: inhibition by an IGF-I receptor blocking antibody. J. Clin. Endocrinol. Metab. 97, 1681–1687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pappa, A. et al. Analysis of extraocular muscle-infiltrating T cells in thyroid-associated ophthalmopathy (TAO). Clin. Exp. Immunol. 109, 362–369 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grubeck-Loebenstein, B. et al. Retrobulbar T cells from patients with Graves' ophthalmopathy are CD8+ and specifically recognize autologous fibroblasts. J. Clin. Invest. 93, 2738–2743 (1994).

    Article  Google Scholar 

  40. Ecksteink, A. K. et al. Thyroid associated ophthalmopathy: evidence for CD4+ γδ T cells; de novo differentiation of RFD7+ macrophages, but not of RFD1+ dendritic cells; and loss of γδ and αβ T cell receptor expression. Br. J. Ophthalmol. 88, 803–808 (2004).

    Article  Google Scholar 

  41. de Carli, M. et al. Cytolytic T cells with Th1-like cytokine profile predominate in retroorbital lymphocytic infiltrates of Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 77, 1120–1124 (1993).

    CAS  PubMed  Google Scholar 

  42. Sciaky, D., Brazer, W., Center, D. M., Cruikshank, W. W. & Smith T. J. Cultured human fibroblasts express constitutive IL-16 mRNA: cytokine induction of active IL-16 protein synthesis through a caspase-3-dependent mechanism. J. Immunol. 164, 3806–3814 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hwang, C. J. et al. Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest. Ophthalmol. Vis. Sci. 50, 2262–2268 (2009).

    Article  PubMed  Google Scholar 

  44. Antonelli, A. et al. β (CCL2) and α (CXCL10) chemokine modulations by cytokines and peroxisome proliferator-activated receptor-α agonists in Graves' ophthalmopathy. J. Endocrinol. 213, 183–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Weightman, D. R., Perros, P., Sherif, I. H. & Kendall-Taylor, P. Autoantibodies to IGF-1 binding sites in thyroid associated ophthalmopathy. Autoimmunity 16, 251–257 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Smith, T. J. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol. Rev. 62, 199–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pritchard, J., Horst, N., Cruikshank, W. & Smith, T. J. Igs from patients with Graves' disease induce the expression of T cell chemoattractants in their fibroblasts. J. Immunol. 168, 942–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Pritchard, J., Han, R., Horst, N., Cruikshank, W. W. & Smith, T. J. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves' disease is mediated through the IGF-1 receptor pathway. J. Immunol. 170, 6348–6354 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Varewijck, A. J. et al. Circulating IgGs may modulate IGF-I receptor stimulating activity in a subset of patients with Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 98, 769–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Minich, W. B. et al. Autoantibodies to the IGF1 receptor in Graves' orbitopathy. J. Clin. Endocrinol. Metab. 98, 752–760 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, T. J. Is IGF-I receptor a target for autoantibody generation in Graves' disease? J. Clin. Endocrinol. Metab. 98, 515–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Douglas, R. S., Gianoukakis, A. G., Kamat, S. & Smith, T. J. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves' disease may carry functional consequences for disease pathogenesis. J. Immunol. 178, 3281–3287 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Douglas, R. S. et al. B cells from patients with Graves' disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J. Immunol. 181, 5768–5774 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Tramontano, D., Cushing, G. W., Moses, A. C. & Ingbar, S. H. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves'-IgG. Endocrinology 119, 940–942 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Garcia, B. & Santisteban, P. PI3K is involved in the IGF-I inhibition of TSH-induced sodium/iodide symporter gene expression. Mol. Endocrinol. 16, 342–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Brenner-Gati, L., Berg, K. A. & Gershengorn, M. C. Insulin-like growth factor-I potentiates thyrotropin stimulation of adenylyl cyclase in FRTL-5 cells. Endocrinology 125, 1315–1320 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Sastre-Perona, A. & Santisteban, P. Wnt-independent role of β-catenin in thyroid cell proliferation and differentiation. Mol. Endocrinol. 28, 681–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ock, S. et al. IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter. FASEB J. 27, 4899–4908 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Clement, S., Refetoff, S., Robaye, B., Dumont, J. E. & Schurmans, S. Low TSH requirement and goiter in transgenic mice overexpressing IGF-I and IGF-Ir receptor in the thyroid gland. Endocrinology 142, 5131–5139 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Tsui, S. et al. Evidence for an association between thyroid stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves' disease. J. Immunol. 181, 4397–4405 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Wiersinga, W. M. Autoimmunity in Graves' ophthalmopathy: the result of an unfortunate marriage between TSH receptors and IGF-1 receptors? J. Clin. Endocrinol. Metab. 96, 2386–2394 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Kriss, J. P. Radioisotopic thyroidolymphography in patients with Graves' disease. J. Clin. Endocrinol. Metab. 31, 315–323 (1970).

    Article  CAS  PubMed  Google Scholar 

  63. Tao, T. W., Cheng, P. J. Pham, H. Leu, S. L. & Kriss, J. P. Monoclonal antithyroglobulin antibodies derived from immunizations of mice with human eye muscle and thyroid membranes. J. Clin. Endocrinol. Metab. 63, 577–582 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Marinò, M. et al. Identification of thyroglobulin in orbital tissues of patients with thyroid-associated ophthalmopathy. Thyroid 11, 177–185 (2001).

    Article  PubMed  Google Scholar 

  65. Marinò, M. et al. Glycosaminoglycans provide a binding site for thyroglobulin in orbital tissues of patients with thyroid-associated ophthalmopathy. Thyroid 13, 851–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Lisi, S. et al. Thyroglobulin in orbital tissues from patients with thyroid-associated ophthalmopathy: predominant localization in fibroadipose tissue. Thyroid 12, 351–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Young, D. A., Evans, C. H. & Smith, T. J. Leukoregulin induction of protein expression in human orbital fibroblasts: evidence for anatomical site-restricted cytokine-target cell interactions. Proc. Natl Acad. Sci. USA 95, 8904–8909 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meyer zu Hörste, M. et al. A novel mechanism involved in the pathogenesis of Graves ophthalmopathy (GO): clathrin is a possible targeting molecule for inhibiting local immune response in the orbit. J. Clin. Endocrinol. Metab. 96, E1727–E1736 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. van Steensel, L. et al. Orbit-infiltrating mast cells, monocytes, and macrophages produce PDGF isoforms that orchestrate orbital fibroblast activation in Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 97, E400–E408 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. van Steensel, L. et al. Platelet-derived growth factor-BB: a stimulus for cytokine production by orbital fibroblasts in Graves' ophthalmopathy. Invest. Ophthalmol. Vis. Sci. 51, 1002–1007 (2010).

    Article  PubMed  Google Scholar 

  71. Hwang, C. J. et al. Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD4: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest. Ophthalmol. Vis. Sci. 50, 2262–2268 (2009).

    Article  PubMed  Google Scholar 

  72. Raychaudhuri, N., Douglas, R. S. & Smith, T. J. PGE2 induces IL-6 in orbital fibroblasts through EP2 receptors and increased gene promoter activity: implications to thyroid-associated ophthalmopathy. PLoS ONE 5, E15296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, B. et al. IL-4 induces 15-lipoxygenase-1 expression in human orbital fibroblasts from patients with Graves' disease: evidence for anatomic site-selective action of Th2 cytokines. J. Biol. Chem. 281, 18296–18306 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Han, R., Tsui, S. & Smith, T. J. Up-regulation of prostaglandin E2 synthesis by interleukin-1β in human orbital fibroblasts involves coordinate induction of prostaglandin-endoperoxide H synthase-2 and glutathione-dependent prostaglandin E2 synthase expression. J. Biol. Chem. 277, 16355–16364 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Li, B. & Smith, T. J. Divergent expression of IL-1 receptor antagonists in CD34+ fibrocytes and orbital fibroblasts in thyroid-associated ophthalmopathy: contribution of fibrocytes to orbital inflammation. J. Clin. Endocrinol. Metab. 98, 2783–2790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gabay, C., Lamacchia, C. & Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 6, 232–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Watson, J. M. et al. The intracellular IL-1 receptor antagonist alters IL-1-inducible gene expression without blocking exogenous signaling by IL-1 β. J. Immunol. 155, 4467–4475 (1995).

    CAS  PubMed  Google Scholar 

  78. Li, B. & Smith, T. J. Regulation of IL-1 receptor antagonist by TSH in fibrocytes and orbital fibroblasts. J. Clin. Endocrinol. Metab. 99, E625–E633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, B. & Smith, T. J. PI3K/AKT pathway mediates induction of IL-1RA by TSH in fibrocytes: modulation by PTEN. J. Clin. Endocrinol. Metab. 99, 3363–3372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spicer, A. P., Kaback, L. A., Smith, T. J. & Seldin, M. F. Molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. J. Biol. Chem. 273, 25117–25124 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Tsui, S., Fernando, R., Chen, B. & Smith, T. J. Divergent Sp1 levels may underlie differential expression of UDP glucose dehydrogenase by fibroblasts: role in susceptibility to orbital Graves' disease. J. Biol. Chem. 286, 24487–24499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaback, L. A. & Smith, T. J. Expression of hyaluronan synthase messenger ribonucleic acids and their induction by interleukin-1β in human orbital fibroblasts: potential insight into the molecular pathogenesis of thyroid-associated ophthalmopathy. J. Clin. Endocrinol. Metab. 84, 4079–4084 (1999).

    CAS  PubMed  Google Scholar 

  83. Guo, N., Woeller, C., F., Feldon, S. E. & Phipps, R. P. Peroxisome proliferator-activated receptor γ ligands inhibit transforming growth factor-β-induced, hyaluronan-dependent, T cell adhesion to orbital fibroblasts. J. Biol. Chem. 286, 18856–18867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith, T. J., Wang, H. S. & Evans, C. H. Leukoregulin is a potent inducer of hyaluronan synthesis in cultured human orbital fibroblasts. Am. J. Physiol. 268, C382–C388 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Guo, N., Baglole, C. J., O'Loughlin, C. W., Feldon, S. E. & Phipps, R. P. Mast cell-derived prostaglandin D2 controls hyaluronan synthesis in human orbital fibroblasts via DP1 activation: implications for thyroid eye disease. J. Biol. Chem. 285, 15794–15804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao, H. J. et al. Activation of human orbital fibroblasts through CD40 engagement results in a dramatic induction of hyaluronan synthesis and prostaglandin endoperoxide H synthase-2 expression: insights into potential pathogenic mechanisms of thyroid associated ophthalmopathy. J. Biol. Chem. 273, 29615–29625 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Smith, T. J. & Hoa, N. Immunoglobulins from patients with Graves' disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, IGF-1 receptor. J. Clin. Endocrinol. Metab. 89, 5076–5080 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Jackson, D. G. Immunological functions of hyaluronan and its receptors in the lymphatics. Immunol. Rev. 230, 216–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Noden, D. M. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. Smith, T. J. et al. Evidence for cellular heterogeneity in primary cultures of human orbital fibroblasts. J. Clin. Endocrinol. Metab. 80, 2620–2625 (1995).

    CAS  PubMed  Google Scholar 

  91. Smith, T. J. et al. Prostaglandin E2 elicits a morphological change in cultured orbital fibroblasts from patients with Graves ophthalmopathy. Proc. Natl Acad. Sci. USA 91, 5094–5098 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Henrikson, R. C. & Smith, T. J. Ultrastructure of cultured human orbital fibroblasts. Cell Tissue Res. 278, 629–631 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Koumas, L., Smith, T. J. & Phipps, R. P. Fibroblast subsets in the human orbit: Thy-1+ and Thy-1 subpopulations exhibit distinct phenotypes. Eur. J. Immunol. 32, 477–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Sorisky, A., Pardasani, D., Gagnon, A. & Smith, T. J. Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture. J. Clin. Endocrinol. Metab. 81, 3428–3431 (1996).

    CAS  PubMed  Google Scholar 

  95. Koumas, L., Smith, T. J., Feldon, S., Blumberg, N. & Phipps, R. P. Thy-1 expression in human fibroblast subsets defines myofibroblastic or lipofibroblastic phenotypes. Am. J. Pathol. 163, 1291–1300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith, T. J. et al. Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy. J. Clin. Endocrinol. Metab. 87, 385–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Li, H. et al. Independent adipogenic and contractile properties of fibroblasts in Graves' orbitopathy: an in vitro model for the evaluation of treatments. PLoS ONE 9, e95586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lehmann, G. M. et al. Novel anti-adipogenic activity produced by human fibroblasts. Am. J. Physiol. Cell Physiol. 299, C672–C681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chesney, J., Metz, C., Stavitsky, A. B., Bacher, M. & Bucala, R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J. Immunol. 160, 419–425 (1998).

    CAS  PubMed  Google Scholar 

  101. Yang, L. et al. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab. Invest. 82, 1183–1192 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Bohle, A. et al. Pathogenesis of chronic renal failure in primary glomerulopathies. Nephrol. Dial. Transplant. 9 (Suppl. 3), 4–12 (1994).

    PubMed  Google Scholar 

  103. Scholten, D. et al. Migration of fibrocytes in fibrogenic liver injury. Am. J. Pathol. 179, 189–198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, C. H. et al. Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am. J. Respir. Crit. Care Med. 178, 583–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Galligan, C. L. et al. Fibrocyte activation in rheumatoid arthritis. Rheumatology (Oxford) 49, 640–651 (2010).

    Article  CAS  Google Scholar 

  106. Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4, e7475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hong, K. M., Belperio, J. A., Keane, M. P., Burdick, M. D. & Strieter, R. M. Differentiation of human circulating fibrocytes as mediated by transforming growth factor-β and peroxisome proliferator-activated receptor γ. J. Biol. Chem. 282, 22910–22920 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Chesney, J., Bacher, M., Bender, A. & Bucala, R. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc. Natl Acad. Sci. USA 94, 9307–6312 (1997).

    Google Scholar 

  109. Abe, R., Donnelly, S. C., Peng, T., Bucala, R. & Metz, C. N. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166, 7556–7562 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Moeller, A. et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179, 588–594 (2009).

    Article  PubMed  Google Scholar 

  111. Wang, J. F. et al. Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair Regen. 15, 113–121 (2007).

    Article  PubMed  Google Scholar 

  112. Phillips, R. J. et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114, 438–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kazim, M., Goldberg, R. A. & Smith, T. J. Insights into the pathogenesis of thyroid-associated orbitopathy: evolving rationale for therapy. Arch. Ophthalmol. 120, 380–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Gillespie, E. F. et al. Increased expression of TSH receptor by fibrocytes in thyroid-associated ophthalmopathy leads to chemokine production. J. Clin. Endocrinol. Metab. 97, E740–E746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fernando, R. et al. Human fibrocytes coexpress thyroglobulin and thyrotropin receptor. Proc. Natl Acad. Sci. USA 109, 7427–7432 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fernando, R. et al. Expression of thyrotropin receptor, thyroglobulin, sodium-iodide symporter, and thyroperoxidase by fibrocytes depends on AIRE. J. Clin. Endocrinol. Metab. 99, E1236–E1244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Fernando, R. et al. Human fibrocytes express multiple antigens associated with autoimmune endocrine diseases. J. Clin. Endocrinol. Metab. 99, E796–E803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Neumann, S. et al. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155, 310–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Sanders, P. et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J. Mol. Endocrinol. 46, 81–99 (2011).

    CAS  PubMed  Google Scholar 

  121. Sanders, P. et al. Characteristics of a human monoclonal autoantibody to the thyrotropin receptor: sequence structure and function. Thyroid 14, 560–570 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Núñez Miguel, R. et al. Similarities and differences in interactions of thyroid stimulating and blocking autoantibodies with the TSH receptor. J. Mol. Endocrinol. 49, 137–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, H. et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J. Clin. Endocrinol. Metab. 99, E1635–E1640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. US National Institutes of Health. ClinicalTrials.gov[online], (2014).

Download references

Acknowledgements

The author gratefully acknowledges the assistance of L. Polonsky and J. Piernicka in the preparation of this manuscript before submission. This work was supported in part by NIH grant EY08976, Center for Vision grant EY007003 from the National Eye Institute, NIH, USA, and unrestricted grants from Research to Prevent Blindness and the Bell Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry J. Smith.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, T. TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nat Rev Endocrinol 11, 171–181 (2015). https://doi.org/10.1038/nrendo.2014.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.226

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research