Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thyroid transcription factors in development, differentiation and disease

Key Points

  • Homeobox protein Nkx2.1 (NKX2-1), forkhead box protein E1 (FOXE1), paired box protein Pax8 (PAX8) and haematopoietically-expressed homeobox protein Hhex (HHEX) are transcriptional regulators of thyroid-specific genes

  • NKX-2-1 and HHEX are members of the homeodomain family, FOXE1 is a forkhead domain protein and PAX8 is a member of the paired domain family

  • Simultaneous expression of the four thyroid transcription factors (TTFs) occurs exclusively in differentiated thyroid follicular cells and their precursors, and this expression pattern is a unique hallmark of thyroid tissue

  • Alterations in expression of the TTFs that result from mutations, polymorphisms and/or epigenetic modifications can give rise to several pathologies including thyroid dysgenesis and thyroid cancer

Abstract

Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of thyroid transcription factors and the stages of thyroid development.
Figure 2: TTFs in thyroid differentiation.
Figure 3: Consensus binding motifs of TTFs.
Figure 4: Novel TTF target genes.

Similar content being viewed by others

References

  1. De Felice, M. & Di Lauro, R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr. Rev. 25, 722–746 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Santisteban, P. & Bernal, J. Thyroid development and effect on the nervous system. Rev. Endocr. Metab. Disord. 6, 217–228 (2005).

    Article  PubMed  Google Scholar 

  3. Fagman, H. & Nilsson, M. Morphogenesis of the thyroid gland. Mol. Cell. Endocrinol. 323, 35–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Grapin-Botton, A. & Melton, D. A. Endoderm development: from patterning to organogenesis. Trends Genet. 16, 124–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Fisher, D. A. & Klein, A. H. Thyroid development and disorders of thyroid function in the newborn. N. Engl. J. Med. 304, 702–712 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Gruters, A. & Krude, H. Detection and treatment of congenital hypothyroidism. Nat. Rev. Endocrinol. 8, 104–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Park, S. M. & Chatterjee, V. K. Genetics of congenital hypothyroidism. J. Med. Genet. 42, 379–389 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Van Vliet, G. Development of the thyroid gland: lessons from congenitally hypothyroid mice and men. Clin. Genet. 63, 445–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kimura, S. Thyroid-specific transcription factors and their roles in thyroid cancer. J. Thyroid Res. 2011, 710213 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Civitareale, D., Lonigro, R., Sinclair, A. J. & Di Lauro, R. A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO J. 8, 2537–2542 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guazzi, S. et al. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 9, 3631–3639 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mizuno, K., Gonzalez, F. J. & Kimura, S. Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1. Mol. Cell. Biol. 11, 4927–4933 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ikeda, K. et al. Gene structure and expression of human thyroid transcription factor-1 in respiratory epithelial cells. J. Biol. Chem. 270, 8108–8114 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Hamdan, H. et al. Structure of the human Nkx2.1 gene. Biochim. Biophys. Acta 1396, 336–348 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura, K. et al. Immunohistochemical analyses of thyroid-specific enhancer-binding protein in the fetal and adult rat hypothalami and pituitary glands. Brain Res. Dev. Brain Res. 130, 159–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Zannini, M. et al. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 16, 3185–3197 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chadwick, B. P., Obermayr, F. & Frischauf, A. M. FKHL15, a new human member of the forkhead gene family located on chromosome 9q22. Genomics 41, 390–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Cuesta, I., Zaret, K. S. & Santisteban, P. The forkhead factor FoxE1 binds to the thyroperoxidase promoter during thyroid cell differentiation and modifies compacted chromatin structure. Mol. Cell. Biol. 27, 7302–7314 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Clifton-Bligh, R. J. et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat. Genet. 19, 399–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sequeira, M. et al. Production and application of polyclonal antibody to human thyroid transcription factor 2 reveals thyroid transcription factor 2 protein expression in adult thyroid and hair follicles and prepubertal testis. Thyroid 13, 927–932 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Eichberger, T. et al. FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma. J. Invest. Dermatol. 122, 1180–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Plachov, D. et al. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110, 643–651 (1990).

    CAS  PubMed  Google Scholar 

  25. Bopp, D., Burri, M., Baumgartner, S., Frigerio, G. & Noll, M. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47, 1033–1040 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Ozcan, A., Liles, N., Coffey, D., Shen, S. S. & Truong, L. D. PAX2 and PAX8 expression in primary and metastatic Müllerian epithelial tumors: a comprehensive comparison. Am. J. Surg. Pathol. 35, 1837–1847 (2011).

    Article  PubMed  Google Scholar 

  27. Poleev, A. et al. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors. Development 116, 611–623 (1992).

    CAS  PubMed  Google Scholar 

  28. Riesco-Eizaguirre, G. et al. NIS mediates iodide uptake in the female reproductive tract and is a poor prognostic factor in ovarian cancer. J. Clin. Endocrinol. Metab. 99, E1199–E1208 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Crompton, M. R. et al. Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res. 20, 5661–5667 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bedford, F. K., Ashworth, A., Enver, T. & Wiedemann, L. M. HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. Nucleic Acids Res. 21, 1245–1249 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Thomas, P. Q., Brown, A. & Beddington, R. S. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85–94 (1998).

    CAS  PubMed  Google Scholar 

  32. Bogue, C. W., Ganea, G. R., Sturm, E., Ianucci, R. & Jacobs, H. C. Hex expression suggests a role in the development and function of organs derived from foregut endoderm. Dev. Dyn. 219, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. De Felice, M. & Di Lauro, R. Minireview: Intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology 152, 2948–2956 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Damante, G. & Di Lauro, R. Thyroid-specific gene expression. Biochim. Biophys. Acta 1218, 255–266 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Ohno, M., Zannini, M., Levy, O., Carrasco, N. & di Lauro, R. The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription. Mol. Cell. Biol. 19, 2051–2060 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Damante, G., Tell, G. & Di Lauro, R. A unique combination of transcription factors controls differentiation of thyroid cells. Prog. Nucleic Acid Res. Mol. Biol. 66, 307–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Pellizzari, L. et al. Expression and function of the homeodomain-containing protein Hex in thyroid cells. Nucleic Acids Res. 28, 2503–2511 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Postiglione, M. P. et al. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc. Natl Acad. Sci. USA 99, 15462–15467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies, T. F., Latif, R., Minsky, N. C. & Ma, R. Clinical review: The emerging cell biology of thyroid stem cells. J. Clin. Endocrinol. Metab. 96, 2692–2702 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fagman, H. & Nilsson, M. Morphogenetics of early thyroid development. J. Mol. Endocrinol. 46, R33–R42 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Lazzaro, D., Price, M., de Felice, M. & Di Lauro, R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113, 1093–1104 (1991).

    CAS  PubMed  Google Scholar 

  42. Suzuki, K., Kobayashi, Y., Katoh, R., Kohn, L. D. & Kawaoi, A. Identification of thyroid transcription factor-1 in C cells and parathyroid cells. Endocrinology 139, 3014–3017 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kimura, S. et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10, 60–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Nobrega-Pereira, S. et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733–745 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tanaka, H. et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res. 67, 6007–6011 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kimura, S., Ward, J. M. & Minoo, P. Thyroid-specific enhancer-binding protein/thyroid transcription factor 1 is not required for the initial specification of the thyroid and lung primordia. Biochimie 81, 321–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Minoo, P., Su, G., Drum, H., Bringas, P. & Kimura, S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev. Biol. 209, 60–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Parlato, R. et al. An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev. Biol. 276, 464–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kusakabe, T. et al. Thyroid-specific enhancer-binding protein/NKX2.1 is required for the maintenance of ordered architecture and function of the differentiated thyroid. Mol. Endocrinol. 20, 1796–1809 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  51. Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Du, T., Xu, Q., Ocbina, P. J. & Anderson, S. A. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development 135, 1559–1567 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Butt, S. J. et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59, 722–732 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dathan, N., Parlato, R., Rosica, A., De Felice, M. & Di Lauro, R. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev. Dyn. 224, 450–456 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. De Felice, M. et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat. Genet. 19, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Fagman, H., Andersson, L. & Nilsson, M. The developing mouse thyroid: embryonic vessel contacts and parenchymal growth pattern during specification, budding, migration, and lobulation. Dev. Dyn. 235, 444–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Mansouri, A., Chowdhury, K. & Gruss, P. Follicular cells of the thyroid gland require Pax8 gene function. Nat. Genet. 19, 87–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Wistuba, J. et al. Male congenital hypothyroid Pax8−/− mice are infertile despite adequate treatment with thyroid hormone. J. Endocrinol. 192, 99–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Fagman, H. et al. Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev. Biol. 359, 163–175 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Dressler, G. R., Deutsch, U., Chowdhury, K., Nornes, H. O. & Gruss, P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795 (1990).

    CAS  PubMed  Google Scholar 

  61. Asano, M. & Gruss, P. Pax-5 is expressed at the midbrain-hindbrain boundary during mouse development. Mech. Dev. 39, 29–39 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Bouchard, M., Souabni, A., Mandler, M., Neubuser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16, 2958–2970 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pasca di Magliano, M., Di Lauro, R. & Zannini, M. Pax8 has a key role in thyroid cell differentiation. Proc. Natl Acad. Sci. USA 97, 13144–13149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000).

    CAS  PubMed  Google Scholar 

  65. Bort, R., Signore, M., Tremblay, K., Martinez Barbera, J. P. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Antonica, F. et al. Generation of functional thyroid from embryonic stem cells. Nature 491, 66–71 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ruiz-Llorente, S. et al. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics 13, 147 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sinclair, A. J., Lonigro, R., Civitareale, D., Ghibelli, L. & Di Lauro, R. The tissue-specific expression of the thyroglobulin gene requires interaction between thyroid-specific and ubiquitous factors. Eur. J. Biochem. 193, 311–318 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. De Felice, M., Damante, G., Zannini, M., Francis-Lang, H. & Di Lauro, R. Redundant domains contribute to the transcriptional activity of the thyroid transcription factor 1. J. Biol. Chem. 270, 26649–26656 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Di Palma, T. et al. TAZ is a coactivator for Pax8 and TTF-1, two transcription factors involved in thyroid differentiation. Exp. Cell Res. 315, 162–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Francis-Lang, H., Price, M., Polycarpou-Schwarz, M. & Di Lauro, R. Cell-type-specific expression of the rat thyroperoxidase promoter indicates common mechanisms for thyroid-specific gene expression. Mol. Cell. Biol. 12, 576–588 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Civitareale, D., Castelli, M. P., Falasca, P. & Saiardi, A. Thyroid transcription factor 1 activates the promoter of the thyrotropin receptor gene. Mol. Endocrinol. 7, 1589–1595 (1993).

    CAS  PubMed  Google Scholar 

  73. Shimura, Y., Shimura, H., Ohmori, M., Ikuyama, S. & Kohn, L. D. Identification of a novel insulin-responsive element in the rat thyrotropin receptor promoter. J. Biol. Chem. 269, 31908–31914 (1994).

    CAS  PubMed  Google Scholar 

  74. Endo, T. et al. Thyroid transcription factor-1 activates the promoter activity of rat thyroid Na+/I symporter gene. Mol. Endocrinol. 11, 1747–1755 (1997).

    CAS  PubMed  Google Scholar 

  75. Puppin, C. et al. Thyroid-specific transcription factors control Hex promoter activity. Nucleic Acids Res. 31, 1845–1852 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dentice, M. et al. Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells. Mol. Cell. Biol. 25, 10171–10182 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Christophe-Hobertus, C., Lefort, A., Libert, F. & Christophe, D. Functional inactivation of thyroid transcription factor-1 in PCCl3 thyroid cells. Mol. Cell. Endocrinol. 358, 36–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Oguchi, H. & Kimura, S. Multiple transcripts encoded by the thyroid-specific enhancer-binding protein (T/EBP)/thyroid-specific transcription factor-1 (TTF-1) gene: evidence of autoregulation. Endocrinology 139, 1999–2006 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Nakazato, M., Endo, T., Saito, T., Harii, N. & Onaya, T. Transcription of the thyroid transcription factor-1 (TTF-1) gene from a newly defined start site: positive regulation by TTF-1 in the thyroid. Biochem. Biophys. Res. Commun. 238, 748–752 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. D'Andrea, B. et al. Functional inactivation of the transcription factor Pax8 through oligomerization chain reaction. Mol. Endocrinol. 20, 1810–1824 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Damante, G. et al. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res. 22, 3075–3083 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang, L. H., Chmelik, R. & Nirenberg, M. Sequence-specific DNA binding by the vnd/NK-2 homeodomain of Drosophila. Proc. Natl Acad. Sci. USA 99, 12721–12726 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Watanabe, H. et al. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target. Genes Dev. 27, 197–210 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Boggaram, V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin. Sci. (Lond.) 116, 27–35 (2009).

    Article  CAS  Google Scholar 

  85. Hosono, Y. et al. MYBPH, a transcriptional target of TTF-1, inhibits ROCK1, and reduces cell motility and metastasis. EMBO J. 31, 481–493 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Zhu, N. L., Li, C., Xiao, J. & Minoo, P. NKX2.1 regulates transcription of the gene for human bone morphogenetic protein-4 in lung epithelial cells. Gene 327, 25–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Runkle, E. A. et al. Occludin is a direct target of thyroid transcription factor-1 (TTF-1/NKX2-1). J. Biol. Chem. 287, 28790–28801 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tagne, J. B. et al. Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors. PLoS ONE 7, e29907 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Leon, T. Y. et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J. Pediatr. Surg. 44, 1904–1912 (2009).

    Article  PubMed  Google Scholar 

  90. Provenzano, C., Pascucci, B., Lupari, E. & Civitareale, D. Large scale analysis of transcription factor TTF-1/NKX2.1 target genes in GnRH secreting cell line GT1-7. Mol. Cell. Endocrinol. 323, 215–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pelizzoli, R. et al. TTF-1/NKX2.1 up-regulates the in vivo transcription of nestin. Int. J. Dev. Biol. 52, 55–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Santisteban, P., Acebron, A., Polycarpou-Schwarz, M. & Di Lauro, R. Insulin and insulin-like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter. Mol. Endocrinol. 6, 1310–1317 (1992).

    CAS  PubMed  Google Scholar 

  94. Aza-Blanc, P., Di Lauro, R. & Santisteban, P. Identification of a cis-regulatory element and a thyroid-specific nuclear factor mediating the hormonal regulation of rat thyroid peroxidase promoter activity. Mol. Endocrinol. 7, 1297–1306 (1993).

    CAS  PubMed  Google Scholar 

  95. Ortiz, L., Zannini, M., Di Lauro, R. & Santisteban, P. Transcriptional control of the forkhead thyroid transcription factor TTF-2 by thyrotropin, insulin, and insulin-like growth factor I. J. Biol. Chem. 272, 23334–23339 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Perrone, L., Pasca di Magliano, M., Zannini, M. & Di Lauro, R. The thyroid transcription factor 2 (TTF-2) is a promoter-specific DNA-binding independent transcriptional repressor. Biochem. Biophys. Res. Commun. 275, 203–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ortiz, L., Aza-Blanc, P., Zannini, M., Cato, A. C. & Santisteban, P. The interaction between the forkhead thyroid transcription factor TTF-2 and the constitutive factor CTF/NF-1 is required for efficient hormonal regulation of the thyroperoxidase gene transcription. J. Biol. Chem. 274, 15213–15221 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Fernandez, L. P., Lopez-Marquez, A., Martinez, A. M., Gomez-Lopez, G. & Santisteban, P. New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS ONE 8, e62849 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hishinuma, A., Ohmika, N., Namatame, T. & Ieiri, T. TTF-2 stimulates expression of 17 genes, including one novel thyroid-specific gene which might be involved in thyroid development. Mol. Cell. Endocrinol. 221, 33–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Venza, I. et al. MSX1 and TGF-β3 are novel target genes functionally regulated by FOXE1. Hum. Mol. Genet. 20, 1016–1025 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Zannini, M., Francis-Lang, H., Plachov, D. & Di Lauro, R. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Mol. Cell. Biol. 12, 4230–4241 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Esposito, C., Miccadei, S., Saiardi, A. & Civitareale, D. PAX 8 activates the enhancer of the human thyroperoxidase gene. Biochem. J. 331 (Pt 1), 37–40 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Czerny, T., Schaffner, G. & Busslinger, M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Pellizzari, L., Fabbro, D., Lonigro, R., Di Lauro, R. & Damante, G. A network of specific minor-groove contacts is a common characteristic of paired-domain-DNA interactions. Biochem. J. 315 (Pt 2), 363–367 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Di Palma, T. et al. The paired domain-containing factor Pax8 and the homeodomain-containing factor TTF-1 directly interact and synergistically activate transcription. J. Biol. Chem. 278, 3395–3402 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Grasberger, H. et al. Thyroid transcription factor 1 rescues PAX8/p300 synergism impaired by a natural PAX8 paired domain mutation with dominant negative activity. Mol. Endocrinol. 19, 1779–1791 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. De Leo, R., Miccadei, S., Zammarchi, E. & Civitareale, D. Role for p300 in Pax 8 induction of thyroperoxidase gene expression. J. Biol. Chem. 275, 34100–34105 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Sastre-Perona, A. & Santisteban, P. Wnt-independent role of β-catenin in thyroid cell proliferation and differentiation. Mol. Endocrinol. 28, 681–695 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Puppin, C. et al. Functional interaction among thyroid-specific transcription factors: Pax8 regulates the activity of Hex promoter. Mol. Cell. Endocrinol. 214, 117–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Di Palma, T. et al. Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis. PLoS ONE 6, e25162 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Christophe-Hobertus, C. & Christophe, D. Human thyroid oxidases genes promoter activity in thyrocytes does not appear to be functionally dependent on thyroid transcription factor-1 or Pax8. Mol. Cell. Endocrinol. 264, 157–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. di Gennaro, A., Spadaro, O., Baratta, M. G., De Felice, M. & Di Lauro, R. Functional analysis of the murine Pax8 promoter reveals autoregulation and the presence of a novel thyroid-specific DNA-binding activity. Thyroid 23, 488–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Stuart, E. T., Haffner, R., Oren, M. & Gruss, P. Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 14, 5638–5645 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Dehbi, M. & Pelletier, J. PAX8-mediated activation of the wt1 tumor suppressor gene. EMBO J. 15, 4297–4306 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Li, C. G., Nyman, J. E., Braithwaite, A. W. & Eccles, M. R. PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein. Oncogene 30, 4824–4834 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Di Palma, T. et al. Pax8 has a critical role in epithelial cell survival and proliferation. Cell Death Dis. 4, e729 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hallaq, H. et al. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development 131, 5197–5209 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Liao, W., Ho, C. Y., Yan, Y. L., Postlethwait, J. & Stainier, D. Y. Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 127, 4303–4313 (2000).

    CAS  PubMed  Google Scholar 

  119. Zamparini, A. L. et al. Hex acts with β-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal. Development 133, 3709–3722 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Kershaw, R. M., Siddiqui, Y. H., Roberts, D., Jayaraman, P. S. & Gaston, K. PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene http://dx.doi.org/10.1038/onc.2013.496.

  121. Nilsson, M. & Fagman, H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr. Top. Dev. Biol. 106, 123–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Nettore, I. C., Cacace, V., De Fusco, C., Colao, A. & Macchia, P. E. The molecular causes of thyroid dysgenesis: a systematic review. J. Endocrinol. Invest. 36, 654–664 (2013).

    CAS  PubMed  Google Scholar 

  123. Vassart, G. & Dumont, J. E. Thyroid dysgenesis: multigenic or epigenetic. or both? Endocrinology 146, 5035–5037 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Deladoey, J., Vassart, G. & Van Vliet, G. Possible non-Mendelian mechanisms of thyroid dysgenesis. Endocr. Dev. 10, 29–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Abu-Khudir, R. et al. Transcriptome, methylome and genomic variations analysis of ectopic thyroid glands. PLoS ONE 5, e13420 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Nettore, I. C. et al. Identification and functional characterization of a novel mutation in the NKX2-1 gene: comparison with the data in the literature. Thyroid 23, 675–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Thorwarth, A. et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J. Med. Genet. 51, 375–387 (2014).

    Article  PubMed  CAS  Google Scholar 

  128. Patel, N. J. & Jankovic, J. NKX2-1-Related Disorders (eds Pagon, R. A. et al.) (GeneReviews®, 2014).

  129. Krude, H. et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J. Clin. Invest. 109, 475–480 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Willemsen, M. A. et al. Brain-Thyroid-Lung syndrome: a patient with a severe multi-system disorder due to a de novo mutation in the thyroid transcription factor 1 gene. Eur. J. Pediatr. 164, 28–30 (2005).

    Article  PubMed  Google Scholar 

  131. Carre, A. et al. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Hum. Mol. Genet. 18, 2266–2276 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Moya, C. M. et al. Functional study of a novel single deletion in the TITF1/NKX2.1 homeobox gene that produces congenital hypothyroidism and benign chorea but not pulmonary distress. J. Clin. Endocrinol. Metab. 91, 1832–1841 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Guillot, L. et al. NKX2-1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in “Brain-Lung-Thyroid Syndrome”. Hum. Mutat. 31, E1146–E1162 (2010).

    Article  PubMed  Google Scholar 

  134. Castanet, M. & Polak, M. Spectrum of Human Foxe1/TTF2 Mutations. Horm. Res. Paediatr. 73, 423–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Carre, A. et al. A novel FOXE1 mutation (R73S) in Bamforth–Lazarus syndrome causing increased thyroidal gene expression. Thyroid 24, 649–654 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Carre, A. et al. Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum. Genet. 122, 467–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Santarpia, L. et al. TTF-2/FOXE1 gene polymorphisms in Sicilian patients with permanent primary congenital hypothyroidism. J. Endocrinol. Invest. 30, 13–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Szczepanek, E. et al. FOXE1 polyalanine tract length polymorphism in patients with thyroid hemiagenesis and subjects with normal thyroid. Horm. Res. Paediatr. 75, 329–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Amiel, J., Trochet, D., Clement-Ziza, M., Munnich, A. & Lyonnet, S. Polyalanine expansions in human. Hum. Mol. Genet. 13 (Suppl. 2), R235–R243 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Ramos, H. E. et al. Clinical and molecular analysis of thyroid hypoplasia: a population-based approach in southern Brazil. Thyroid 19, 61–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Hermanns, P., Grasberger, H., Refetoff, S. & Pohlenz, J. Mutations in the NKX2.5 gene and the PAX8 promoter in a girl with thyroid dysgenesis. J. Clin. Endocrinol. Metab. 96, E977–E981 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Hermanns, P. et al. A new mutation in the promoter region of the PAX8 gene causes true congenital hypothyroidism with thyroid hypoplasia in a girl with Down's syndrome. Thyroid 24, 939–944 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Macchia, P. E. et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat. Genet. 19, 83–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Narumi, S. et al. Functional characterization of four novel PAX8 mutations causing congenital hypothyroidism: new evidence for haploinsufficiency as a disease mechanism. Eur. J. Endocrinol. 167, 625–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Grasberger, H. et al. Autosomal dominant resistance to thyrotropin as a distinct entity in five multigenerational kindreds: clinical characterization and exclusion of candidate loci. J. Clin. Endocrinol. Metab. 90, 4025–4034 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Carvalho, A. et al. A new PAX8 mutation causing congenital hypothyroidism in three generations of a family is associated with abnormalities in the urogenital tract. Thyroid 23, 1074–1078 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Meeus, L. et al. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J. Clin. Endocrinol. Metab. 89, 4285–4291 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Amendola, E. et al. A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 146, 5038–5047 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Frezzetti, D. et al. The microRNA-processing enzyme Dicer is essential for thyroid function. PLoS ONE 6, e27648 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Rodriguez, W. et al. Deletion of the RNaseIII enzyme dicer in thyroid follicular cells causes hypothyroidism with signs of neoplastic alterations. PLoS ONE 7, e29929 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Perry, R. et al. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J. Clin. Endocrinol. Metab. 87, 4072–4077 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Abu-Khudir, R. et al. Role for tissue-dependent methylation differences in the expression of FOXE1 in non-tumoral thyroid glands. J. Clin. Endocrinol. Metab. 99, E1120–E1129 (2014).

    Article  PubMed  CAS  Google Scholar 

  153. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Nikiforov, Y. E. & Nikiforova, M. N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7, 569–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Moldvay, J. et al. The role of TTF-1 in differentiating primary and metastatic lung adenocarcinomas. Pathol. Oncol. Res. 10, 85–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Tan, D. et al. Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: a high-throughput tissue microarray and immunohistochemistry study. Hum. Pathol. 34, 597–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Myong, N. H. Thyroid transcription factor-1 (TTF-1) expression in human lung carcinomas: its prognostic implication and relationship with expressions of p53 and Ki-67 proteins. J. Korean Med. Sci. 18, 494–500 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Barletta, J. A. et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J. Cell. Mol. Med. 13, 1977–1986 (2009).

    Article  PubMed  Google Scholar 

  159. Yamaguchi, T., Hosono, Y., Yanagisawa, K. & Takahashi, T. NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 23, 718–723 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Mu, D. The complexity of thyroid transcription factor 1 with both pro- and anti-oncogenic activities. J. Biol. Chem. 288, 24992–25000 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zhang, P. et al. Immunohistochemical analysis of thyroid-specific transcription factors in thyroid tumors. Pathol. Int. 56, 240–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Ordonez, N. G. Thyroid transcription factor-1 is a marker of lung and thyroid carcinomas. Adv. Anat. Pathol. 7, 123–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Katoh, R. et al. Expression of thyroid transcription factor-1 (TTF-1) in human C cells and medullary thyroid carcinomas. Hum. Pathol. 31, 386–393 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Gudmundsson, J. et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 41, 460–464 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Ngan, E. S. et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J. Natl Cancer Inst. 101, 162–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Homminga, I. et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19, 484–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Landa, I. et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet. 5, e1000637 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Takahashi, M. et al. The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum. Mol. Genet. 19, 2516–2523 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Nonaka, D., Tang, Y., Chiriboga, L., Rivera, M. & Ghossein, R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod. Pathol. 21, 192–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Sequeira, M. J. et al. Thyroid transcription factor-2 gene expression in benign and malignant thyroid lesions. Thyroid 11, 995–1001 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Bychkov, A. et al. Patterns of FOXE1 expression in papillary thyroid carcinoma by immunohistochemistry. Thyroid 23, 817–828 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Holmberg, E., Rozell, B. L. & Toftgard, R. Differential allele loss on chromosome 9q22.3 in human non-melanoma skin cancer. Br. J. Cancer 74, 246–250 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Venza, I. et al. FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br. J. Dermatol. 162, 1093–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Venza, I. et al. Investigation into FOXE1 genetic variations in cutaneous squamous cell carcinoma. Br. J. Dermatol. 162, 681–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Brune, K. et al. Genetic and epigenetic alterations of familial pancreatic cancers. Cancer Epidemiol. Biomarkers Prev. 17, 3536–3542 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Weisenberger, D. J. et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 36, 4689–4698 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Tong, G. X. et al. Expression of PAX8 in normal and neoplastic renal tissues: an immunohistochemical study. Mod. Pathol. 22, 1218–1227 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Laury, A. R. et al. PAX8 reliably distinguishes ovarian serous tumors from malignant mesothelioma. Am. J. Surg. Pathol. 34, 627–635 (2010).

    PubMed  Google Scholar 

  179. Wiseman, W., Michael, C. W. & Roh, M. H. Diagnostic utility of PAX8 and PAX2 immunohistochemistry in the identification of metastatic Mullerian carcinoma in effusions. Diagn. Cytopathol. 39, 651–656 (2011).

    Article  PubMed  Google Scholar 

  180. Kroll, T. G. et al. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Gregory Powell, J. et al. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 23, 3634–3641 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Placzkowski, K. A., Reddi, H. V., Grebe, S. K., Eberhardt, N. L. & McIver, B. The role of the PAX8/PPARγ fusion oncogene in thyroid cancer. PPAR Res. 2008, 672829 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Marques, A. R. et al. Expression of PAX8-PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  184. Cheung, L. et al. Detection of the PAX8-PPARγ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 88, 354–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Landa, I. et al. An epistatic interaction between the PAX8 and STK17B genes in papillary thyroid cancer susceptibility. PLoS ONE 8, e74765 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. D'Elia, A. V. et al. Expression and localization of the homeodomain-containing protein HEX in human thyroid tumors. J. Clin. Endocrinol. Metab. 87, 1376–1383 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Jankovic, D. et al. Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia. Blood 111, 5672–5682 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Puppin, C. et al. HEX expression and localization in normal mammary gland and breast carcinoma. BMC Cancer 6, 192 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Macchia, P. E. Recent advances in understanding the molecular basis of primary congenital hypothyroidism. Mol. Med. Today 6, 36–42 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by Grants BFU-2010–16025 and SAF2013-44709R from the Dirección General de Proyectos de Investigación; RD12/0036/0030 from FIS, Instituto de Salud Carlos III; and S2011/BMD-2328 from the TIRONET project from the Comunidad de Madrid. A.L.-M. holds a predoctoral Formación Personal Investigador fellowship from the Universidad Autónoma de Madrid. L.P.F. holds a postdoctoral Junta de Ampliación de Estudios-Doctores fellowship from the Consejo Superior de Investigaciones Científicas. We are grateful to Dr Ronald Hartong for critical reading of the manuscript and for assistance with language editing.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Pilar Santisteban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, L., López-Márquez, A. & Santisteban, P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 11, 29–42 (2015). https://doi.org/10.1038/nrendo.2014.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.186

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer