Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DSDs: genetics, underlying pathologies and psychosexual differentiation

Key Points

  • Disorders of sex development (DSDs) are defined as congenital conditions in which development of chromosomal, gonadal, or anatomic sex is atypical

  • Mutations in genes that encode transcription factors, signalling components and epigenetic modifiers that are involved in sex determination can result in 46,XX and 46,XY DSDs

  • At 6–8 weeks post-conception in human fetal development, upregulated expression of SRY in the bipotential gonad promotes testis determination, whereas activation of WNT4 and RSPO1 signalling promotes ovary determination

  • Gonadal phenotypes in patients with DSDs range from gonadal dysgenesis (in which the gonads are fibrous streak gonads) to varying degrees of ovotesis (in which both ovary and testicular tissue are present)

  • The complexity and interrelatedness of factors that contribute to the aetiology and the medical and psychological outcomes of DSDs demand a multidisciplinary team approach to health care

  • In contrast to gender differences in activities and interests, associations between prenatal exposure to androgens and development of gender identity or sexual orientation are unclear

Abstract

Mammalian sex determination is the unique process whereby a single organ, the bipotential gonad, undergoes a developmental switch that promotes its differentiation into either a testis or an ovary. Disruptions of this complex genetic process during human development can manifest as disorders of sex development (DSDs). Sex development can be divided into two distinct processes: sex determination, in which the bipotential gonads form either testes or ovaries, and sex differentiation, in which the fully formed testes or ovaries secrete local and hormonal factors to drive differentiation of internal and external genitals, as well as extragonadal tissues such as the brain. DSDs can arise from a number of genetic lesions, which manifest as a spectrum of gonadal (gonadal dysgenesis to ovotestis) and genital (mild hypospadias or clitoromegaly to ambiguous genitalia) phenotypes. The physical attributes and medical implications associated with DSDs confront families of affected newborns with decisions, such as gender of rearing or genital surgery, and additional concerns, such as uncertainty over the child's psychosexual development and personal wishes later in life. In this Review, we discuss the underlying genetics of human sex determination and focus on emerging data, genetic classification of DSDs and other considerations that surround gender development and identity in individuals with DSDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic pathophysiology of human sex determination.

Similar content being viewed by others

References

  1. V. A. Arboleda & Vilain, E. in Yen and Jaffe's Reproductive Endocrinology 6th edn Ch. 16 (eds Strauss, J. F. & Barbieri, R. L.) 367–393 (Saunders Elsevier, 2009).

    Google Scholar 

  2. Danon, M. & Sachs, L. Sex chromosomes and human sexual development. Lancet 273, 20–25 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Koopman, P., Munsterberg, A., Capel, B., Vivian, N. & Lovell-Badge, R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450–452 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Jost, A. Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent Prog. Horm. Res. 8, 379–418 (1953).

    Google Scholar 

  6. Jost, A. Studies on sex differentiation in mammals. Recent Prog. Horm. Res. 29, 1–41 (1973).

    CAS  PubMed  Google Scholar 

  7. Lee, P. A., Houk, C. P., Ahmed, S. F. & Hughes, I. A. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics 118, e488–e500 (2006).

    Article  PubMed  Google Scholar 

  8. Hughes, I. A., Houk, C., Ahmed, S. F. & Lee, P. A. Consensus statement on management of intersex disorders. J. Pediatr. Urol. 2, 148–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Auchus, R. J. & Miller, W. L. Defects in androgen biosynthesis causing 46, XY disorders of sexual development. Semin. Reprod. Med. 30, 417–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Biason-Lauber, A., Boscaro, M., Mantero, F. & Balercia, G. Defects of steroidogenesis. J. Endocrinol. Invest. 33 (2010).

  11. Lux, A., Kropf, S., Kleinemeier, E., Jurgensen, M. & Thyen, U. Clinical evaluation study of the German network of disorders of sex development (DSD)/intersexuality: study design, description of the study population, and data quality. BMC Public Health 9, 110 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baxter, R. M. & Vilain, E. Translational genetics for diagnosis of human disorders of sex development. Annu. Rev. Genomics Hum. Genet. 14, 371–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Disorders of Sex Development Translational Research Network [online] (2014).

  14. I-DSD Registry [online] (2014).

  15. Moriya, K., Mitsui, T., Tanaka, H., Nakamura, M. & Nonomura, K. Long-term outcome of pituitary-gonadal axis and gonadal growth in patients with hypospadias at puberty. J. Urol. 184, 1610–1614 (2010).

    Article  PubMed  Google Scholar 

  16. Ogata, T., Sano, S., Nagata, E., Kato, F. & Fukami, M. MAMLD1 and 46,XY disorders of sex development. Semin. Reprod. Med. 30, 410–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Rynja, S. P., de Jong, T. P., Bosch, J. L. & de Kort, L. M. Functional, cosmetic and psychosexual results in adult men who underwent hypospadias correction in childhood. J. Pediatr. Urol. 7, 504–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kazak, A. E. et al. An integrative model of pediatric medical traumatic stress. J. Pediatr. Psychol. 31, 343–355 (2006).

    Article  PubMed  Google Scholar 

  19. Sandberg, D. E. & Mazur, T. in Gender Dysphoria and Disorders of Sex Development: Progress in Care and Knowledge Focus on Sexuality Research Ch. 5 (eds Kreukels, B. P. C., Steensma, T. D. & de Vries, A. L. C.) 93–114 (Springer Science+Business Media, 2013).

    Google Scholar 

  20. Karkazis, K. & Feder, E. K. Naming the problem: disorders and their meanings. Lancet 372, 2016–2017 (2008).

    Article  PubMed  Google Scholar 

  21. Reis, E. Divergence or disorder?: The politics of naming intersex. Perspect. Biol. Med. 50, 535–543 (2007).

    Article  PubMed  Google Scholar 

  22. Tamar-Mattis, A., Baratz, A., Baratz Dalke, K. & Karkazis, K. Emotionally and cognitively informed consent for clinical care for differences of sex development. Psychology & Sexuality 5, 44–55 (2014).

    Article  Google Scholar 

  23. Diamond, M. & Garland, J. Evidence regarding cosmetic and medically unnecessary surgery on infants. J. Pediatr. Urol. 10, 2–6 (2014).

    Article  PubMed  Google Scholar 

  24. Mouriquand, P., Caldamone, A., Malone, P., Frank, J. D. & Hoebeke, P. The ESPU/SPU standpoint on the surgical management of Disorders of Sex Development (DSD). J. Pediatr. Urol. 10, 8–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Clepet, C. et al. The human SRY transcript. Hum. Mol. Genet. 2, 2007–2012 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Sadler, T. W. Langman's Medical Embryology 9th edn (Lippincott Williams & Wilkins, 2004).

    Google Scholar 

  27. Poulat, F. et al. Nuclear localization of the testis determining gene product SRY. J. Cell Biol. 128, 737–748 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Hiramatsu, R. et al. A critical time window of Sry action in gonadal sex determination in mice. Development 136, 129–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Sekido, R. & Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. McElreavy, K. et al. XY sex reversal associated with a deletion 5′ to the SRY “HMG box” in the testis-determining region. Proc. Natl Acad. Sci. USA 89, 11016–11020 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McElreavey, K. et al. Loss of sequences 3′ to the testis-determining gene, SRY, including the Y pseudoautosomal boundary associated with partial testicular determination. Proc. Natl Acad. Sci. USA 93, 8590–8594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berta, P. et al. Genetic evidence equating SRY and the testis-determining factor. Nature 348, 448–450 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Jager, R. J., Anvret, M., Hall, K. & Scherer, G. A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348 452–454 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Foster, J. W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Bagheri-Fam, S. et al. Loss of Fgfr2 leads to partial XY sex reversal. Dev. Biol. 314, 71–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, Y. et al. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc. Natl Acad. Sci. USA 104, 16558–16563 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schmahl, J., Kim, Y., Colvin, J. S., Ornitz, D. M. & Capel, B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131, 3627–3636 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Moniot, B. et al. The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development 136, 1813–1821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bellus, G. A. et al. Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat. Genet. 14, 174–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Luo, X., Ikeda, Y. & Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Wong, M., Ramayya, M. S., Chrousos, G. P., Driggers, P. H. & Parker, K. L. Cloning and sequence analysis of the human gene encoding steroidogenic factor 1. J. Mol. Endocrinol. 17, 139–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Achermann, J. C., Ito, M., Hindmarsh, P. C. & Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22, 125–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Tremblay, J. J. & Viger, R. S. A mutated form of steroidogenic factor 1 (SF-1 G35E) that causes sex reversal in humans fails to synergize with transcription factor GATA-4. J. Biol. Chem. 278, 42637–42642 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ikeda, Y., Shen, W. H., Ingraham, H. A. & Parker, K. L. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8, 654–662 (1994).

    CAS  PubMed  Google Scholar 

  46. Kohler, B. et al. Five novel mutations in steroidogenic factor 1 (SF1, NR5A1) in 46,XY patients with severe underandrogenization but without adrenal insufficiency. Hum. Mutat. 29, 59–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kohler, B. et al. The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency. Eur. J. Endocrinol. 161, 237–242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lourenco, D. et al. Mutations in NR5A1 associated with ovarian insufficiency. N. Engl. J. Med. 360, 1200–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bashamboo, A. et al. Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am. J. Hum. Genet. 87 (2010).

  50. Tantawy, S. et al. Testosterone production during puberty in two 46, XY patients with disorders of sex development and novel NR5A1 (SF-1) mutations. Eur. J. Endocrinol. 167, 125–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Swain, A., Zanaria, E., Hacker, A., Lovell-Badge, R. & Camerino, G. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat. Genet. 12, 404–409 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Barbaro, M. et al. Isolated 46, XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene. J. Clin. Endocrinol. Metab. 92, 3305–3313 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Swain, A., Narvaez, V., Burgoyne, P., Camerino, G. & Lovell-Badge, R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Ludbrook, L. M. et al. Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology 153, 1948–1958 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Guo, W. et al. Diagnosis of X-linked adrenal hypoplasia congenita by mutation analysis of the DAX1 gene. JAMA 274, 324–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Lourenco, D. et al. Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc. Natl Acad. Sci. USA 108, 1597–1602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bashamboo, A. et al. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum. Mol. Genet. 23, 3657–3665 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Tevosian, S. G. et al. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129, 4627–4634 (2002).

    CAS  PubMed  Google Scholar 

  59. Miyamoto, Y., Taniguchi, H., Hamel, F., Silversides, D. W. & Viger, R. S. A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol. Biol. 9, 44 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tannour-Louet, M. et al. Identification of de novo copy number variants associated with human disorders of sexual development. PLoS ONE 5, e15392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Calvari, V. et al. A new submicroscopic deletion that refines the 9p region for sex reversal. Genomics 65, 203–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Turnbull, C. et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat. Genet. 42, 604–607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, S., Bardwell, V. J. & Zarkower, D. Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation. Dev. Biol. 307, 314–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krentz, A. D. et al. The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc. Natl Acad. Sci. USA 106, 22323–22328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Takashima, S. et al. Regulation of pluripotency in male germline stem cells by Dmrt1. Genes Dev. 27, 1949–1958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matson, C. K. et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. White, S. et al. A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. Eur. J. Hum. Genet. 20, 348–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Ludes-Meyers, J. H. et al. WWOX hypomorphic mice display a higher incidence of B-cell lymphomas and develop testicular atrophy. Genes Chromosomes Cancer 46, 1129–1136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nef, S. et al. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev. Biol. 287, 361–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Vainio, S., Heikkila, M., Kispert, A., Chin, N. & McMahon, A. P. Female development in mammals is regulated by Wnt-4 signalling. Nature 397, 405–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Parma, P. et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genet. 38, 1304–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Maatouk, D. M. et al. Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal. Hum. Mol. Genet. 17, 2949–2955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomaselli, S. et al. Human RSPO1/R-spondin1 is expressed during early ovary development and augments β-catenin signaling. PLoS ONE 6, e16366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bowles, J. et al. Retinoid signaling determines germ cell fate in mice. Science 312, 596–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Koubova, J. et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl Acad. Sci. USA 103, 2474–2479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Couse, J. F. et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science 286, 2328–2331 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Dupont, S. et al. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 127, 4277–4291 (2000).

    CAS  PubMed  Google Scholar 

  80. Coulam, C. B. Premature gonadal failure. Fertil. Steril. 38, 645–655 (1982).

    Article  CAS  PubMed  Google Scholar 

  81. Seminara, S. B., Oliveira, L. M., Beranova, M., Hayes, F. J. & Crowley, W. F. Jr. Genetics of hypogonadotropic hypogonadism. J. Endocrinol. Invest. 23, 560–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Persani, L., Rossetti, R. & Cacciatore, C. Genes involved in human premature ovarian failure. J. Mol. Endocrinol. 45, 257–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Bachelot, A. et al. Phenotyping and genetic studies of 357 consecutive patients presenting with premature ovarian failure. Eur. J. Endocrinol. 161, 179–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Spiller, C. M., Bowles, J. & Koopman, P. Regulation of germ cell meiosis in the fetal ovary. Int. J. Dev. Biol. 56, 779–787 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Stochholm, K., Juul, S., Juel, K., Naeraa, R. W. & Gravholt, C. H. Prevalence, incidence, diagnostic delay, and mortality in Turner syndrome. J. Clin. Endocrinol. Metab. 91, 3897–3902 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Crisponi, L. et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet. 27, 159–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Pailhoux, E. et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat. Genet. 29, 453–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. De Baere, E. et al. Spectrum of FOXL2 gene mutations in blepharophimosis-ptosis-epicanthus inversus (BPES) families demonstrates a genotype–phenotype correlation. Hum. Mol. Genet. 10, 1591–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Voican, A. et al. NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency. J. Clin. Endocrinol. Metab. 98, E1017–E1021 (2013).

    Article  PubMed  Google Scholar 

  90. Philibert, P. et al. NR5A1 (SF-1) gene variants in a group of 26 young women with XX primary ovarian insufficiency. Fertil. Steril. 99, 484–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Ottolenghi, C. et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum. Mol. Genet. 16, 2795–2804 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Biason-Lauber, A., Konrad, D., Navratil, F. & Schoenle, E. J. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N. Engl. J. Med. 351, 792–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Biason-Lauber, A. et al. WNT4 deficiency--a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: a case report. Hum. Reprod. 22 (2007).

  94. Gao, X. et al. Clinical, cytogenetic, and molecular analysis with 46,XX male sex reversal syndrome: case reports. J. Assist Reprod. Genet. 30, 431–435 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Huang, B., Wang, S., Ning, Y., Lamb, A. N. & Bartley, J. Autosomal XX sex reversal caused by duplication of SOX9. Am. J. Med. Genet. 87, 349–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Cox, J. J., Willatt, L., Homfray, T. & Woods, C. G. A SOX9 duplication and familial 46,XX developmental testicular disorder. N. Engl. J. Med. 364, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Xiao, B., Ji, X., Xing, Y., Chen, Y. W. & Tao, J. A rare case of 46,XX SRY-negative male with approximately 74-kb duplication in a region upstream of SOX9. Eur. J. Med. Genet. 56, 695–698 (2013).

    Article  PubMed  Google Scholar 

  98. Benko, S. et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J. Med. Genet. 48, 825–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Moalem, S. et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am. J. Med. Genet. A 158A, 1759–1764 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Sutton, E. et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J. Clin. Invest. 121, 328–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. White, S. et al. Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS ONE 6, e17793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Polanco, J. C., Wilhelm, D., Davidson, T. L., Knight, D. & Koopman, P. Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Hum. Mol. Genet. 19, 506–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Pearlman, A. et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am. J. Hum. Genet. 87, 898–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Das, D. K., Rahate, S. G., Mehta, B. P., Gawde, H. M. & Tamhankar, P. M. Mutation analysis of mitogen activated protein kinase 1 gene in Indian cases of 46, XY disorder of sex development. Indian J. Hum. Genet. 19, 437–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Loke, J. et al. Mutations in MAP3K1 tilt the balance from SOX9/FGF9 to WNT/β-catenin signaling. Hum. Mol. Genet. 23 (2014).

  106. Warr, N. et al. Gadd45γ and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev. Cell 23, 1020–1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Canto, P., Soderlund, D., Reyes, E. & Mendez, J. P. Mutations in the desert hedgehog (DHH) gene in patients with 46, XY complete pure gonadal dysgenesis. J. Clin. Endocrinol. Metab. 89, 4480–4483 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Umehara, F. et al. A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am. J. Hum. Genet. 67, 1302–1305 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Callier, P. et al. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet. 10, e1004340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chassot, A. A. et al. WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development 139, 4461–4472 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Biason-Lauber, A., Konrad, D., Meyer, M., DeBeaufort, C. & Schoenle, E. J. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet. 84, 658–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Norling, A., Hirschberg, A. L., Iwarsson, E., Wedell, A. & Barbaro, M. CBX2 gene analysis in patients with 46,XY and 46,XX gonadal disorders of sex development. Fertil. Steril. 99, 819–826 e3 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Volkel, P., Le Faou, P., Vandamme, J., Pira, D. & Angrand, P. O. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription. Epigenetics 7, 482–491 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Milne, T. A., Sinclair, D. A. & Brock, H. W. The Additional sex combs gene of Drosophila is required for activation and repression of homeotic loci, and interacts specifically with Polycomb and super sex combs. Mol. Gen. Genet. 261, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Shirai, M. et al. The Polycomb-group gene Rae28 sustains Nkx2.5/Csx expression and is essential for cardiac morphogenesis. J. Clin. Invest. 110, 177–184 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Katoh-Fukui, Y. et al. Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153, 913–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Irving, M. et al. Deletion of the distal long arm of chromosome 10; is there a characteristic phenotype? A report of 15 de novo and familial cases. Am. J. Med. Genet. A 123A, 153–163 (2003).

    Article  PubMed  Google Scholar 

  119. Andresen, J. H., Aftimos, S., Doherty, E., Love, D. R. & Battin, M. 13q33.2 deletion: a rare cause of ambiguous genitalia in a male newborn with growth restriction. Acta Paediatr. 99, 784–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Dravis, C. et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev. Biol. 271, 272–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Chowdhury, S. et al. Phenotypic and molecular characterization of 19q12q13.1 deletions: a report of five patients. Am. J. Med. Genet. A 164A, 62–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Beysen, D. et al. Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome. Am. J. Hum. Genet. 77, 205–218 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Fluck, C. E. et al. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am. J. Hum. Genet. 89, 201–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Katsanis, N. et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Mykytyn, K. et al. Identification of the gene (BBS1) most commonly involved in Bardet–-Biedl syndrome, a complex human obesity syndrome. Nat. Genet. 31, 435–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Jensen, M. S. et al. Cryptorchidism and hypospadias in a cohort of 934,538 Danish boys: the role of birth weight, gestational age, body dimensions, and fetal growth. Am. J. Epidemiol. 175, 917–925 (2012).

    Article  PubMed  Google Scholar 

  128. Yinon, Y. et al. Hypospadias in males with intrauterine growth restriction due to placental insufficiency: the placental role in the embryogenesis of male external genitalia. Am. J. Med. Genet. A 152A, 75–83 (2010).

    Article  PubMed  Google Scholar 

  129. Kalfa, N., Philibert, P., Baskin, L. S. & Sultan, C. Hypospadias: interactions between environment and genetics. Mol. Cell Endocrinol. 335, 89–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Meijer, L. et al. Influence of prenatal organohalogen levels on infant male sexual development: sex hormone levels, testes volume and penile length. Hum. Reprod. 27, 867–872 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Fisch, H., Hyun, G. & Hensle, T. W. Rising hypospadias rates: disproving a myth. J. Pediatr. Urol. 6, 37–39 (2010).

    Article  PubMed  Google Scholar 

  132. Arboleda, V. A. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin. Genet. 83, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, Y. et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N. Engl. J. Med. 369, 1502–1511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wizemann, T. M. & Pardue, M.-L. (Eds) Exploring the Biological Contributions to Human Health: Does Sex Matter? (National Academy Press, 2001).

    Google Scholar 

  135. Stein, M. T., Sandberg, D. E., Mazur, T., Eugster, E. & Daaboul, J. A newborn infant with a disorder of sexual differentiation. J. Dev. Behav. Pediatr. 24, 115–119 (2003).

    Article  PubMed  Google Scholar 

  136. Dessens, A. B., Slijper, F. M. & Drop, S. L. Gender dysphoria and gender change in chromosomal females with congenital adrenal hyperplasia. Arch. Sex Behav. 34, 389–397 (2005).

    Article  PubMed  Google Scholar 

  137. Mazur, T. Gender dysphoria and gender change in androgen insensitivity or micropenis. Arch. Sex Behav. 34, 411–421 (2005).

    Article  PubMed  Google Scholar 

  138. Cohen-Kettenis, P. T. Gender change in 46,XY persons with 5α-reductase-2 deficiency and 17β-hydroxysteroid dehydrogenase-3 deficiency. Arch. Sex Behav. 34, 399–410 (2005).

    Article  PubMed  Google Scholar 

  139. Maimoun, L. et al. Phenotypical, biological, and molecular heterogeneity of 5α-reductase deficiency: an extensive international experience of 55 patients. J. Clin. Endocrinol. Metab. 96, 296–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Chuang, J. et al. Complexities of gender assignment in 17β-hydroxysteroid dehydrogenase type 3 deficiency: is there a role for early orchiectomy? Int. J. Pediatr. Endocrinol. 2013, 15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zucker, K. J. Intersexuality and gender identity differentiation. Annu. Rev. Sex Res. 10, 1–69 (1999).

    CAS  PubMed  Google Scholar 

  142. Reiner, W. G. & Gearhart, J. P. Discordant sexual identity in some genetic males with cloacal exstrophy assigned to female sex at birth. N. Engl. J. Med. 350, 333–341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Diamond, D. A. et al. Sex assignment for newborns with ambiguous genitalia and exposure to fetal testosterone: attitudes and practices of pediatric urologists. J. Pediatr. 148, 445–449 (2006).

    Article  PubMed  Google Scholar 

  144. Diamond, D. A., Burns, J. P., Huang, L., Rosoklija, I. & Retik, A. B. Gender assignment for newborns with 46XY cloacal exstrophy: a 6-year followup survey of pediatric urologists. J. Urol. 186, 1642–1648 (2011).

    Article  PubMed  Google Scholar 

  145. Meyer-Bahlburg, H. F. Gender identity outcome in female-raised 46,XY persons with penile agenesis, cloacal exstrophy of the bladder, or penile ablation. Arch. Sex Behav. 34, 423–438 (2005).

    Article  PubMed  Google Scholar 

  146. Ruble, D., Martin, C. & Berenbaum, S. in Handbook of child psychology: Social, emotional, and personality 6th edn Vol. 3 Ch. 14 (Eds Damon, W., Lerner, R. & Eisenberg, N.) 858–932 (New York: Wiley, 2006).

    Google Scholar 

  147. Stout, S. A., Litvak, M., Robbins, N. M. & Sandberg, D. E. Congenital adrenal hyperplasia: classification of studies employing psychological endpoints. Int. J. Pediatr. Endocrinol. 2010, 191520 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jordan-Young, R. M. Hormones, context, and “brain gender”: a review of evidence from congenital adrenal hyperplasia. Soc. Sci. Med. 74, 1738–1744 (2012).

    Article  PubMed  Google Scholar 

  149. Hines, M. in Multiple origins of sex differences in brain (eds Pfaff, D. W. & Christen, Y.) 59–69 (Springer, 2013). [Series Ed. Christen, Y. Research and Perspectives in Endocrine Interactions].

    Book  Google Scholar 

  150. Mueller, S. C. et al. Early androgen exposure modulates spatial cognition in congenital adrenal hyperplasia (CAH). Psychoneuroendocrinology 33, 973–980 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Frisen, L. et al. Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. J. Clin. Endocrinol. Metab. 94, 3432–3439 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Meyer-Bahlburg, H. F., Dolezal, C., Baker, S. W. & New, M. I. Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch. Sex Behav. 37, 85–99 (2008).

    Article  PubMed  Google Scholar 

  153. Arnold, A. P. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm. Behav. 55, 570–578 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Arnold, A. P. Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues. J. Neuroendocrinol. 21, 377–386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Arnold, A. P. & Chen, X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    Article  PubMed  Google Scholar 

  156. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Quinn, J. J., Hitchcott, P. K., Umeda, E. A., Arnold, A. P. & Taylor, J. R. Sex chromosome complement regulates habit formation. Nat. Neurosci. 10, 1398–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Chung, Y. P. et al. Prenatal diagnosis of monosomy 10q25 associated with single umbilical artery and sex reversal: report of a case. Prenat. Diagn. 18, 73–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Courtens, W., Wuyts, W., Rooms, L., Pera, S. B. & Wauters, J. A subterminal deletion of the long arm of chromosome 10: a clinical report and review. Am. J. Med. Genet. A 140, 402–409 (2006).

    Article  PubMed  Google Scholar 

  160. Battaglia, A. et al. Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121, 404–410 (2008).

    Article  PubMed  Google Scholar 

  161. Jordan, B. K. et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am. J. Hum. Genet. 68, 1102–1109 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this project was from the Doris Duke Foundation and the National Institute of Child Health and Human Development RO1HD06138 DSD-TRN (Platform for Basic and Translational Research) grant to E.V. and D.E.S, University of California Los Angeles institutional funds to V.A.A. and Patient-Centered Outcomes Research Institute contract funds to D.E.S.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Eric Vilain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arboleda, V., Sandberg, D. & Vilain, E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat Rev Endocrinol 10, 603–615 (2014). https://doi.org/10.1038/nrendo.2014.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing