Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The management of patients with polycystic ovary syndrome

This article has been updated

Key Points

  • Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women and the major cause of anovulatory infertility and hirsutism; patients have an increased risk of developing type 2 diabetes mellitus and cardiovascular disease

  • Lifestyle interventions such as weight loss and exercise remain the most effective means of regulating menses, preventing progression to type 2 diabetes mellitus and lowering cardiovascular risk

  • Anti-estrogens are the treatment of choice for induction of ovulation; metformin monotherapy might increase frequency of ovulation in patients with menstrual disturbances, but has no proven benefit over weight loss itself

  • Menstrual regulation in women who do not wish to conceive can be achieved by use of combined oral contraceptives or cyclical progestogens

  • If lifestyle interventions prove unsuccessful, metformin, whilst of debatable value for the treatment of infertility, has a clear role in the management of impaired glucose tolerance in women with PCOS

  • Currently, no evidence from large prospective studies supports the routine use of statins or insulin-sensitizing drugs other than metformin in young women with PCOS

Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women. The syndrome is typified by its heterogeneous presentation, which includes hirsutism (a function of hypersecretion of ovarian androgens), menstrual irregularity and infertility (that is due to infrequent or absent ovulation). Furthermore, PCOS predisposes patients to metabolic dysfunction and an increased risk of type 2 diabetes mellitus (T2DM). The aetiology of the syndrome has a major genetic component. Obesity exacerbates the insulin resistance that is a feature of PCOS in many women and amplifies the clinical and biochemical abnormalities. In clinical practice, the choice of investigations to be done depends mainly on the presenting symptoms. The approach to management is likewise dependent on the presenting complaint. Symptoms of androgen excess (hirsutism, acne and alopecia) require cosmetic measures, suppression of ovarian androgen function and anti-androgen therapy, alone or in combination. Ovulation rate is improved by diet and lifestyle intervention in overweight individuals but induction of ovulation by, in the first instance, anti-estrogens is usually required. Monitoring of glucose is important in overweight women and/or those with a family history of T2DM. Metformin is indicated for women with impaired glucose tolerance but whether this drug is otherwise useful in women with PCOS remains debatable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed pathogenesis of polycystic ovary syndrome.

Similar content being viewed by others

Selma Feldman Witchel, Helena J. Teede & Alexia S. Peña

Change history

  • 22 July 2014

    In the original version of this article published online the word 'anovulation' in Figure 1 was spelled incorrectly. This error has now been corrected in the HTML and PDF versions of the article.

References

  1. Azziz, R. et al. Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 86, 1626–1632 (2001).

    CAS  PubMed  Google Scholar 

  2. Fauser, B. C. et al. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 97, 28–38.e25 (2012).

    Article  PubMed  Google Scholar 

  3. March, W. A. et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 25, 544–551 (2010).

    Article  PubMed  Google Scholar 

  4. Stein, I. F. Sr. The Stein–Leventhal syndrome. West. J. Surg. Obstet. Gynecol. 63, 319–323 (1955).

    PubMed  Google Scholar 

  5. Stein, I. F. Sr. Duration of fertility following ovarian wedge resection—Stein–Leventhal syndrome. West. J. Surg. Obstet. Gynecol. 72, 237–242 (1964).

    PubMed  Google Scholar 

  6. Franks, S. The ubiquitous polycystic ovary. J. Endocrinol. 129, 317–319 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Wajchenberg, B. L. et al. Determination of the source(s) of androgen overproduction in hirsutism associated with polycystic ovary syndrome by simultaneous adrenal and ovarian venous catheterization. Comparison with the dexamethasone suppression test. J. Clin. Endocrinol. Metab. 63, 1204–1210 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Franks, S., Gilling-Smith, C., Watson, H. & Willis, D. Insulin action in the normal and polycystic ovary. Endocrinol. Metab. Clin. North Am. 28, 361–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Moran, C., Reyna, R., Boots, L. S. & Azziz, R. Adrenocortical hyperresponsiveness to corticotropin in polycystic ovary syndrome patients with adrenal androgen excess. Fertil. Steril. 81, 126–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, A., Woods, K. S., Bartolucci, A. A. & Azziz, R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin. Endocrinol. (Oxf.) 62, 644–649 (2005).

    Article  CAS  Google Scholar 

  11. Wickenheisser, J. K., Nelson-DeGrave, V. L. & McAllister, J. M. Human ovarian theca cells in culture. Trends Endocrinol. Metab. 17, 65–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Pardridge, W. M. Transport of protein-bound hormones into tissues in vivo. Endocr. Rev. 2, 103–123 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Eagleson, C. A. et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J. Clin. Endocrinol. Metab. 85, 4047–4052 (2000).

    CAS  PubMed  Google Scholar 

  14. Blank, S. K., McCartney, C. R. & Marshall, J. C. The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Hum. Reprod. Update 12, 351–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rebar, R. et al. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J. Clin. Invest. 57, 1320–1329 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baird, D. T. et al. Pituitary-ovarian relationships in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 45, 798–801 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. Franks, S., Stark, J. & Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 14, 367–378 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Chavez-Ross, A., Franks, S., Mason, H. D., Hardy, K. & Stark, J. Modelling the control of ovulation and polycystic ovary syndrome. J. Math. Biol. 36, 95–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Diamanti-Kandarakis, E. & Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33, 981–1030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manneras-Holm, L. et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 96, E304–E311 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Stepto, N. K. et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 28, 777–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Barber, T. M. & Franks, S. Adipocyte biology in polycystic ovary syndrome. Mol. Cell. Endocrinol. 373, 68–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Pasquali, R. et al. Body fat distribution has weight-independent effects on clinical, hormonal, and metabolic features of women with polycystic ovary syndrome. Metabolism 43, 706–713 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Kirchengast, S. & Huber, J. Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum. Reprod. 16, 1255–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Abbott, D. H., Dumesic, D. A. & Franks, S. Developmental origin of polycystic ovary syndrome—a hypothesis. J. Endocrinol. 174, 1–5 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Padmanabhan, V., Veiga-Lopez, A., Abbott, D. H., Recabarren, S. E. & Herkimer, C. Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology 151, 595–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Abbott, D. H. et al. Nonhuman primate models of polycystic ovary syndrome. Mol. Cell. Endocrinol. 373, 21–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbieri, R. L. et al. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J. Clin. Endocrinol. Metab. 62, 904–910 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Plymate, S. R., Matej, L. A., Jones, R. E. & Friedl, K. E. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J. Clin. Endocrinol. Metab. 67, 460–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Legro, R. S., Driscoll, D., Strauss, J. F. 3rd, Fox, J. & Dunaif, A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 95, 14956–14960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franks, S. et al. Ovarian morphology is a marker of heritable biochemical traits in sisters with polycystic ovaries. J. Clin. Endocrinol. Metab. 93, 3396–3402 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Vink, J. M., Sadrzadeh, S., Lambalk, C. B. & Boomsma, D. I. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J. Clin. Endocrinol. Metab. 91, 2100–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kosova, G & Urbanek, M. Genetics of the polycystic ovary syndrome. Mol. Cell. Endocrinol. 373, 29–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Mutharasan, P. et al. Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. J. Clin. Endocrinol. Metab. 98, E185–E190 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, Z. J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43, 55–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44, 1020–1025 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Welt, C. K. et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J. Clin. Endocrinol. Metab. 97, E1342–E1347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Louwers, Y. V., Stolk, L., Uitterlinden, A. G. & Laven, J. S. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E2006–E2012 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Diamanti-Kandarakis, E., Kandarakis, H. & Legro, R. S. The role of genes and environment in the etiology of PCOS. Endocrine 30, 19–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Kiddy, D. S. et al. Differences in clinical and endocrine features between obese and non-obese subjects with polycystic ovary syndrome: an analysis of 263 consecutive cases. Clin. Endocrinol. (Oxf.) 32, 213–220 (1990).

    Article  CAS  Google Scholar 

  41. Deligeoroglou, E. et al. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol. Endocrinol. 28, 974–978 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Diamanti-Kandarakis, E. Role of obesity and adiposity in polycystic ovary syndrome. Int. J. Obes. (Lond.) 31 (Suppl. 2), S8–S13 (2007).

    Article  Google Scholar 

  43. Livadas, S. & Diamanti-Kandarakis, E. Polycystic ovary syndrome: definitions, phenotypes and diagnostic approach. Front. Horm. Res. 40, 1–21 (2013).

    CAS  PubMed  Google Scholar 

  44. Zawadzki, J. K. & Dunaif, A. in Polycystic Ovary Syndrome (eds Dunaif, A., Givens, J. R., Haseltine, F. P. & Merriam, G. R.) 377–384 (Blackwell 1992).

    Google Scholar 

  45. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47 (2004).

  46. Azziz, R. et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 91, 4237–4245 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Dewailly, D. et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 20, 334–352 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Goverde, A. J. et al. Indicators for metabolic disturbances in anovulatory women with polycystic ovary syndrome diagnosed according to the Rotterdam consensus criteria. Hum. Reprod. 24, 710–717 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Dunaif, A. & Fauser, B. C. Renaming PCOS—a two-state solution. J. Clin. Endocrinol. Metab. 98, 4325–4328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moran, L. & Teede, H. Metabolic features of the reproductive phenotypes of polycystic ovary syndrome. Hum. Reprod. Update 15, 477–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Moghetti, P. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E628–E637 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Teede, H., Gibson-Helm, M., Norman, R. J. & Boyle, J. Polycystic ovary syndrome: perceptions and attitudes of women and primary health care physicians on features of PCOS and renaming the syndrome. J. Clin. Endocrinol. Metab. 99, E107–E111 (2014).

    Article  PubMed  Google Scholar 

  53. Legro, R. S. et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98, 4565–4592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ladenson, P. W. et al. American Thyroid Association guidelines for detection of thyroid dysfunction. Arch. Intern. Med. 160, 1573–1575 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Franks, S. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: in defense of the Rotterdam criteria. J. Clin. Endocrinol. Metab. 91, 786–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Rosner, W., Auchus, R. J., Azziz, R., Sluss, P. M. & Raff, H. Position statement: Utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J. Clin. Endocrinol. Metab. 92, 405–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Legro, R. S. et al. Total testosterone assays in women with polycystic ovary syndrome: precision and correlation with hirsutism. J. Clin. Endocrinol. Metab. 95, 5305–5313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller, K. K. et al. Measurement of free testosterone in normal women and women with androgen deficiency: comparison of methods. J. Clin. Endocrinol. Metab. 89, 525–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Vermeulen, A., Verdonck, L. & Kaufman, J. M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84, 3666–3672 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Hahn, S. et al. Diagnostic value of calculated testosterone indices in the assessment of polycystic ovary syndrome. Clin. Chem. Lab. Med. 45, 202–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Broekmans, F. J. et al. Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol. Metab. 19, 340–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Klein, D. A. & Poth, M. A. Amenorrhea: an approach to diagnosis and management. Am. Fam. Physician 87, 781–788 (2013).

    PubMed  Google Scholar 

  63. Lowenstein, E. J. Diagnosis and management of the dermatologic manifestations of the polycystic ovary syndrome. Dermatol. Ther. 19, 210–223 (2006).

    Article  PubMed  Google Scholar 

  64. Trueb, R. M. Causes and management of hypertrichosis. Am. J. Clin. Dermatol. 3, 617–627 (2002).

    Article  PubMed  Google Scholar 

  65. Sanchez, L. A., Perez, M. & Azziz, R. Laser hair reduction in the hirsute patient: a critical assessment. Hum. Reprod. Update 8, 169–181 (2002).

    Article  PubMed  Google Scholar 

  66. Moghetti, P. & Toscano, V. Treatment of hirsutism and acne in hyperandrogenism. Best Pract. Res. Clin. Endocrinol. Metab. 20, 221–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Richards, R. N. Electrolysis for the treatment of hypertrichosis and hirsutism. Skin Therapy Lett. 4, 3–4 (1999).

    CAS  PubMed  Google Scholar 

  68. Balfour, J. A. & McClellan, K. Topical eflornithine. Am. J. Clin. Dermatol. 2, 197–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Givens, J. R., Andersen, R. N., Wiser, W. L. & Fish, S. A. Dynamics of suppression and recovery of plasma FSH, LH, androstenedione and testosterone in polycystic ovarian disease using an oral contraceptive. J. Clin. Endocrinol. Metab. 38, 727–735 (1974).

    Article  CAS  PubMed  Google Scholar 

  70. Wild, R. A., Umstot, E. S., Andersen, R. N. & Givens, J. R. Adrenal function in hirsutism. II. Effect of an oral contraceptive. J. Clin. Endocrinol. Metab. 54, 676–681 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Eil, C. & Edelson, S. K. The use of human skin fibroblasts to obtain potency estimates of drug binding to androgen receptors. J. Clin. Endocrinol. Metab. 59, 51–55 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. Neumann, F. et al. Aspects of androgen-dependent events as studied by antiandrogens. Recent Prog. Horm. Res. 26, 337–410 (1970).

    CAS  PubMed  Google Scholar 

  73. MHRA. Cyproterone acetate with ethinylestradiol (co-cyprindiol): balance of benefits and risks remains positive—updated prescribing advice provided [online], (2013).

  74. Wu, O. et al. Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Health Technol. Assess. 10, 1–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Centers for Disease Control and Prevention (CDC). US medical eligibility criteria for contraceptive use, 2010. MMWR Recomm. Rep. 59, 1–86 (2010).

  76. Okoroh, E. M., Hooper, W. C., Atrash, H. K., Yusuf, H. R. & Boulet, S. L. Is polycystic ovary syndrome another risk factor for venous thromboembolism? United States, 2003–2008. Am. J. Obstet. Gynecol. 207, 377.e1–377.e8 (2012).

    Article  Google Scholar 

  77. Lidegaard, O., Lokkegaard, E., Jensen, A., Skovlund, C. W. & Keiding, N. Thrombotic stroke and myocardial infarction with hormonal contraception. N. Engl. J. Med. 366, 2257–2266 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Shapiro, G. & Evron, S. A novel use of spironolactone: treatment of hirsutism. J. Clin. Endocrinol. Metab. 51, 429–432 (1980).

    Article  CAS  PubMed  Google Scholar 

  79. Cumming, D. C., Yang, J. C., Rebar, R. W. & Yen, S. S. Treatment of hirsutism with spironolactone. JAMA 247, 1295–1298 (1982).

    Article  CAS  PubMed  Google Scholar 

  80. Menard, R. H., Guenthner, T. M., Kon, H. & Gillette, J. R. Studies on the destruction of adrenal and testicular cytochrome P-450 by spironolactone. Requirement for the 7α-thio group and evidence for the loss of the heme and apoproteins of cytochrome P-450. J. Biol. Chem. 254, 1726–1733 (1979).

    CAS  PubMed  Google Scholar 

  81. Corvol, P., Michaud, A., Menard, J., Freifeld, M. & Mahoudeau, J. Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology 97, 52–58 (1975).

    Article  CAS  PubMed  Google Scholar 

  82. Siegberg, R., Ylostalo, P., Laatikainen, T., Pelkonen, R. & Stenman, U. H. Endocrine and clinical effects of spironolactone in female hyperandrogenism. Arch. Gynecol. 240, 67–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. van Vloten, W. A., van Haselen, C. W., van Zuuren, E. J., Gerlinger, C. & Heithecker, R. The effect of 2 combined oral contraceptives containing either drospirenone or cyproterone acetate on acne and seborrhea. Cutis 69, 2–15 (2002).

    PubMed  Google Scholar 

  84. Bhattacharya, S. M. & Jha, A. Comparative study of the therapeutic effects of oral contraceptive pills containing desogestrel, cyproterone acetate, and drospirenone in patients with polycystic ovary syndrome. Fertil. Steril. 98, 1053–1059 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Erenus, M., Yucelten, D., Durmusoglu, F. & Gurbuz, O. Comparison of finasteride versus spironolactone in the treatment of idiopathic hirsutism. Fertil. Steril. 68, 1000–1003 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Falsetti, L., Gambera, A., Legrenzi, L., Iacobello, C. & Bugari, G. Comparison of finasteride versus flutamide in the treatment of hirsutism. Eur. J. Endocrinol. 141, 361–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Petrone, A. et al. Usefulness of a 12-month treatment with finasteride in idiophathic and polycystic ovary syndrome-associated hirsutism. Clin. Exp. Obstet. Gynecol. 26, 213–216 (1999).

    CAS  PubMed  Google Scholar 

  88. Tolino, A. et al. Finasteride in the treatment of hirsutism: new therapeutic perspectives. Fertil. Steril. 66, 61–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Moghetti, P. et al. Comparison of spironolactone, flutamide, and finasteride efficacy in the treatment of hirsutism: a randomized, double blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 85, 89–94 (2000).

    CAS  PubMed  Google Scholar 

  90. Solomon, C. G. et al. Long or highly irregular menstrual cycles as a marker for risk of type 2 diabetes mellitus. JAMA 286, 2421–2426 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Moran, L. J., Pasquali, R., Teede, H. J., Hoeger, K. M. & Norman, R. J. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil. Steril. 92, 1966–1982 (2009).

    Article  PubMed  Google Scholar 

  92. Diamanti-Kandarakis, E. PCOS in adolescents. Best Pract. Res. Clin. Obstet. Gynaecol. 24, 173–183 (2010).

    Article  PubMed  Google Scholar 

  93. Ornstein, R. M., Copperman, N. M. & Jacobson, M. S. Effect of weight loss on menstrual function in adolescents with polycystic ovary syndrome. J. Pediatr. Adolesc. Gynecol. 24, 161–165 (2011).

    Article  PubMed  Google Scholar 

  94. Lass, N., Kleber, M., Winkel, K., Wunsch, R. & Reinehr, T. Effect of lifestyle intervention on features of polycystic ovarian syndrome, metabolic syndrome, and intima–media thickness in obese adolescent girls. J. Clin. Endocrinol. Metab. 96, 3533–3540 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Mansfield, R., Galea, R., Brincat, M., Hole, D. & Mason, H. Metformin has direct effects on human ovarian steroidogenesis. Fertil. Steril. 79, 956–962 (2003).

    Article  PubMed  Google Scholar 

  96. Costello, M., Shrestha, B., Eden, J., Sjoblom, P. & Johnson, N. Insulin-sensitising drugs versus the combined oral contraceptive pill for hirsutism, acne and risk of diabetes, cardiovascular disease, and endometrial cancer in polycystic ovary syndrome. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD005552 http://dx.doi.org/10.1002/14651858.CD005552.pub2.

  97. Moghetti, P. et al. Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J. Clin. Endocrinol. Metab. 85, 139–146 (2000).

    CAS  PubMed  Google Scholar 

  98. Gorry, A., White, D. M. & Franks, S. Infertility in polycystic ovary syndrome: focus on low-dose gonadotropin treatment. Endocrine 30, 27–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Sirmans, S. M. & Pate, K. A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 6, 1–13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Panidis, D., Tziomalos, K., Papadakis, E. & Katsikis, I. Infertility treatment in polycystic ovary syndrome: lifestyle interventions, medications and surgery. Front. Horm. Res. 40, 128–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Kiddy, D. S. et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 36, 105–111 (1992).

    Article  CAS  Google Scholar 

  102. Moran, L. J., Hutchison, S. K., Norman, R. J. & Teede, H. J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD007506. http://dx.doi.org/10.1002/14651858.CD007506.pub3.

  103. Adashi, E. Y. Clomiphene citrate: mechanism(s) and site(s) of action—a hypothesis revisited. Fertil. Steril. 42, 331–344 (1984).

    Article  CAS  PubMed  Google Scholar 

  104. Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Hum. Reprod. 23, 462–477 (2008).

  105. Hull, M. in Infertility Ch. 3 (ed. Templeton, A. A.) 33–62 (Springer-Verlag, 1992).

    Book  Google Scholar 

  106. Humaidan, P., Quartarolo, J. & Papanikolaou, E. G. Preventing ovarian hyperstimulation syndrome: guidance for the clinician. Fertil. Steril. 94, 389–400 (2010).

    Article  PubMed  Google Scholar 

  107. Tang, T. et al. Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre study. Hum. Reprod. 21, 80–89 (2006).

    Article  PubMed  Google Scholar 

  108. Lord, J. M., Flight, I. H. & Norman, R. J. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 327, 951–953 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moll, E., Bossuyt, P. M., Korevaar, J. C., Lambalk, C. B. & van der Veen, F. Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial. BMJ 332, 1485 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Legro, R. S. et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N. Engl. J. Med. 356, 551–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Tang, T., Lord, J. M., Norman, R. J., Yasmin, E. & Balen, A. H. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD003053. http://dx.doi.org/10.1002/14651858.CD003053.pub5.

  112. Johnson, N. Metformin is a reasonable first-line treatment option for non-obese women with infertility related to anovulatory polycystic ovary syndrome—a meta-analysis of randomised trials. Aust. NZ J. Obstet. Gynaecol. 51, 125–129 (2011).

    Article  Google Scholar 

  113. Misso, M. L. et al. Metformin versus clomiphene citrate for infertility in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 19, 2–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Saltiel, A. R. & Olefsky, J. M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45, 1661–1669 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Pavone, M. E. & Bulun, S. E. Clinical review: the use of aromatase inhibitors for ovulation induction and superovulation. J. Clin. Endocrinol. Metab. 98, 1838–1844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Polyzos, N. P. et al. Aromatase inhibitors for infertility in polycystic ovary syndrome. The beginning or the end of a new era? Fertil. Steril. 89, 278–280 (2008).

    Article  PubMed  Google Scholar 

  117. Badawy, A., Shokeir, T., Allam, A. F. & Abdelhady, H. Pregnancy outcome after ovulation induction with aromatase inhibitors or clomiphene citrate in unexplained infertility. Acta Obstet. Gynecol. Scand. 88, 187–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Roy, K. K. et al. A prospective randomized trial comparing the efficacy of letrozole and clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. J. Hum. Reprod. Sci. 5, 20–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kar, S. Clomiphene citrate or letrozole as first-line ovulation induction drug in infertile PCOS women: A prospective randomized trial. J. Hum. Reprod. Sci. 5, 262–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Legro, R. S. et al. The Pregnancy in Polycystic Ovary Syndrome II (PPCOS II) trial: rationale and design of a double-blind randomized trial of clomiphene citrate and letrozole for the treatment of infertility in women with polycystic ovary syndrome. Contemp. Clin. Trials 33, 470–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, C. F. & Gemzell, C. The use of human gonadotropins for the induction of ovulation in women with polycystic ovarian disease. Fertil. Steril. 33, 479–486 (1980).

    Article  CAS  PubMed  Google Scholar 

  122. White, D. M. et al. Induction of ovulation with low-dose gonadotropins in polycystic ovary syndrome: an analysis of 109 pregnancies in 225 women. J. Clin. Endocrinol. Metab. 81, 3821–3824 (1996).

    CAS  PubMed  Google Scholar 

  123. Farquhar, C., Brown, J. & Marjoribanks, J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database of Systematic Reviews, Issue 6. Art. No.: CD001122. http://dx.doi.org/10.1002/14651858.CD001122.pub4.

  124. Colditz, G. A., Willett, W. C., Rotnitzky, A. & Manson, J. E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med. 122, 481–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Koh-Banerjee, P. et al. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am. J. Epidemiol. 159, 1150–1159 (2004).

    Article  PubMed  Google Scholar 

  126. Bogers, R. P. et al. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300,000 persons. Arch. Intern. Med. 167, 1720–1728 (2007).

    Article  PubMed  Google Scholar 

  127. Rich-Edwards, J. W. et al. Physical activity, body mass index, and ovulatory disorder infertility. Epidemiology 13, 184–190 (2002).

    Article  PubMed  Google Scholar 

  128. Galani, C. & Schneider, H. Prevention and treatment of obesity with lifestyle interventions: review and meta-analysis. Int. J. Public. Health. 52, 348–359 (2007).

    Article  PubMed  Google Scholar 

  129. Escobar-Morreale, H. F., Botella-Carretero, J. I., Alvarez-Blasco, F., Sancho, J. & San Millan, J. L. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 90, 6364–6369 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Eid, G. M. et al. Effective treatment of polycystic ovarian syndrome with Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 1, 77–80 (2005).

    Article  PubMed  Google Scholar 

  131. Kahal, H. et al. Glucagon-like peptide-1 analogue, liraglutide, improves liver fibrosis markers in obese women with polycystic ovary syndrome and nonalcoholic fatty liver disease. Clin. Endocrinol. (Oxf.) http://dx.doi.org/10.1111/cen.12369 (2013).

  132. Wilding, J. P. & Hardy, K. Glucagon-like peptide-1 analogues for type 2 diabetes. BMJ 342, d410 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Gambineri, A. et al. Efficacy of octreotide-LAR in dieting women with abdominal obesity and polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 3854–3862 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Rubio, M. A., Gargallo, M., Isabel Millan, A. & Moreno, B. Drugs in the treatment of obesity: sibutramine, orlistat and rimonabant. Public Health Nutr. 10, 1200–1205 (2007).

    Article  PubMed  Google Scholar 

  135. Panidis, D. et al. The role of orlistat combined with lifestyle changes in the management of overweight and obese patients with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 80, 432–438 (2014).

    Article  CAS  Google Scholar 

  136. Dunaif, A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18, 774–800 (1997).

    CAS  PubMed  Google Scholar 

  137. Wild, S., Pierpoint, T., McKeigue, P. & Jacobs, H. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin. Endocrinol. (Oxf.) 52, 595–600 (2000).

    Article  CAS  Google Scholar 

  138. Wild, R. A. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95, 2038–2049 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Ehrmann, D. A., Barnes, R. B., Rosenfield, R. L., Cavaghan, M. K. & Imperial, J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 22, 141–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Legro, R. S., Kunselman, A. R., Dodson, W. C. & Dunaif, A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J. Clin. Endocrinol. Metab. 84, 165–169 (1999).

    CAS  PubMed  Google Scholar 

  141. Moran, L. J., Misso, M. L., Wild, R. A. & Norman, R. J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 16, 347–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Solomon, C. G. et al. Long or highly irregular menstrual cycles as a marker for risk of type 2 diabetes mellitus. JAMA 286, 2421–2426 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Boomsma, C. M. et al. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum. Reprod. Update 12, 673–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Diabetes Prevention Program Outcomes Study Research Group. Long-term effects of the Diabetes Prevention Program interventions on cardiovascular risk factors: a report from the DPP Outcomes Study. Diabet. Med. 30, 46–55 (2013).

  146. Moran, L. J., Hutchison, S. K., Norman, R. J. & Teede, H. J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD007506. http://dx.doi.org.10.1002/14651858.CD007506.pub3.

  147. Solomon, C. G. et al. Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 87, 2013–2017 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Meyer, M. L., Malek, A. M., Wild, R. A., Korytkowski, M. T. & Talbott, E. O. Carotid artery intima–media thickness in polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 18, 112–126 (2012).

    Article  PubMed  Google Scholar 

  149. Arad, Y. et al. Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1,173 asymptomatic subjects. Circulation 93, 1951–1953 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Talbott, E. O. et al. Evidence for an association between metabolic cardiovascular syndrome and coronary and aortic calcification among women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89, 5454–5461 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Shaw, L. J. et al. Postmenopausal women with a history of irregular menses and elevated androgen measurements at high risk for worsening cardiovascular event-free survival: results from the National Institutes of Health—National Heart, Lung, and Blood Institute sponsored Women's Ischemia Syndrome Evaluation. J. Clin. Endocrinol. Metab. 93, 1276–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mani, H. et al. Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin. Endocrinol. (Oxf.) 78, 926–934 (2013).

    Article  Google Scholar 

  153. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. National Institutes of Health. Obes. Res. 6 (Suppl. 2), 51S–209S (1998).

  154. Wilson, P. W., D'Agostino, R. B., Sullivan, L., Parise, H. & Kannel, W. B. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch. Intern. Med. 162, 1867–1872 (2002).

    Article  PubMed  Google Scholar 

  155. Wannamethee, S. G., Shaper, A. G. & Walker, M. Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. J. Epidemiol. Community Health 59, 134–139 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kassi, E. & Diamanti-Kandarakis, E. The effects of insulin sensitizers on the cardiovascular risk factors in women with polycystic ovary syndrome. J. Endocrinol. Invest. 31, 1124–1131 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Diamanti-Kandarakis, E. et al. Metformin administration improves endothelial function in women with polycystic ovary syndrome. Eur. J. Endocrinol. 152, 749–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Naka, K. K. et al. Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: a prospective randomized study. Fertil. Steril. 95, 203–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Jensterle, M. et al. Improvement of endothelial function with metformin and rosiglitazone treatment in women with polycystic ovary syndrome. Eur. J. Endocrinol. 159, 399–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Christakou, C. D. & Diamanti-Kandarakis, E. Role of androgen excess on metabolic aberrations and cardiovascular risk in women with polycystic ovary syndrome. Womens Health (Lond. Engl.) 4, 583–594 (2008).

    Article  CAS  Google Scholar 

  161. Carmina, E., Chu, M. C., Longo, R. A., Rini, G. B. & Lobo, R. A. Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardiovascular risk parameters. J. Clin. Endocrinol. Metab. 90, 2545–2549 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Valkenburg, O. et al. A more atherogenic serum lipoprotein profile is present in women with polycystic ovary syndrome: a case-control study. J. Clin. Endocrinol. Metab. 93, 470–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Diamanti-Kandarakis, E., Papavassiliou, A. G., Kandarakis, S. A. & Chrousos, G. P. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol. Metab. 18, 280–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Izquierdo, D., Foyouzi, N., Kwintkiewicz, J. & Duleba, A. J. Mevastatin inhibits ovarian theca-interstitial cell proliferation and steroidogenesis. Fertil. Steril. 82 (Suppl. 3), 1193–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Rzepczynska, I. J. et al. Role of isoprenylation in simvastatin-induced inhibition of ovarian theca-interstitial growth in the rat. Biol. Reprod. 81, 850–855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sokalska, A., Piotrowski, P. C., Rzepczynska, I. J., Cress, A. & Duleba, A. J. Statins inhibit growth of human theca-interstitial cells in PCOS and non-PCOS tissues independently of cholesterol availability. J. Clin. Endocrinol. Metab. 95, 5390–5394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ortega, I. et al. Simvastatin reduces steroidogenesis by inhibiting Cyp17a1 gene expression in rat ovarian theca-interstitial cells. Biol. Reprod. 86, 1–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Duleba, A. J., Banaszewska, B., Spaczynski, R. Z. & Pawelczyk, L. Simvastatin improves biochemical parameters in women with polycystic ovary syndrome: results of a prospective, randomized trial. Fertil. Steril. 85, 996–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Gao, L., Zhao, F. L. & Li, S. C. Statin is a reasonable treatment option for patients with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Exp. Clin. Endocrinol. Diabetes 120, 367–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Puurunen, J. et al. Statin therapy worsens insulin sensitivity in women with polycystic ovary syndrome (PCOS): a prospective, randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 98, 4798–4807 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Diamanti-Kandarakis, E., Mitrakou, A., Raptis, S., Tolis, G. & Duleba, A. J. The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 83, 2699–2705 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Franks, S. Polycystic ovary syndrome in adolescents. Int. J. Obes. (Lond.) 32, 1035–1041 (2008).

    Article  CAS  Google Scholar 

  173. Franks, S., McCarthy, M. I. & Herdy, K. Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Int. J. Androl. 29, 278–285 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.N.J. is supported by an Academy of Medical Sciences Starter Grant for Clinical Lecturers.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed to a discussion of the article's content and wrote the manuscript. S.F. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Stephen Franks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasena, C., Franks, S. The management of patients with polycystic ovary syndrome. Nat Rev Endocrinol 10, 624–636 (2014). https://doi.org/10.1038/nrendo.2014.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing