Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The GH/IGF-1 axis in ageing and longevity


Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the 'somatopause', has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans.

Key Points

  • Growth hormone (GH) is a potent metabolic hormone that has been touted as a 'fountain of youth'

  • Recombinant human (rh) GH and insulin-like growth factor 1 (IGF-1) are approved therapeutics for patients with GH deficiency or primary IGF-1 deficiency, respectively; however, these drugs have been misused

  • Currently available data do not suggest that rhGH treatment should be used to promote longevity

  • Lack of GH action in mouse models is associated with extended longevity, but the mechanism underlying the increased lifespan has yet to be established

  • Given the effects of reduced GH/IGF-1 signalling on lifespan in rodents, decreased GH action might be beneficial for humans, but clinical trials are needed to assess long-term outcome of GH/IGF-1 inhibition

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Factors of the GH/IGF-1 axis known to influence ageing.
Figure 2: Mouse strains with altered GH signalling.


  1. 1

    Møller, N & Jørgensen, J. O. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev. 30, 152–177 (2009).

    Article  CAS  Google Scholar 

  2. 2

    Zadik, Z., Chalew, S. A., McCarter, R. J. Jr, Meistas, M. & Kowarski, A. A. The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals. J. Clin. Endocrinol. Metab. 60, 513–516 (1985).

    Article  CAS  Google Scholar 

  3. 3

    Bartke, A. Growth hormone and aging: a challenging controversy. Clin. Interv. Aging 3, 659–665 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Rudman, D. et al. Effects of human growth hormone in men over 60 years old. N. Engl. J. Med. 323, 1–6 (1990).

    Article  CAS  Google Scholar 

  5. 5

    Liu, H. et al. Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann. Intern. Med. 146, 104–115 (2007).

    Article  Google Scholar 

  6. 6

    Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span—from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Snell, G. D. Dwarf, a new Mendelian recessive character of the house mouse. Proc. Natl Acad. Sci. USA 15, 733–734 (1929).

    Article  CAS  Google Scholar 

  8. 8

    Eicher, E. M. & Beamer, W. G. New mouse dw allele: genetic location and effects on lifespan and growth hormone levels. J. Hered. 71, 187–190 (1980).

    Article  CAS  Google Scholar 

  9. 9

    Li, S. et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347, 528–533 (1990).

    Article  CAS  Google Scholar 

  10. 10

    Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  Google Scholar 

  11. 11

    Brooks, N. L. et al. Low utilization of circulating glucose after food withdrawal in Snell dwarf mice. J. Biol. Chem. 282, 35069–35077 (2007).

    Article  CAS  Google Scholar 

  12. 12

    Vergara, M., Smith-Wheelock, M., Harper, J. M., Sigler, R. & Miller, R. A. Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J. Gerontol. A. Biol. Sci. Med. Sci. 59, 1244–1250 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Schaible, R. & Gowen, J. W. A new dwarf mouse. Genetics 46, 896 (1961).

    Google Scholar 

  14. 14

    Buckwalter, M. S., Katz, R. W. & Camper, S. A. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross. Genomics 10, 515–526 (1991).

    Article  CAS  Google Scholar 

  15. 15

    Andersen, B. et al. The Ames dwarf gene is required for Pit-1 gene activation. Dev. Biol. 172, 495–503 (1995).

    Article  CAS  Google Scholar 

  16. 16

    Sornson, M. W. et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384, 327–333 (1996).

    Article  CAS  Google Scholar 

  17. 17

    Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    Article  CAS  Google Scholar 

  18. 18

    Bartke, A. et al. Extending the lifespan of long-lived mice. Nature 414, 412 (2001).

    Article  CAS  Google Scholar 

  19. 19

    Panici, J. A. et al. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J. 24, 5073–5079 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Krzisnik, C., Grgurić, S. Cvijović, K. & Laron, Z. Longevity of the hypopituitary patients from the island Krk: a follow-up study. Pediatr. Endocrinol. Rev. 7, 357–362 (2010).

    PubMed  Google Scholar 

  21. 21

    Krzisnik, C. et al. The “little people” of the island of Krk—revisited. Etiology of hypopituitarism revealed. J. Endocr. Genet. 1, 9–19 (1999).

    Google Scholar 

  22. 22

    Eicher, E. M. & Beamer, W. G. Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J. Hered. 67, 87–91 (1976).

    Article  CAS  Google Scholar 

  23. 23

    Godfrey, P. et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat. Genet. 4, 227–232 (1993).

    Article  CAS  Google Scholar 

  24. 24

    Donahue, L. R. & Beamer, W. G. Growth hormone deficiency in 'little' mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, -1 or -4. J. Endocrinol. 136, 91–104 (1993).

    Article  CAS  Google Scholar 

  25. 25

    Salvatori, R. et al. Familial dwarfism due to a novel mutation of the growth hormone-releasing hormone receptor gene. J. Clin. Endocrinol. Metab. 84, 917–923 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Aguiar-Oliveira, M. H. et al. Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene. J. Clin. Endocrinol. Metab. 95, 714–721 (2010).

    Article  CAS  Google Scholar 

  27. 27

    Baumann, G. & Maheshwari, H. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. Acta Paediatr. Suppl. 423, 33–38 (1997).

    Article  CAS  Google Scholar 

  28. 28

    Maheshwari, H. G., Silverman, B. L., Dupuis, J. & Baumann, G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: dwarfism of Sindh. J. Clin. Endocrinol. Metab. 83, 4065–4074 (1998).

    CAS  PubMed  Google Scholar 

  29. 29

    Besson, A. et al. Reduced longevity in untreated patients with isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 88, 3664–3667 (2003).

    Article  CAS  Google Scholar 

  30. 30

    Dobbs, A. K. et al. Cutting edge: a hypomorphic mutation in Igβ (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J. Immunol. 179, 2055–2059 (2007).

    Article  CAS  Google Scholar 

  31. 31

    Zhou, Y. et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc. Natl Acad. Sci. USA 94, 13215–13220 (1997).

    Article  CAS  Google Scholar 

  32. 32

    Laron, Z. & Kopchick, J. (Eds) Laron Syndrome—From Man to Mouse (Springer, 2011).

    Book  Google Scholar 

  33. 33

    List, E. O. et al. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR−/−) mouse. Endocr. Rev. 32, 356–386 (2011).

    Article  CAS  Google Scholar 

  34. 34

    Coschigano, K. T., Clemmons, D., Bellush, L. L. & Kopchick, J. J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Coschigano, K. T. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin and IGF-1 levels and increased lifespan. Endocrinology 144, 3799–3810 (2003).

    Article  CAS  Google Scholar 

  36. 36

    Berryman, D. E. et al. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm. IGF Res. 14, 309–318 (2004).

    Article  CAS  Google Scholar 

  37. 37

    Berryman, D. E. et al. Two-year body composition analyses of long-lived GHR null mice. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 31–40 (2010).

    Article  CAS  Google Scholar 

  38. 38

    Methuselah Foundation. Latest Mprize Winners [online], (2013)

  39. 39

    Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A. & Bartke, A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl Acad. Sci. USA 103, 7901–7905 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Laron, Z. Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J. Clin. Endocrinol. Metab. 89, 1031–1044 (2004).

    Article  CAS  Google Scholar 

  41. 41

    Laron, Z., Avitzur, Y. & Klinger, B. Carbohydrate metabolism in primary growth hormone resistance (Laron syndrome) before and during insulin-like growth factor-I treatment. Metabolism 44 (Suppl. 4), 113–118 (1995).

    Article  CAS  Google Scholar 

  42. 42

    Laron, Z. The GH–IGF1 axis and longevity. The paradigm of IGF1 deficiency. Hormones (Athens) 7, 24–27 (2008).

    Article  Google Scholar 

  43. 43

    Rosenbloom, A. L., Guevara Aguirre, J., Rosenfeld, R. G. & Fielder, P. J. The little women of Loja—growth hormone-receptor deficiency in an inbred population of southern Ecuador. N. Engl. J. Med. 323, 1367–1374 (1990).

    Article  CAS  Google Scholar 

  44. 44

    Guevara-Aguirre, J. et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med. 3, 70ra13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Steuerman, R., Shevah, O. & Laron, Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur. J. Endocrinol. 164, 485–489 (2011).

    Article  CAS  Google Scholar 

  46. 46

    Chen, W. Y., Wight, D. C., Mehta, B. V., Wagner, T. E. & Kopchick, J. J. Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol. Endocrinol. 5, 1845–1852 (1991).

    Article  CAS  Google Scholar 

  47. 47

    Chen, W. Y., White, M. E., Wagner, T. E. & Kopchick, J. J. Functional antagonism between endogenous mouse growth hormone (GH) and a GH analog results in dwarf transgenic mice. Endocrinology 129, 1402–1408 (1991).

    Article  CAS  Google Scholar 

  48. 48

    Palmiter, R. D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Palmer, A. J. et al. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 150, 1353–1360 (2009).

    Article  CAS  Google Scholar 

  50. 50

    Bartke, A. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78, 210–216 (2003).

    Article  CAS  Google Scholar 

  51. 51

    Quaife, C. J. et al. Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology 124, 40–48 (1989).

    Article  CAS  Google Scholar 

  52. 52

    Chanson, P. & Salenave, S. Acromegaly. Orphanet J. Rare Dis. 3, 17, (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Eugster, E. A. & Pescovitz, O. H. Gigantism. J. Clin. Endocrinol. Metab. 84, 4379–4384 (1999).

    Article  CAS  Google Scholar 

  54. 54

    Katznelson, L. Alterations in body composition in acromegaly. Pituitary 12, 136–142 (2008).

    Article  CAS  Google Scholar 

  55. 55

    Ayuk, J. & Sheppard, M. C. Does acromegaly enhance mortality? Rev. Endocr. Metab. Disord. 9, 33–39 (2008).

    Article  Google Scholar 

  56. 56

    Melmed, S. Acromegaly pathogenesis and treatment. J. Clin. Invest. 119, 3189–3202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Holdaway, I. M., Bolland, M. J. & Gamble, G. D. A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur. J. Endocrinol. 159, 89–95 (2008).

    Article  CAS  Google Scholar 

  58. 58

    Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  59. 59

    Sjögren, K. et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc. Natl Acad. Sci. USA 96, 7088–7092 (1999).

    Article  Google Scholar 

  60. 60

    Yakar, S. et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl Acad. Sci. USA 96, 7324–7329, (1999).

    Article  CAS  Google Scholar 

  61. 61

    Svensson, J. et al. Liver-derived IGF-I regulates mean life span in mice. PLoS ONE 6, e22640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Novosyadlyy, R. & Leroith, D. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity. J. Gerontol. A. Biol. Sci. Med. Sci. 67, 640–651 (2012).

    Article  CAS  Google Scholar 

  63. 63

    Li, Q., Ceylan-Isik, A. F., Li, J. & Ren, J. Deficiency of insulin-like growth factor 1 reduces sensitivity to aging-associated cardiomyocyte dysfunction. Rejuvenation Res. 11, 725–733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Conover, C. A. et al. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development 131, 1187–1194 (2004).

    Article  CAS  Google Scholar 

  65. 65

    Conover, C. A. & Bale, L. K. Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6, 727–729 (2007).

    Article  CAS  Google Scholar 

  66. 66

    Conover, C. A. Key questions and answers about pregnancy-associated plasma protein-A. Trends Endocrinol. Metab. 23, 242–249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Conover, C. A. et al. Longevity and age-related pathology of mice deficient in pregnancy-associated plasma protein-A. J. Gerontol. A Biol. Sci. Med. Sci. 65, 590–599 (2010).

    Article  CAS  Google Scholar 

  68. 68

    Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    Article  CAS  Google Scholar 

  69. 69

    Bokov, A. F. et al. Does reduced IGF-1R signaling in Igf1r+/− mice alter aging? PLoS ONE 6, e26891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ladiges, W. et al. Lifespan extension in genetically modified mice. Aging Cell 8, 346–352 (2009).

    Article  CAS  Google Scholar 

  71. 71

    Tazearslan, C., Huang, J., Barzilai, N. & Suh, Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell 10, 551–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).

    Article  PubMed  Google Scholar 

  73. 73

    Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Wolf, I. et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27, 7094–7105 (2008).

    Article  CAS  Google Scholar 

  75. 75

    Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  Google Scholar 

  76. 76

    Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    Article  CAS  Google Scholar 

  77. 77

    Previs, S. F., Withers, D. J., Ren, J. M., White, M. F. & Shulman, G. I. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J. Biol. Chem. 275, 38990–38994 (2000).

    Article  CAS  Google Scholar 

  78. 78

    Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    Article  CAS  Google Scholar 

  79. 79

    Selman, C. et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807–818 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Selman, C., Partridge, L. & Withers, D. J. Replication of extended lifespan phenotype in mice with deletion of insulin receptor substrate 1. PLoS ONE 6, e16144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Taguchi, A., Wartschow, L. M. & White, M. F. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369–372 (2007).

    Article  CAS  Google Scholar 

  82. 82

    Selman, C., Lingard, S., Gems, D., Partridge, L. & Withers, D. J. Comment on “Brain IRS2 signaling coordinates life span and nutrient homeostasis”. Science 320, 1012 (2008).

    Article  CAS  Google Scholar 

  83. 83

    Barbieri, M. et al. The IRS2 Gly1057Asp variant is associated with human longevity. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 282–286 (2010).

    Article  CAS  Google Scholar 

  84. 84

    Ranieri, S. C. et al. Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 107, 13420–13425 (2010).

    Article  Google Scholar 

  85. 85

    Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  Google Scholar 

  86. 86

    Bartke, A. Healthy aging: is smaller better?—a mini-review. Gerontology 58, 337–343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Kregel, K. C. & Zhang, H. J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R18–R36 (2007).

    Article  CAS  Google Scholar 

  89. 89

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Haruna, Y. et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl Acad. Sci. USA 104, 2331–2336 (2007).

    Article  CAS  Google Scholar 

  91. 91

    Harper, J. M., Durkee, S. J., Dysko, R. C., Austad, S. N. & Miller, R. A. Genetic modulation of hormone levels and life span in hybrids between laboratory and wild-derived mice. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 1019–1029 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Murakami, S. Stress resistance in long-lived mouse models. Exp. Gerontol. 41, 1014–1019 (2006).

    Article  CAS  Google Scholar 

  93. 93

    Fulda S., Gorman A. M., Hori O. & Samali A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010, 214074 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Wullschleger S, Loewith R. & Hall M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  95. 95

    Zoncu R., Efeyan A. & Sabatini D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  Google Scholar 

  96. 96

    Pérez, V. I. et al. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790, 1005–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Amador-Noguez, D. et al. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 6, 453–470 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Chhabra, Y., Waters, M. J. & Brooks, A. J. Role of the growth hormone-IGF-1 axis in cancer. Expert Rev. Endocrinol. Metab. 6, 71–84 (2011).

    Article  CAS  Google Scholar 

  99. 99

    Ikeno, Y., Bronson, R. T., Hubbard, G. B., Lee, S. & Bartke, A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J. Gerontol. A. Biol. Sci. Med. Sci. 58, 291–296 (2003).

    Article  Google Scholar 

  100. 100

    Majeed, N. et al. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 24, 4736–4740 (2005).

    Article  CAS  Google Scholar 

  101. 101

    Ikeno, Y. et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J. Gerontol. A. Biol. Sci. Med. Sci. 64, 522–529 (2009).

    Article  CAS  Google Scholar 

  102. 102

    Pollak, M., Blouin, M. J., Zhang, J. C. & Kopchick, J. J. Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br. J. Cancer 85, 428–430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Wang, M. & Miller, R. A. Augmented autophagy pathways and MTOR modulation in fibroblasts from long-lived mutant mice. Autophagy 8, (2012).

  105. 105

    Thorner, M. O. Statement by the Growth Hormone Research Society on the GH/IGF-I axis in extending health span. J. Gerontol. A. Biol. Sci. Med. Sci. 64, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  106. 106

    Elbornsson M. et al. Fifteen years of growth hormone (GH) replacement improves body composition and cardiovascular risk factors. Eur. J. Endocrinol.

  107. 107

    Blackman M. R. et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288, 2282–2292 (2002).

    Article  CAS  Google Scholar 

  108. 108

    Vestergaard, P. et al. Local administration of growth hormone stimulates tendon collagen synthesis in elderly men. J. Appl. Physiol. 113, 1432–1438 (2012).

    Article  CAS  Google Scholar 

  109. 109

    Trainer, P. J. ACROSTUDY: the first 5 years. Eur. J. Endocrinol. 161 (Suppl. 1), S19–S24 (2009).

    Article  CAS  Google Scholar 

  110. 110

    van der Lely, A. J. et al. Long-term safety of pegvisomant in patients with acromegaly: comprehensive review of 1288 subjects in ACROSTUDY. J. Clin. Endocrinol. Metab. 97, 1589–1597 (2012).

    Article  CAS  Google Scholar 

  111. 111

    Parkinson C. et al. A comparison of the effects of pegvisomant and octreotide on glucose, insulin, gastrin, cholecystokinin, and pancreatic polypeptide responses to oral glucose and a standard mixed meal. J. Clin. Endocrinol. Metab. 4, 1797–1804 (2002).

    Article  Google Scholar 

  112. 112

    Liang, H. et al. Genetic mouse models of extended lifespan. Exp. Gerontol. 38, 1353–1364, (2003).

    Article  CAS  Google Scholar 

  113. 113

    Yakar, S. et al. Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 50, 1110–1118 (2001).

    Article  CAS  Google Scholar 

  114. 114

    McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of the life span and upon the ultimate body size. 1935. Nutrition 5, 155–171 (1989).

    CAS  PubMed  Google Scholar 

  115. 115

    Katic M. & Kahn C. R. The role of insulin and IGF-1 signaling in longevity. Cell. Mol. Life Sci. 62, 320–343 (2005).

    Article  CAS  Google Scholar 

  116. 116

    Omodei, D. & Fontana, L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett. 585, 1537–1542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Larson-Meyer, D. E. et al. Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity (Silver Spring) 16, 1355–1362 (2008).

    Article  CAS  Google Scholar 

  118. 118

    Heilbronn, L. K. et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295, 1539–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321 (2012).

    Article  CAS  Google Scholar 

Download references


The authors thank J. Sattler at Ohio University Heritage College for Osteopathic Medicine, Athens, OH, USA for taking the mouse photograph. J. J. Kopchick is supported by the State of Ohio's Eminent Scholar Program, which includes a gift from Milton and Lawrence Goll, by AMVETS, and by NIH (P01AG031736).

Author information




R. K. Junnila and J. W. Murrey researched the data for the article. R. K. Junnila and J. J. Kopchick contributed equally to writing the article. All authors provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to John J. Kopchick.

Ethics declarations

Competing interests

J. J. Kopchick declares that he is an inventor of US patent 5350836 entitled 'Growth hormone antagonists'. The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Junnila, R., List, E., Berryman, D. et al. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9, 366–376 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing