Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thyroid dysfunction in the elderly

Abstract

Thyroid dysfunction is common in the general population, and mild or subclinical forms can be present in more than 10% of individuals aged >80 years. The diagnosis of abnormal thyroid hormone concentrations in people aged >60 years poses a challenge, as the clinical presentation of thyroid dysfunction is usually nonspecific, and ageing is associated with a number of physiological changes that can affect thyroid function test results. Furthermore, the presence of acute or chronic nonthyroidal illnesses and the use of medications that interfere with thyroid function tests are common confounders in the determination of thyroid status in the elderly. Early diagnosis and treatment of overt thyroid dysfunction is crucial in this population in view of the marked effects of abnormal circulating thyroid hormone levels on a number of organ systems, including the heart, the skeleton and the neurological system. The clinical significance of mild thyroid overactivity and underactivity remains uncertain, and the need for treatment of subclinical thyroid dysfunction is much debated. A number of large epidemiological studies have identified associations between mild thyroid dysfunction and short-term as well as long-term adverse outcomes, and a small but increasing number of randomized controlled intervention studies have been reported. Guidelines recommend treatment of thyroid dysfunction on the basis of the degree of abnormal serum TSH concentrations, patient age and associated comorbidities. This Review describes the current evidence on the prevalence, diagnosis, management and long-term consequences of thyroid dysfunction in the elderly.

Key Points

  • Large epidemiological studies confirm an increased prevalence of thyroid dysfunction in elderly people; subclinical or mild thyroid dysfunction is more prevalent than overt forms of thyroid hormone excess or deficiency

  • Diagnosis of thyroid dysfunction is difficult in elderly individuals given its sometimes asymptomatic clinical presentation and the effects of a number of physiological changes on the biochemical evaluation of thyroid function

  • Overt hyperthyroidism is associated with significantly increased risks of cardiovascular disease, osteoporosis and mortality, especially in the elderly population

  • Treatment of subclinical hyperthyroidism is warranted when serum TSH concentrations are undetectable owing to important associations with cardiovascular disease and reduced BMD

  • Biological end points of hyperthyroidism correlate with serum free T4 levels; risk of atrial fibrillation and fracture susceptibility are increased with serum free T4 concentrations at the upper limit of the reference range

  • Studies on the long-term consequences of hypothyroidism on cardiovascular disease risk are inconsistent, but treatment of serum TSH concentrations >10 mIU/l with levothyroxine monotherapy is recommended in most guidelines

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photomicrographs of haematoxylin and eosin stained sections of normal thyroid tissue in a 17-year-old (a) and a 58-year-old woman (b) at identical magnification (original magnification ×10).

References

  1. 1

    Christensen, K., Doblhammer, G., Rau, R. & Vaupel, J. W. Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Crimmins, E. M. Trends in the health of the elderly. Annu. Rev. Public Health 25, 79–98 (2004).

    Article  Google Scholar 

  3. 3

    Manton, K. G. Recent declines in chronic disability in the elderly U. S. population: risk factors and future dynamics. Annu. Rev. Public Health 29, 91–113 (2008).

    Article  Google Scholar 

  4. 4

    Tunbridge, W. M. et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin. Endocrinol. (Oxf.) 7, 481–493 (1977).

    Article  CAS  Google Scholar 

  5. 5

    Vanderpump, M. P. et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. (Oxf.) 43, 55–68 (1995).

    Article  CAS  Google Scholar 

  6. 6

    Biondi, B. & Cooper, D. S. The clinical significance of subclinical thyroid dysfunction. Endocr. Rev. 29, 76–131 (2008).

    Article  CAS  Google Scholar 

  7. 7

    Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).

    Article  Google Scholar 

  8. 8

    Franklyn, J. A. The Thyroid—too much and too little across the ages. The consequences of subclinical thyroid dysfunction. Clin. Endocrinol. (Oxf.) 78, 1–8 (2013).

    Article  CAS  Google Scholar 

  9. 9

    Roberts, C. G. & Ladenson, P. W. Hypothyroidism. Lancet 363, 793–803 (2004).

    Article  CAS  Google Scholar 

  10. 10

    Garber, J. R. et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 22, 1200–1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Sawin, C. T., Castelli, W. P., Hershman, J. M., McNamara, P. & Bacharach, P. The aging thyroid. Thyroid deficiency in the Framingham Study. Arch. Intern. Med. 145, 1386–1388 (1985).

    Article  CAS  Google Scholar 

  12. 12

    Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population 1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

    Article  CAS  Google Scholar 

  13. 13

    Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    Article  CAS  Google Scholar 

  14. 14

    Bagchi, N., Brown, T. R. & Parish, R. F. Thyroid dysfunction in adults over age 55 years. A study in an urban US community. Arch. Intern. Med. 150, 785–787 (1990).

    Article  CAS  Google Scholar 

  15. 15

    Bemben, D. A. et al. Thyroid disease in the elderly. Part 1. Prevalence of undiagnosed hypothyroidism. J. Fam. Pract. 38, 577–582 (1994).

    CAS  PubMed  Google Scholar 

  16. 16

    Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. C. & Sheppard, M. C. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. (Oxf.) 34, 77–83 (1991).

    Article  CAS  Google Scholar 

  17. 17

    Szabolcs, I. et al. Comparative screening for thyroid disorders in old age in areas of iodine deficiency, long-term iodine prophylaxis and abundant iodine intake. Clin. Endocrinol. (Oxf.) 47, 87–92 (1997).

    Article  CAS  Google Scholar 

  18. 18

    Wilson, S. et al. Prevalence of subclinical thyroid dysfunction and its relation to socioeconomic deprivation in the elderly: a community-based cross-sectional survey. J. Clin. Endocrinol. Metab. 91, 4809–4816 (2006).

    Article  CAS  Google Scholar 

  19. 19

    Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

    Article  CAS  Google Scholar 

  20. 20

    Surks, M. I. & Boucai, L. Age- and race-based serum thyrotropin reference limits. J. Clin. Endocrinol. Metab. 95, 496–502 (2010).

    Article  CAS  Google Scholar 

  21. 21

    Golden, S. H., Robinson, K. A., Saldanha, I., Anton, B. & Ladenson, P. W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review. J. Clin. Endocrinol. Metab. 94, 1853–1878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Flynn, R. W., Macdonald, T. M., Morris, A. D., Jung, R. T. & Leese, G. P. The thyroid epidemiology, audit, and research study: thyroid dysfunction in the general population. J. Clin. Endocrinol. Metab. 89, 3879–3884 (2004).

    Article  CAS  Google Scholar 

  23. 23

    Wilson, S. et al. Prevalence of subclinical thyroid dysfunction and its relation to socioeconomic deprivation in the elderly: a community-based cross-sectional survey. J. Clin. Endocrinol. Metab. 91, 4809–4816 (2006).

    Article  CAS  Google Scholar 

  24. 24

    Cappola, A. R. et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA 295, 1033–1041 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Vadiveloo, T., Donnan, P. T., Cochrane, L. & Leese, G. P. The Thyroid Epidemiology, Audit, and Research Study (TEARS): the natural history of endogenous subclinical hyperthyroidism. J. Clin. Endocrinol. Metab. 96, E1–E8 (2011).

    Article  CAS  Google Scholar 

  26. 26

    Laurberg, P. et al. Iodine intake as a determinant of thyroid disorders in populations. Best Pract. Res. Clin. Endocrinol. Metab. 24, 13–27 (2010).

    Article  CAS  Google Scholar 

  27. 27

    Laurberg, P. et al. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J. Clin. Endocrinol. Metab. 83, 765–769 (1998).

    Article  CAS  Google Scholar 

  28. 28

    Mahne, A. et al. Assessment of age-related morphological and functional changes of selected structures of the head and neck by computed tomography, magnetic resonance imaging, and positron emission tomography. Semin. Nucl. Med. 37, 88–102 (2007).

    Article  Google Scholar 

  29. 29

    Mortensen, J. D., Woolner, L. B. & Bennett, W. A. Gross and microscopic findings in clinically normal thyroid glands. J. Clin. Endocrinol. Metab. 15, 1270–1280 (1955).

    Article  CAS  Google Scholar 

  30. 30

    Gerber, D. Thyroid weights and iodized salt prophylaxis: a comparative study from autopsy material from the Institute of Pathology, University of Zurich [German]. Schweiz. Med. Wochenschr. 110, 2010–2017 (1980).

    CAS  PubMed  Google Scholar 

  31. 31

    van den Beld, A. W., Visser, T. J., Feelders, R. A., Grobbee, D. E. & Lamberts, S. W. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men. J. Clin. Endocrinol. Metab. 90, 6403–6409 (2005).

    Article  CAS  Google Scholar 

  32. 32

    van, C. A. et al. Decreased basal and stimulated thyrotropin secretion in healthy elderly men. J. Clin. Endocrinol. Metab. 69, 177–185 (1989).

    Article  Google Scholar 

  33. 33

    Mariotti, S. et al. Complex alteration of thyroid function in healthy centenarians. J. Clin. Endocrinol. Metab. 77, 1130–1134 (1993).

    CAS  PubMed  Google Scholar 

  34. 34

    Lewis, G. F., Alessi, C. A., Imperial, J. G. & Refetoff, S. Low serum free thyroxine index in ambulating elderly is due to a resetting of the threshold of thyrotropin feedback suppression. J. Clin. Endocrinol. Metab. 73, 843–849 (1991).

    Article  CAS  Google Scholar 

  35. 35

    Barreca, T., Franceschini, R., Messina, V., Bottaro, L. & Rolandi, E. 24-hour thyroid-stimulating hormone secretory pattern in elderly men. Gerontology 31, 119–123 (1985).

    Article  CAS  Google Scholar 

  36. 36

    van, C. A. et al. Neuroendocrine rhythms and sleep in aging men. Am. J. Physiol. 260, E651–E661 (1991).

    Google Scholar 

  37. 37

    Gan, E. H. & Pearce, S. H. Clinical review: The thyroid in mind: cognitive function and low thyrotropin in older people. J. Clin. Endocrinol. Metab. 97, 3438–3449 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Gregerman, R. I., Gaffney, G. W., Shock, N. W. & Crowder, S. E. Thyroxine turnover in euthyroid man with special reference to changes with age. J. Clin. Invest. 41, 2065–2074 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Atzmon, G., Barzilai, N., Hollowell, J. G., Surks, M. I. & Gabriely, I. Extreme longevity is associated with increased serum thyrotropin. J. Clin. Endocrinol. Metab. 94, 1251–1254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Atzmon, G., Barzilai, N., Surks, M. I. & Gabriely, I. Genetic predisposition to elevated serum thyrotropin is associated with exceptional longevity. J. Clin. Endocrinol. Metab. 94, 4768–4775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Pappa, T. A., Vagenakis, A. G. & Alevizaki, M. The nonthyroidal illness syndrome in the non-critically ill patient. Eur. J. Clin. Invest. 41, 212–220 (2011).

    Article  CAS  Google Scholar 

  42. 42

    Warner, M. H. & Beckett, G. J. Mechanisms behind the non-thyroidal illness syndrome: an update. J. Endocrinol. 205, 1–13 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Tognini, S. et al. Non-thyroidal illness syndrome and short-term survival in a hospitalised older population. Age Ageing 39, 46–50 (2010).

    Article  Google Scholar 

  44. 44

    Adler, S. M. & Wartofsky, L. The nonthyroidal illness syndrome. Endocrinol. Metab. Clin. North Am. 36, 657–672, vi (2007).

    Article  CAS  Google Scholar 

  45. 45

    Fliers, E., Alkemade, A. & Wiersinga, W. M. The hypothalamic–pituitary-thyroid axis in critical illness. Best Pract. Res. Clin. Endocrinol. Metab. 15, 453–464 (2001).

    Article  CAS  Google Scholar 

  46. 46

    Fliers, E., Alkemade, A., Wiersinga, W. M. & Swaab, D. F. Hypothalamic thyroid hormone feedback in health and disease. Prog. Brain Res. 153, 189–207 (2006).

    Article  CAS  Google Scholar 

  47. 47

    Fliers, E., Guldenaar, S. E., Wiersinga, W. M. & Swaab, D. F. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J. Clin. Endocrinol. Metab. 82, 4032–4036 (1997).

    CAS  PubMed  Google Scholar 

  48. 48

    Donini, L. M. et al. Malnutrition in elderly: social and economic determinants. J. Nutr. Health Aging 17, 9–15 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Morley, J. E. Undernutrition in older adults. Fam. Pract. 29 (Suppl. 1), i89–i93 (2012).

    Article  Google Scholar 

  50. 50

    Kundra, P., Burman, K. D. The effect of medications on thyroid function tests. Med. Clin. North Am. 96, 283–295 (2012).

    Article  CAS  Google Scholar 

  51. 51

    Mitrou, P., Raptis, S. A. & Dimitriadis, G. Thyroid disease in older people. Maturitas 70, 5–9 (2011).

    Article  Google Scholar 

  52. 52

    Trivalle, C. et al. Differences in the signs and symptoms of hyperthyroidism in older and younger patients. J. Am. Geriatr. Soc. 44, 50–53 (1996).

    Article  CAS  Google Scholar 

  53. 53

    Mooradian, A. D. Asymptomatic hyperthyroidism in older adults: is it a distinct clinical and laboratory entity? Drugs Aging 25, 371–380 (2008).

    Article  CAS  Google Scholar 

  54. 54

    Mariotti, S., Franceschi, C., Cossarizza, A. & Pinchera, A. The aging thyroid. Endocr. Rev. 16, 686–715 (1995).

    Article  CAS  Google Scholar 

  55. 55

    Peeters, R. P. Thyroid hormones and aging. Hormones (Athens) 7, 28–35 (2008).

    Article  Google Scholar 

  56. 56

    Kramer, C. K., von, M. D., Kritz-Silverstein, D. & Barrett-Connor, E. Treated hypothyroidism, cognitive function, and depressed mood in old age: the Rancho Bernardo Study. Eur. J. Endocrinol. 161, 917–921 (2009).

    Article  CAS  Google Scholar 

  57. 57

    Doucet, J. et al. Does age play a role in clinical presentation of hypothyroidism? J. Am. Geriatr. Soc. 42, 984–986 (1994).

    Article  CAS  Google Scholar 

  58. 58

    de Jongh, R. T. et al. Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur. J. Endocrinol. 165, 545–554 (2011).

    Article  CAS  Google Scholar 

  59. 59

    Roberts, L. M. et al. Is subclinical thyroid dysfunction in the elderly associated with depression or cognitive dysfunction? Ann. Intern. Med. 145, 573–581 (2006).

    Article  Google Scholar 

  60. 60

    Simonsick, E. M. et al. Subclinical hypothyroidism and functional mobility in older adults. Arch. Intern. Med. 169, 2011–2017 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Nordyke, R. A., Gilbert, F. I. Jr & Harada, A. S. Graves' disease. Influence of age on clinical findings. Arch. Intern. Med. 148, 626–631 (1988).

    Article  CAS  Google Scholar 

  62. 62

    Boelaert, K., Torlinska, B., Holder, R. L. & Franklyn, J. A. Older individuals with hyperthyroidism present with a paucity of symptoms and signs: a large cross-sectional study. J. Clin. Endocrinol. Metab. 95, 2715–2726 (2010).

    Article  CAS  Google Scholar 

  63. 63

    Boelaert, K. et al. Prevalence and relative risk of other autoimmune diseases in individuals with autoimmune thyroid disease. Am. J. Med. 123, 183–189 (2010).

    PubMed  Google Scholar 

  64. 64

    Broadley, S. A., Deans, J., Sawcer, S. J., Clayton, D. & Compston, D. A. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. A UK survey. Brain 123, 1102–1111 (2000).

    Article  Google Scholar 

  65. 65

    Walker, D. J., Griffiths, M. & Griffiths, I. D. Occurrence of autoimmune diseases and autoantibodies in multicase rheumatoid arthritis families. Ann. Rheum. Dis. 45, 323–326 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kanaya, A. M. et al. Association between thyroid dysfunction and total cholesterol level in an older biracial population: the health, aging and body composition study. Arch. Intern. Med. 162, 773–779 (2002).

    Article  Google Scholar 

  67. 67

    Desai, J. et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann. Intern. Med. 145, 660–664 (2006).

    Article  Google Scholar 

  68. 68

    Kappers, M. H. et al. Sunitinib-induced hypothyroidism is due to induction of type 3 deiodinase activity and thyroidal capillary regression. J. Clin. Endocrinol. Metab. 96, 3087–3094 (2011).

    Article  CAS  Google Scholar 

  69. 69

    Surks, M. I. et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 291, 228–238 (2004).

    Article  CAS  Google Scholar 

  70. 70

    Diez, J. J., Iglesias, P. & Burman, K. D. Spontaneous normalization of thyrotropin concentrations in patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 90, 4124–4127 (2005).

    Article  CAS  Google Scholar 

  71. 71

    Somwaru, L. L., Rariy, C. M., Arnold, A. M. & Cappola, A. R. The natural history of subclinical hypothyroidism in the elderly: the cardiovascular health study. J. Clin. Endocrinol. Metab. 97, 1962–1969 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Huber, G. et al. Prospective study of the spontaneous course of subclinical hypothyroidism: prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. J. Clin. Endocrinol. Metab. 87, 3221–3226 (2002).

    Article  CAS  Google Scholar 

  73. 73

    Somwaru, L. L., Arnold, A. M., Joshi, N., Fried, L. P. & Cappola, A. R. High frequency of and factors associated with thyroid hormone over-replacement and under-replacement in men and women aged 65 and over. J. Clin. Endocrinol. Metab. 94, 1342–1345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. R. & Sheppard, M. C. Thyroxine prescription in the community: serum thyroid stimulating hormone level assays as an indicator of undertreatment or overtreatment. Br. J. Gen. Pract. 43, 107–109 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Franklyn, J. A. & Boelaert, K. Thyrotoxicosis. Lancet 379, 1155–1166 (2012).

    Article  CAS  Google Scholar 

  76. 76

    Abraham-Nordling, M. et al. Incidence of hyperthyroidism in Stockholm, Sweden, 2003–2005. Eur. J. Endocrinol. 158, 823–827 (2008).

    Article  CAS  Google Scholar 

  77. 77

    Nyirenda, M. J. et al. Thyroid disease and increased cardiovascular risk. Thyroid 15, 718–724 (2005).

    Article  Google Scholar 

  78. 78

    Cohen-Lehman, J., Dahl, P., Danzi, S. & Klein, I. Effects of amiodarone therapy on thyroid function. Nat. Rev. Endocrinol. 6, 34–41 (2010).

    Article  CAS  Google Scholar 

  79. 79

    Basaria, S. & Cooper, D. S. Amiodarone and the thyroid. Am. J. Med. 118, 706–714 (2005).

    Article  CAS  Google Scholar 

  80. 80

    Yiu, K. H. et al. Amiodarone-induced thyrotoxicosis is a predictor of adverse cardiovascular outcome. J. Clin. Endocrinol. Metab. 94, 109–114 (2009).

    Article  CAS  Google Scholar 

  81. 81

    O'Sullivan, A. J., Lewis, M., Diamond, T. Amiodarone-induced thyrotoxicosis: left ventricular dysfunction is associated with increased mortality. Eur. J. Endocrinol. 154, 533–536 (2006).

    Article  CAS  Google Scholar 

  82. 82

    Meyerovitch, J. et al. Serum thyrotropin measurements in the community: five-year follow-up in a large network of primary care physicians. Arch. Intern. Med. 167, 1533–1538 (2007).

    Article  CAS  Google Scholar 

  83. 83

    Lindeman, R. D. et al. Subclinical hypothyroidism in a biethnic, urban community. J. Am. Geriatr. Soc. 47, 703–709 (1999).

    Article  CAS  Google Scholar 

  84. 84

    Almeida, O. P. et al. Thyroid hormones and depression: the Health in Men study. Am. J. Geriatr. Psychiatry 19, 763–770 (2011).

    Article  Google Scholar 

  85. 85

    Parle, J. et al. A randomized controlled trial of the effect of thyroxine replacement on cognitive function in community-living elderly individuals with subclinical hypothyroidism: the Birmingham Elderly Thyroid study. J. Clin. Endocrinol. Metab. 95, 3623–3632 (2010).

    Article  CAS  Google Scholar 

  86. 86

    Cappola, A. R. & Ladenson, P. W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003).

    Article  CAS  Google Scholar 

  87. 87

    Danese, M. D., Ladenson, P. W., Meinert, C. L. & Powe, N. R. Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J. Clin. Endocrinol. Metab. 85, 2993–3001 (2000).

    CAS  PubMed  Google Scholar 

  88. 88

    Tognini, S. et al. Age and gender substantially influence the relationship between thyroid status and the lipoprotein profile: results from a large cross-sectional study. Thyroid 22, 1096–1103 (2012).

    Article  CAS  Google Scholar 

  89. 89

    Liu, D. et al. A cross-sectional survey of relationship between serum TSH level and blood pressure. J. Hum. Hypertens. 24, 134–138 (2010).

    Article  CAS  Google Scholar 

  90. 90

    Maratou, E. et al. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur. J. Endocrinol. 160, 785–790 (2009).

    Article  CAS  Google Scholar 

  91. 91

    Knudsen, N. et al. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J. Clin. Endocrinol. Metab. 90, 4019–4024 (2005).

    Article  CAS  Google Scholar 

  92. 92

    Owen, P. J., Sabit, R. & Lazarus, J. H. Thyroid disease and vascular function. Thyroid 17, 519–524 (2007).

    Article  CAS  Google Scholar 

  93. 93

    Rodondi, N. et al. Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J. Am. Coll. Cardiol. 52, 1152–1159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Rodondi, N. et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165, 2460–2466 (2005).

    Article  Google Scholar 

  95. 95

    Nanchen, D. et al. Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. J. Clin. Endocrinol. Metab. 97, 852–861 (2012).

    Article  CAS  Google Scholar 

  96. 96

    Gussekloo, J. et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 292, 2591–2599 (2004).

    Article  CAS  Google Scholar 

  97. 97

    Hyland, K. A., Arnold, A. M., Lee, J. S. & Cappola, A. R. Persistent subclinical hypothyroidism and cardiovascular risk in the elderly: the Cardiovascular Health Study. J. Clin. Endocrinol. Metab. http://dx.doi.org/10.1210/jc.2012-2180.

  98. 98

    McQuade, C. et al. Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: a PreCIS database study. Thyroid 21, 837–843 (2011).

    Article  Google Scholar 

  99. 99

    Razvi, S., Weaver, J. U., Vanderpump, M. P. & Pearce, S. H. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. J. Clin. Endocrinol. Metab. 95, 1734–1740 (2010).

    Article  CAS  Google Scholar 

  100. 100

    Boekholdt, S. M. et al. Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clin. Endocrinol. (Oxf.) 72, 404–410 (2010).

    Article  CAS  Google Scholar 

  101. 101

    Rodondi, N. et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304, 1365–1374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Osman, F., Franklyn, J. A., Holder, R. L., Sheppard, M. C. & Gammage, M. D. Cardiovascular manifestations of hyperthyroidism before and after antithyroid therapy: a matched case–control study. J. Am. Coll. Cardiol. 49, 71–81 (2007).

    Article  CAS  Google Scholar 

  103. 103

    Frost, L., Vestergaard, P. & Mosekilde, L. Hyperthyroidism and risk of atrial fibrillation or flutter: a population-based study. Arch. Intern. Med. 164, 1675–1678 (2004).

    Article  Google Scholar 

  104. 104

    Sawin, C. T. et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N. Engl. J. Med. 331, 1249–1252 (1994).

    Article  CAS  Google Scholar 

  105. 105

    Gammage, M. D. et al. Association between serum free thyroxine concentration and atrial fibrillation. Arch. Intern. Med. 167, 928–934 (2007).

    Article  CAS  Google Scholar 

  106. 106

    Klein, I. & Danzi, S. Thyroid disease and the heart. Circulation 116, 1725–1735 (2007).

    Article  Google Scholar 

  107. 107

    Siu, C. W., Yeung, C. Y., Lau, C. P., Kung, A. W. & Tse, H. F. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart 93, 483–487 (2007).

    Article  Google Scholar 

  108. 108

    Franklyn, J. A., Maisonneuve, P., Sheppard, M. C., Betteridge, J. & Boyle, P. Mortality after the treatment of hyperthyroidism with radioactive iodine. N. Engl. J. Med. 338, 712–718 (1998).

    Article  CAS  Google Scholar 

  109. 109

    Franklyn, J. A., Sheppard, M. C. & Maisonneuve, P. Thyroid function and mortality in patients treated for hyperthyroidism. JAMA 294, 71–80 (2005).

    Article  CAS  Google Scholar 

  110. 110

    Metso, S. et al. Increased cardiovascular and cancer mortality after radioiodine treatment for hyperthyroidism. J. Clin. Endocrinol. Metab. 92, 2190–2196 (2007).

    Article  CAS  Google Scholar 

  111. 111

    Bauer, D. C., Rodondi, N., Stone, K. L. & Hillier, T. A. Thyroid hormone use, hyperthyroidism and mortality in older women. Am. J. Med. 120, 343–349 (2007).

    Article  CAS  Google Scholar 

  112. 112

    Parle, J. V., Maisonneuve, P., Sheppard, M. C., Boyle, P. & Franklyn, J. A. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet 358, 861–865 (2001).

    Article  CAS  Google Scholar 

  113. 113

    Singh, S. et al. Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis. Int. J. Cardiol. 125, 41–48 (2008).

    Article  Google Scholar 

  114. 114

    Volzke, H., Schwahn, C., Wallaschofski, H. & Dorr, M. Review: The association of thyroid dysfunction with all-cause and circulatory mortality: is there a causal relationship? J. Clin. Endocrinol. Metab. 92, 2421–2429 (2007).

    Article  CAS  Google Scholar 

  115. 115

    Ochs, N. et al. Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann. Intern. Med. 148, 832–845 (2008).

    Article  Google Scholar 

  116. 116

    Haentjens, P., Van, M. A., Poppe, K. & Velkeniers, B. Subclinical thyroid dysfunction and mortality: an estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur. J. Endocrinol. 159, 329–341 (2008).

    Article  CAS  Google Scholar 

  117. 117

    Yang, L. B. et al. Subclinical hyperthyroidism and the risk of cardiovascular events and all-cause mortality: an updated meta-analysis of cohort studies. Eur. J. Endocrinol. 167, 75–84 (2012).

    Article  CAS  Google Scholar 

  118. 118

    Collet, T. H. et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch. Intern. Med. 172, 799–809 (2012).

    Article  CAS  Google Scholar 

  119. 119

    Vestergaard, P. & Mosekilde, L. Hyperthyroidism, bone mineral, and fracture risk--a meta-analysis. Thyroid 13, 585–593 (2003).

    Article  Google Scholar 

  120. 120

    Foldes, J. et al. Bone mineral density in patients with endogenous subclinical hyperthyroidism: is this thyroid status a risk factor for osteoporosis? Clin. Endocrinol. (Oxf.) 39, 521–527 (1993).

    Article  CAS  Google Scholar 

  121. 121

    Mudde, A. H., Houben, A. J. & Nieuwenhuijzen Kruseman, A. C. Bone metabolism during anti-thyroid drug treatment of endogenous subclinical hyperthyroidism. Clin. Endocrinol. (Oxf.) 41, 421–424 (1994).

    Article  CAS  Google Scholar 

  122. 122

    Faber, J. & Galloe, A. M. Changes in bone mass during prolonged subclinical hyperthyroidism due to L-thyroxine treatment: a meta-analysis. Eur. J. Endocrinol. 130, 350–356 (1994).

    Article  CAS  Google Scholar 

  123. 123

    Uzzan, B. et al. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J. Clin. Endocrinol. Metab. 81, 4278–4289 (1996).

    CAS  Google Scholar 

  124. 124

    Bauer, D. C., Ettinger, B., Nevitt, M. C. & Stone, K. L. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134, 561–568 (2001).

    Article  CAS  Google Scholar 

  125. 125

    Lee, J. S. et al. Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch. Intern. Med. 170, 1876–1883 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Murphy, E. et al. Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 95, 3173–3181 (2010).

    Article  CAS  Google Scholar 

  127. 127

    van der Deure, W. M. et al. Effects of serum TSH and FT4 levels and the TSHR-Asp727Glu polymorphism on bone: the Rotterdam Study. Clin. Endocrinol. (Oxf.) 68, 175–181 (2008).

    CAS  Google Scholar 

  128. 128

    Lin, J. D. et al. The relationship between thyroid function and bone mineral density in euthyroid healthy individuals in Taiwan. Endocr. Res. 36, 1–8 (2011).

    Article  CAS  Google Scholar 

  129. 129

    Yeap, B. B. et al. Higher free thyroxine levels are associated with frailty in older men: the Health In Men Study. Clin. Endocrinol. (Oxf.) 76, 741–748 (2012).

    Article  CAS  Google Scholar 

  130. 130

    Ceresini, G. et al. Mild thyroid hormone excess is associated with a decreased physical function in elderly men. Aging Male 14, 213–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Yeap, B. B. et al. Higher free thyroxine levels predict increased incidence of dementia in older men: the health in men study. J. Clin. Endocrinol. Metab. 97, E2230–E2237 (2012).

    Article  CAS  Google Scholar 

  132. 132

    Meier, C. et al. TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J. Clin. Endocrinol. Metab. 86, 4860–4866 (2001).

    Article  CAS  Google Scholar 

  133. 133

    Monzani, F. et al. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo- controlled study. J. Clin. Endocrinol. Metab. 89, 2099–2106 (2004).

    Article  CAS  Google Scholar 

  134. 134

    Razvi, S. et al. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J. Clin. Endocrinol. Metab. 92, 1715–1723 (2007).

    Article  CAS  Google Scholar 

  135. 135

    Bahn Chair, R. S. et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21, 593–646 (2011).

    Article  CAS  Google Scholar 

  136. 136

    Díez, J. J. Hyperthyroidism in patients older than 55 years: an analysis of the etiology and management. Gerontology 49, 316–323 (2003).

    Article  Google Scholar 

  137. 137

    Takáts, K. I. et al. The efficacy of long term thyrostatic treatment in elderly patients with toxic nodular goitre compared to radioiodine therapy with different doses. Exp. Clin. Endocrinol. Diabetes 107, 70–74 (1999).

    Article  Google Scholar 

  138. 138

    Chen, D. Y., Jing, J., Schneider, P. F. & Chen, T. H. Comparison of the long-term efficacy of low dose 131I versus antithyroid drugs in the treatment of hyperthyroidism. Nucl. Med. Commun. 30, 160–168 (2009).

    Article  CAS  Google Scholar 

  139. 139

    Allahabadia, A. et al. Age and gender predict the outcome of treatment for Graves' hyperthyroidism. J. Clin. Endocrinol. Metab. 85, 1038–1042 (2000).

    CAS  PubMed  Google Scholar 

  140. 140

    Auer, J. et al. Subclinical hyperthyroidism as a risk factor for atrial fibrillation. Am. Heart J. 142, 838–842 (2001).

    Article  CAS  Google Scholar 

  141. 141

    Faber, J. et al. Normalization of serum thyrotrophin by means of radioiodine treatment in subclinical hyperthyroidism: effect on bone loss in postmenopausal women. Clin. Endocrinol. (Oxf.) 48, 285–290 (1998).

    Article  CAS  Google Scholar 

  142. 142

    Sgarbi, J. A., Villaca, F. G., Garbeline, B., Villar, H. E. & Romaldini, J. H. The effects of early antithyroid therapy for endogenous subclinical hyperthyroidism in clinical and heart abnormalities. J. Clin. Endocrinol. Metab. 88, 1672–1677 (2003).

    Article  CAS  Google Scholar 

  143. 143

    Santini, F. et al. Lean body mass is a major determinant of levothyroxine dosage in the treatment of thyroid diseases. J. Clin. Endocrinol. Metab. 90, 124–127 (2005).

    Article  CAS  Google Scholar 

  144. 144

    Rosenbaum, R. L. & Barzel, U. S. Levothyroxine replacement dose for primary hypothyroidism decreases with age. Ann. Intern. Med. 96, 53–55 (1982).

    Article  CAS  Google Scholar 

  145. 145

    Sawin, C. T., Herman, T., Molitch, M. E., London, M. H. & Kramer, S. M. Aging and the thyroid. Decreased requirement for thyroid hormone in older hypothyroid patients. Am. J. Med. 75, 206–209 (1983).

    Article  CAS  Google Scholar 

  146. 146

    Devdhar, M., Drooger, R., Pehlivanova, M., Singh, G. & Jonklaas, J. Levothyroxine replacement doses are affected by gender and weight, but not age. Thyroid 21, 821–827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Roos, A., Linn-Rasker, S. P., van Domburg, R. T., Tijssen, J. P. & Berghout, A. The starting dose of levothyroxine in primary hypothyroidism treatment: a prospective, randomized, double-blind trial. Arch. Intern. Med. 165, 1714–1720 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boelaert, K. Thyroid dysfunction in the elderly. Nat Rev Endocrinol 9, 194–204 (2013). https://doi.org/10.1038/nrendo.2013.30

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing