Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic profiling and individualized assessment of fracture risk

Abstract

Osteoporosis and its consequence of fragility fracture impose a considerable demand on health-care services because fracture is associated with a series of adverse events, including re-fracture and mortality. One of the major priorities in osteoporosis care is the development of predictive models to identify individuals at high risk of fracture for early intervention and management. Existing predictive models include clinical factors and anthropometric characteristics but have not considered genetic variants in the prediction. Genome-wide association studies conducted in the past decade have identified several genetic variants relevant to fracture risk. These genetic variants are common in frequency but have very modest effect sizes. A remaining challenge is to use these genetic data to individualize fracture risk assessment on the basis of an individual's genetic risk profile. Empirical and simulation studies have shown that the usefulness of a single genetic variant for fracture risk assessment is very limited, but a profile of 50 genetic variants, each with odds ratio ranging from 1.02 to 1.15, could improve the accuracy of fracture prediction beyond that obtained by use of existing clinical risk factors. Thus, genetic profiling when integrated with existing risk assessment models could inform a more accurate prediction of fracture risk in an individual.

Key Points

  • Fragility fracture is common in the general population, and is associated with serious consequences, including mortality

  • BMD is the best predictor of fracture risk

  • Interindividual variation in fracture risk is partly determined by genetic factors

  • 62 single nucleotide polymorphisms (SNPs) are associated with BMD in genome-wide association studies; among these SNPs, 18 are associated with fracture risk, of which only eight achieve genome-wide significance level

  • Any single SNP has little predictive value for fracture; however, genetic profiling of 50 SNPs could improve the accuracy of fracture prediction beyond that obtained by existing risk factors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Odds ratios and 95% confidence intervals for fracture for each of the 32 SNPs identified from genome-wide association study meta-analyses.
Figure 2: The relationship between allelic frequency and odds ratios of 32 SNPs associated with fracture risk identified from genome-wide association study meta-analyses.

Similar content being viewed by others

References

  1. Nguyen, N. D., Ahlborg, H. G., Center, J. R., Eisman, J. A. & Nguyen, T. V. Residual lifetime risk of fractures in women and men. J. Bone Miner. Res. 22, 781–788 (2007).

    Article  Google Scholar 

  2. Cummings, S. R., Black, D. M. & Rubin, S. M. Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch. Intern. Med. 149, 2445–2448 (1989).

    Article  CAS  Google Scholar 

  3. Shortt, N. L. & Robinson, C. M. Mortality after low-energy fractures in patients aged at least 45 years old. J. Orthop. Trauma 19, 396–400 (2005).

    Article  Google Scholar 

  4. Bliuc, D. et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301, 513–521 (2009).

    Article  CAS  Google Scholar 

  5. Center, J. R., Bliuc, D., Nguyen, T. V. & Eisman, J. A. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297, 387–394 (2007).

    Article  CAS  Google Scholar 

  6. Center, J. R., Nguyen, T. V., Schneider, D., Sambrook, P. N. & Eisman, J. A. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353, 878–882 (1999).

    Article  CAS  Google Scholar 

  7. Johnell, O. et al. Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20, 1185–1194 (2005).

    Article  Google Scholar 

  8. Nguyen, N. D., Pongchaiyakul, C., Center, J. R., Eisman, J. A. & Nguyen, T. V. Identification of high-risk individuals for hip fracture: a 14-year prospective study. J. Bone Miner. Res. 20, 1921–1928 (2005).

    Article  Google Scholar 

  9. Leslie, W. D., Lix, L. M., Tsang, J. F. & Caetano, P. A. Single-site vs multisite bone density measurement for fracture prediction. Arch. Intern. Med. 167, 1641–1647 (2007).

    Article  Google Scholar 

  10. Delmas, P. D. Treatment of postmenopausal osteoporosis. Lancet 359, 2018–2026 (2002).

    Article  CAS  Google Scholar 

  11. National Osteoporosis Foundation. Clinician's Guide to Prevention and Treatment of Osteoporosis [online], (2010).

  12. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 427–432 (1985).

    Article  Google Scholar 

  13. Nguyen, N. D., Eisman, J. A., Center, J. R. & Nguyen, T. V. Risk factors for fracture in nonosteoporotic men and women. J. Clin. Endocrinol. Metab. 92, 955–962 (2007).

    Article  CAS  Google Scholar 

  14. Nguyen, T. et al. Prediction of osteoporotic fractures by postural instability and bone density. BMJ 307, 1111–1115 (1993).

    Article  CAS  Google Scholar 

  15. Nguyen, T. V., Howard, G. M., Kelly, P. J. & Eisman, J. A. Bone mass, lean mass, and fat mass: same genes or same environments? Am. J. Epidemiol. 147, 3–16 (1998).

    Article  CAS  Google Scholar 

  16. Pocock, N. A. et al. Genetic determinants of bone mass in adults. A twin study. J. Clin. Invest. 80, 706–710 (1987).

    Article  CAS  Google Scholar 

  17. Makovey, J., Nguyen, T. V., Naganathan, V., Wark, J. D. & Sambrook, P. N. Genetic effects on bone loss in peri- and postmenopausal women: a longitudinal twin study. J. Bone Miner. Res. 22, 1773–1780 (2007).

    Article  Google Scholar 

  18. Howard, G. M., Nguyen, T. V., Harris, M., Kelly, P. J. & Eisman, J. A. Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J. Bone Miner. Res. 13, 1318–1327 (1998).

    Article  CAS  Google Scholar 

  19. Tokita, A. et al. Genetic influences on type I collagen synthesis and degradation: further evidence for genetic regulation of bone turnover. J. Clin. Endocrinol. Metab. 78, 1461–1466 (1994).

    CAS  PubMed  Google Scholar 

  20. Deng, H. W. et al. Genetic determination of Colles' fracture and differential bone mass in women with and without Colles' fracture. J. Bone Miner. Res. 15, 1243–1252 (2000).

    Article  CAS  Google Scholar 

  21. Michaëlsson, K., Melhus, H., Ferm, H., Ahlbom, A. & Pedersen, N. L. Genetic liability to fractures in the elderly. Arch. Intern. Med. 165, 1825–1830 (2005).

    Article  Google Scholar 

  22. Cummings, S. R. et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N. Engl. J. Med. 332, 767–773 (1995).

    Article  CAS  Google Scholar 

  23. Seeman, E. et al. Reduced bone mass in daughters of women with osteoporosis. N. Engl. J. Med. 320, 554–558 (1989).

    Article  CAS  Google Scholar 

  24. Seeman, E., Tsalamandris, C., Formica, C., Hopper, J. L. & McKay, J. Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis. J. Bone Miner. Res. 9, 739–743 (1994).

    Article  CAS  Google Scholar 

  25. Evans, R. A. et al. Bone mass is low in relatives of osteoporotic patients. Ann. Intern. Med. 109, 870–873 (1988).

    Article  CAS  Google Scholar 

  26. Kanis, J. A. et al. A family history of fracture and fracture risk: a meta-analysis. Bone 35, 1029–1037 (2004).

    Article  CAS  Google Scholar 

  27. Ralston, S. H. & Uitterlinden, A. G. Genetics of osteoporosis. Endocr. Rev. 31, 629–662 (2010).

    Article  CAS  Google Scholar 

  28. Huang, Q. Y., Recker, R. R. & Deng, H. W. Searching for osteoporosis genes in the post-genome era: progress and challenges. Osteoporos. Int. 14, 701–715 (2003).

    Article  Google Scholar 

  29. Nguyen, T. V. Pharmacogenetics of anti-resorptive therapy efficacy: a Bayesian interpretation. Osteoporos. Int. 16, 857–860 (2005).

    Article  Google Scholar 

  30. Campbell, H. & Rudan, I. Interpretation of genetic association studies in complex disease. Pharmacogenomics J. 2, 349–360 (2002).

    Article  CAS  Google Scholar 

  31. Ioannidis, J. P. A. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  Google Scholar 

  32. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005).

    Article  CAS  Google Scholar 

  33. Burton, P. R. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  CAS  Google Scholar 

  34. Kiel, D. P. et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), 14 (2007).

    Article  Google Scholar 

  35. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    Article  CAS  Google Scholar 

  36. Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    Article  CAS  Google Scholar 

  37. Richards, J. B., Zheng, H. F. & Spector, T. D. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13, 576–588 (2012).

    Article  CAS  Google Scholar 

  38. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).

    Article  CAS  Google Scholar 

  39. Richards, J. B. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med. 151, 528–537 (2009).

    Article  Google Scholar 

  40. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  Google Scholar 

  41. Pepe, M. S., Janes, H., Longton, G., Leisenring, W. & Newcomb, P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am. J. Epidemiol. 159, 882–890 (2004).

    Article  Google Scholar 

  42. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    Article  CAS  Google Scholar 

  43. Bolland, M. J., Grey, A. & Reid, I. R. Re: The calcium scare: what would Austin Bradford Hill have thought? Osteoporos. Int. 22, 3079–3080 (2011).

    Article  CAS  Google Scholar 

  44. Pencina, M. J., D'Agostino, R. B. Sr, D'Agostino, R. B. Jr & Vasan, R. S. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat. Med. 27, 157–172 (2008).

    Article  Google Scholar 

  45. Cook, N. R. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin. Chem. 54, 17–23 (2008).

    Article  CAS  Google Scholar 

  46. Pepe, M. S., Gu, J. W. & Morris, D. E. The potential of genes and other markers to inform about risk. Cancer Epidemiol. Biomarkers Prev. 19, 655–665.

  47. Nguyen, T. V. et al. Contribution of the collagen I alpha1 and vitamin D receptor genes to the risk of hip fracture in elderly women. J. Clin. Endocrinol. Metab. 90, 6575–6579 (2005).

    Article  CAS  Google Scholar 

  48. Tran, B. N., Nguyen, N. D., Center, J. R., Eisman, J. A. & Nguyen, T. V. Enhancement of absolute fracture risk prognosis with genetic marker: the collagen I α 1 gene. Calcif. Tissue Int. 85, 379–388 (2009).

    Article  CAS  Google Scholar 

  49. Bacon, C. J. et al. Prevalent dietary supplement use in older New Zealand men. N. Z. Med. J. 124, 55–62 (2011).

    PubMed  Google Scholar 

  50. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

    Article  Google Scholar 

  51. Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A. & Nguyen, T. V. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos. Int. 18, 1109–1117 (2007).

    Article  CAS  Google Scholar 

  52. Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A. & Nguyen, T. V. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos. Int. 19, 1431–1444 (2008).

    Article  CAS  Google Scholar 

  53. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).

    Article  CAS  Google Scholar 

  54. Tran, B. N. et al. Genetic profiling and individualized prognosis of fracture. J. Bone Miner. Res. 26, 414–419 (2011).

    Article  Google Scholar 

  55. Bolland, M. J., Grey, A. & Reid, I. R. Authors' response to editorial. BMJ 342, d3520 (2011).

    Article  Google Scholar 

  56. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  Google Scholar 

  57. Center, J. R., Nguyen, T. V., Sambrook, P. N. & Eisman, J. A. Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J. Clin. Endocrinol. Metab. 84, 3626–3635 (1999).

    CAS  PubMed  Google Scholar 

  58. Nguyen, T. V., Center, J. R., Sambrook, P. N. & Eisman, J. A. Risk factors for proximal humerus, forearm, and wrist fractures in elderly men and women: the Dubbo Osteoporosis Epidemiology Study. Am. J. Epidemiol. 153, 587–595 (2001).

    Article  CAS  Google Scholar 

  59. Nguyen, T. V. et al. Lifestyle factors and bone density in the elderly: implications for osteoporosis prevention. J. Bone Miner. Res. 9, 1339–1346 (1994).

    Article  CAS  Google Scholar 

  60. Delmas, P. D., Rizzoli, R., Cooper, C. & Reginster, J. Y. Treatment of patients with postmenopausal osteoporosis is worthwhile. The position of the International Osteoporosis Foundation. Osteoporos. Int. 16, 1–5 (2005).

    Article  Google Scholar 

  61. Nguyen, N. D., Eisman, J. A. & Nguyen, T. V. Anti-hip fracture efficacy of bisphosphonates: a Bayesian analysis of clinical trials. J. Bone Miner. Res. 21, 340–349 (2006).

    Article  CAS  Google Scholar 

  62. McCloskey, E. et al. Efficacy of clodronate on fracture risk in women selected by 10-year fracture probability. J. Bone Miner. Res. 22 (Suppl. 1), S131 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussing the content, writing the manuscript, and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Tuan V. Nguyen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Eisman, J. Genetic profiling and individualized assessment of fracture risk. Nat Rev Endocrinol 9, 153–161 (2013). https://doi.org/10.1038/nrendo.2013.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing