Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism

Key Points

  • Impaired psychological well-being and depression or anxiety affect about 5–10% of hypothyroid patients on levothyroxine, despite normal TSH levels

  • Persistent symptoms might be explained by factors unrelated to thyroid disease, unrecognized autoimmune disease, or inability of levothyroxine to restore T3 levels in serum and all target tissues

  • Randomized clinical trials have in general not shown superiority of levothyroxine plus liothyronine combination therapy over levothyroxine monotherapy

  • Some reports suggest a preference of patients for levothyroxine plus liothyronine combination therapy over levothyroxine monotherapy, which might be associated with weight loss

  • Levothyroxine remains the standard treatment modality for hypothyroidism, but levothyroxine plus liothyronine combination treatment might be offered to selected patients as an experimental modality, according to guidelines published in 2012

Abstract

Impaired psychological well-being, depression or anxiety are observed in 5–10% of hypothyroid patients receiving levothyroxine, despite normal TSH levels. Such complaints might hypothetically be related to increased free T4 and decreased free T3 serum concentrations, which result in the abnormally low free T4:free T3 ratios observed in 30% of patients on levothyroxine. Evidence is mounting that levothyroxine monotherapy cannot assure a euthyroid state in all tissues simultaneously, and that normal serum TSH levels in patients receiving levothyroxine reflect pituitary euthyroidism alone. Levothyroxine plus liothyronine combination therapy is gaining in popularity; although the evidence suggests it is generally not superior to levothyroxine monotherapy, in some of the 14 published trials this combination was definitely preferred by patients and associated with improved metabolic profiles. Disappointing results with combination therapy could be related to use of inappropriate levothyroxine and liothyronine doses, resulting in abnormal serum free T4:free T3 ratios. Alternatively, its potential benefit might be confined to patients with specific genetic polymorphisms in thyroid hormone transporters and deiodinases that affect the intracellular levels of T3 available for binding to T3 receptors. Levothyroxine monotherapy remains the standard treatment for hypothyroidism. However, in selected patients, new guidelines suggest that experimental combination therapy might be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between serum TSH and free thyroid hormone levels in 3,875 euthyroid controls and 1,811 athyreotic patients receiving levothyroxine monotherapy.
Figure 2: Thyroid hormone production and metabolism.

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. Jackson, I. M. & Cobb, W. E. Why does anyone still use desiccated thyroid USP? Am. J. Med. 64, 284–288 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Singer, P. A. et al. Treatment guidelines for patients with hyperthyroidism and hypothyroidism. Standards of Care Committee, American Thyroid Association. JAMA 273, 808–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Vanderpump, M. P. J., Ahlquist, J. A. O., Franklyn, J. A. & Clayton, R. N., Consensus statement for good practice and audit measures in the management of hypothyroidism and hyperthyroidism. The Research Unit of the Royal College of Physicians of London, the Endocrinology and Diabetes Committee of the Royal College of Physicians of London, and the Society for Endocrinology. BMJ 313, 539–544 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baskin, H. J. et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the evaluation and treatment of hyperthyroidism and hypothyroidism. Endocr. Pract. 8, 457–469 (2002).

    Article  PubMed  Google Scholar 

  5. Royal College of Physicians. The diagnosis and management of primary hypothyroidism, revised 14 June 2011 [online], (2011).

  6. Garber, J. R. et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 22, 1200–1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Brenta, G. et al. Clinical practice guidelines for the management of hypothyroidism. Arq. Bras. Endocrinol. Metabol. 57, 265–291 (2013).

    Article  PubMed  Google Scholar 

  8. Wiersinga, W. M., Duntas L., Fadeyev, V., Nygaard, B. & Vanderpump, M. P. 2012 ETA guidelines: the use of L-T4 + L-T3 in the treatment of hypothyroidism. Eur. Thyroid J. 1, 55–71 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mitchell, A. L., Hickey, B., Hickey, J. L. & Pearce, S. H. Trends in thyroid hormone prescribing and consumption in the UK. BMC Public Health 9, 132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Jong, N. W. & Baljet, G. M. Use of T4, T4 + T3, and T3 in the Dutch population in the period 2005–2011. Eur. Thyroid J. 1, 135–136 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ord, W. M. Report of a committee of the Clinical Society of London nominated December 14, 1883, to investigate the subject of myxoedema. Trans. Clin. Soc. Lond. 8 (Suppl.), 21 (1888).

    Google Scholar 

  12. Murray, G. R. Note on the treatment of myxoedema by hypodermic injections of an extract of the thyroid gland of a sheep. Br. Med. J. 2, 796–797 (1891).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fox, E. L. A case of myxoedema treated by taking extract of thyroid by the mouth. Br. Med. J. 2, 941 (1892).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kendall, E. C. The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid: its chemical nature and physiological activity. JAMA 64, 2042–2043 (1915).

    Article  CAS  Google Scholar 

  15. Harrington, C. R. & Barger, G. Chemistry of thyroxine: constitution and synthesis of thyroxine. Biochem. J. 21, 169–183 (1927).

    Article  CAS  Google Scholar 

  16. Sawin, C. S. The heritage of the thyroid: a brief history. In Werner & Ingbar's The Thyroid: a Fundamental and Clinical Text. 10th edn (eds Braverman, L. E. & Cooper, D. S.) 1–4 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  17. Gross, J. & Pitt-Rivers, R. V. 3:5:3′-triiodothyronine. I. Isolation from thyroid gland and synthesis. Biochem. J. 53, 645–650 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roche, J., Lissitzky, S. & Michel, R. Sur la présence de triiodothyronine dans la thyroglobuline et sur sa biosynthèse [French]. C. R. Hebd. Seances Acad. Sci. 234, 1228–1230 (1952).

    CAS  PubMed  Google Scholar 

  19. MacGregor, A. G. Why does anybody use thyroid B.P.? Lancet 1, 329–332 (1961).

    Article  CAS  PubMed  Google Scholar 

  20. Braverman, L. E., Ingbar, S. H. & Sterling, K. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J. Clin. Invest. 49, 855–864 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaufman, S. C., Gross, T. P. & Kennedy, D. L. Thyroid hormone use: trends in the United States from 1960 through 1988. Thyroid 1, 285–291 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Bianco, A. C. et al. Biochemistry, cellular and molecular biology and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Romijn, J. A., Smit, J. W. & Lamberts, S. W. Intrinsic imperfections of endocrine replacement therapy. Eur. J. Endocrinol. 149, 91–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Escobar-Morreale, H. F., Obregón, M. J., Escobar del Rey, F. & Morreale de Escobar, G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J. Clin. Invest. 96, 2828–2838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Escobar-Morreale, H. F., Escobar del Rey, F., Obregón, M. J. & Morreale de Escobar, G. Only the combined treatment with thyroxine and triiiodothyronine ensures euthyroidism in all tissues of thyroidectomized rat. Endocrinology 137, 2490–2502 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Hypo maar niet Happy: belangenvereniging voor mensen met hypothyreoïdie [online], (2013).

  27. Grozinsky-Glasberg, S., Fraser, A., Nahshoni, E., Weizman, A. & Leibovici, L. Thyroxine–triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 91, 2592–2599 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Ivkovic, S. Polyneuropathy after radioactive iodine treatment of hyperthyroidism and beneficial effect of combined T4/T3 therapy of hypothyroidism. Eur. Thyroid J. 1, 129–131 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Biondi, B. & Wartofsky, L. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism? J. Clin. Endocrinol. Metab. 97, 2256–2271 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Antonica, F. et al. Generation of functional thyroid from embryonic stem cells. Nature 491, 66–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ladenson, P. W. Psychological wellbeing in patients. Clin. Endocrinol. (Oxf.) 57, 575–576 (2002).

    Article  Google Scholar 

  32. Saravanan, P. et al. Psychological well-being in patients on 'adequate' doses of L-thyroxine: results of a large, controlled community-based questionnaire study. Clin. Endocrinol. (Oxf.) 57, 577–585 (2002).

    Article  CAS  Google Scholar 

  33. Wekking, E. M. et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur. J. Endocrinol. 153, 747–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Panicker, V. et al. A paradoxical difference in relationship between anxiety, depression and thyroid function in subjects on and not on T4: findings from the HUNT study. Clin. Endocrinol. (Oxf.) 71, 574–580 (2009).

    Article  Google Scholar 

  35. Samuels, M. H., Schuff, K. G., Carlson, N. E., Carello P. & Janowsky, J. S. Health status, psychological symptoms, mood, and cognition in L-thyroxine-treated hypothyroid subjects. Thyroid 17, 249–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Quinque, E. M., Villringer, A., Kratzsch, L. & Karger, S. Patient-reported outcomes in adequately treated hypothyroidism—insights from the German versions of ThyDQoL, ThySRQ and ThyTSQ. Health Qual. Life Outcomes 11, 68 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Somers, E. C., Thomas, S. L., Smeeth, L. & Hall, A. J. Are individuals with an autoimmune disease at higher risk of a second autoimmune disorder? Am. J. Epidemiol. 169, 749–755 (2009).

    Article  PubMed  Google Scholar 

  38. Boelaert, K. et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am. J. Med. 123, 183.e1–e9 (2010).

    Article  Google Scholar 

  39. Weetman, A. P. Diseases associated with thyroid autoimmunity: explanations for the expanding spectrum. Clin. Endocrinol. (Oxf.) 74, 411–418 (2011).

    Article  CAS  Google Scholar 

  40. Engum, A., Bjøro, T., Mykletun, A. & Dahl, A. A. Thyroid autoimmunity, depression and anxiety: are there any connections? An epidemiological study of a large population. J. Psychosom. Res. 59, 263–268 (2005).

    Article  PubMed  Google Scholar 

  41. Pop, V. J. et al. Are autoimmune thyroid dysfunction and depression related? J. Clin. Endocrinol. Metab. 83, 3194–3197 (1998).

    CAS  PubMed  Google Scholar 

  42. Watt, T. et al. Is thyroid autoimmunity per se a determinant of quality of life in patients with autoimmune hypothyroidism? Eur. Thyroid J. 1, 186–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ott, J. et al. Hashimoto's thyroiditis affects symptom load and quality of life unrelated to hypothyroidism: a prospective case–control study in women undergoing thyroidectomy for benign goiter. Thyroid 21, 161–167 (2011).

    Article  PubMed  Google Scholar 

  44. Saravanan, P., Visser, T. J. & Dayan, C. M. Psychological well-being correlates with free thyroxine but not free 3,5,3′-triiodothyronine levels in patients on thyroid hormone replacement. J. Clin. Endocrinol. Metab. 91, 3389–3393 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Carr, D., McLeod, D. T., Parry, G. & Thornes, H. M. Fine adjustment of thyroxine replacement dosage: comparison of the thyrotrophin releasing hormone test using a sensitive thyrotrophin assay with measurement of free thyroid hormones and clinical assessment. Clin. Endocrinol. (Oxf.) 28, 325–333 (1988).

    Article  CAS  Google Scholar 

  46. Toft, A. D. & Beckett, G. J. Thyroid function tests and hypothyroidism. Measurement of serum TSH alone may not always reflect thyroid status. BMJ 326, 295–296 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Flynn, R. W. et al. Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J. Clin. Endocrinol. Metab. 95, 186–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Walsh, J. P. et al. Small changes in thyroxine dosage do not produce measurable changes in hypothyroid symptoms, well-being, or quality of life: results of a double-blind, randomized clinical trial. J. Clin. Endocrinol. Metab. 91, 2624–2630 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Woeber, K. A. Levothyroxine therapy and serum free thyroxine and free triiodothyronine concentrations. J. Endocrinol. Invest. 25, 106–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Jonklaas, J., Davidson, B., Bhagat, S. & Soldin, S. J. Triiodothyronine levels in athyreotic individuals during levothyroxine therapy. JAMA 299, 769–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ito, M. et al. TSH-suppressive doses of levothyroxine are required to achieve preoperative native serum triiodothyronine levels in patients who have undergone total thyroidectomy. Eur. J. Endocrinol. 167, 373–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Fish, L. H. et al. Replacement dose, metabolism, and bioavailability of levothyroxine in the treatment of hypothyroidism. Role of triiodothyronine in pituitary feedback in humans. N. Engl. J. Med. 316, 764–770 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Gullo, D. et al. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS ONE 6, e22552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alevizaki, M., Mantzou, E., Cimponeriu, A. T., Alevizaki, C. C. & Koutras, D. A. TSH may not be a good marker for adequate thyroid hormone replacement therapy. Wien. Klin. Wochenschr. 117, 636–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Hoermann, R., Midgley, J. E., Larisch, R. & Dietrich, J. W. Is pituitary TSH an adequate measure of thyroid hormone-controlled homoeostasis during thyroxine treatment? Eur. J. Endocrinol. 168, 271–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bianco, A. C. & Casula, S. Thyroid hormone replacement therapy: three 'simple' questions, complex answers. Eur. Thyroid J. 1, 88–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levitt, J. A. & Silverberg J. T4 plus T3 for hypothyroidism: a double-blind comparison with usual T4 [Abstract]. In Proc. 74th annual meeting of the American Thyroid Association (2002).

    Google Scholar 

  59. Saravanan, P., Simmons, D. J., Greenwood, R., Peters, T. J. & Dayan, C. M. Partial substitution of thyroxine (T4) with triiodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J. Clin. Endocrinol. Metab. 90, 805–812 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Appelhof, B. C. et al. Combined therapy with levothyroxine and liothyronine in two ratios, compared with levothyroxine monotherapy in primary hypothyroidism: a double-blind, randomized, controlled clinical trial. J. Clin. Endocrinol. Metab. 90, 2666–2674 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Walsh, J. P. et al. Combined thyroxine/liothyronine treatment does not improve well-being, quality of life or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. J. Clin. Endocrinol. Metab. 88, 4543–4550 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Clyde, P. W., Harari, A. E., Getka, E. J. & Shakir, K. M. Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism: a randomized controlled trial. JAMA 290, 2952–2958 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Sawka, A. M., Gerstein, H. C., Marriott, M. J., MacQueen, G. M. & Joffe, R. T. Does a combination regimen of thyroxine (T4) and 3,5,3′-triiodothyronine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind, randomized, controlled trial. J. Clin. Endocrinol. Metab. 88, 4551–4555 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Bunevicius, R., Kazanavicius, G., Zalinkevicius, R. & Prange, A. J. Jr. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N. Engl. J. Med. 340, 424–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Rodriguez, T., Lavis, V. R., Meininger, J. C., Kapadia, A. S & Stafford, L. F. Substitution of liothyronine at a 1:5 ratio for a portion of levothyroxine: effect on fatigue, symptoms of depression, and working memory versus treatment with thyroxine alone. Endocr. Pract. 11, 223–233 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Escobar-Morreale, H. F. et al. Thyroid hormone replacement therapy in primary hypothyroidism: a randomized trial comparing L-thyroxine plus liothyronine with L-thyroxine alone. Ann. Intern. Med. 142, 412–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Siegmund, W. et al. Replacement therapy with levothyroxine plus triiodothyronine (bioavailable molar ratio 14:1) is not superior to thyroxine alone to improve well-being and cognitive performance in hypothyroidism. Clin. Endocrinol. (Oxf.) 60, 750–757 (2004).

    Article  CAS  Google Scholar 

  68. Bunevicius, R., Jakubonien, N., Jurkevicius, R., Cernicat, J., Lasas, L. & Prange. A. J. Jr. Thyroxine vs thyroxine plus triiodothyronine in treatment of hypothyroidism after thyroidectomy for Graves' disease. Endocrine 18, 129–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ma, C. et al. Thyroxine alone or thyroxine plus triiodothyronine replacement therapy for hypothyroidism. Nucl. Med. Commun. 30, 586–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Nygaard, B., Jensen, E. W., Kvetny, J., Jarløv, A. & Faber, J. Effect of combination therapy with thyroxine (T4) and 3,5,3′-triiodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. Eur. J. Endocrinol. 161, 895–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt, U., Nygaard, B., Jensen, E. W., Kvetny, J., Jarløv, A. & Faber, J. Peripheral markers of thyroid function: the effect of T4 monotherapy vs T4/T3 combination therapy in hypothyroid subjects in a randomized crossover study. Endocr. Connect. 2, 55–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fadeyev, V. V., Morgunova, T. B., Melnichenko, G. A. & Dedov, I.I. Combined therapy with L-thyroxine and L-triiodothyronine compared to L-thyroxine alone in the treatment of primary hypothyroidism. Hormones (Athens) 9, 245–252 (2010).

    Article  Google Scholar 

  73. Hoang, T. D., Olsen, C. H., Mai, V. Q., Clyde, P. W. & Shakir, M. K. Desiccated thyroid extract compared with levothyroxine in the treatment of hypothyroidism: a randomized, double-blind, crossover study. J. Clin. Endocrinol. Metab. 98, 1982–1990 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Escobar-Morreale, H. F., Botella-Carretero, J. I., Escobar del Rey, F. & Morreale de Escobar, G. Review: treatment of hypothyroidism with combinations of levothyroxine plus liothyronine. J. Clin. Endocrinol. Metab. 90, 4946–4954 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Wiersinga, W. M. Do we need still more trials on T4 and T3 combination therapy in hypothyroidism? Eur. J. Endocrinol. 161, 955–959 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Pilo, A. et al. Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am. J. Physiol. 258 (Pt 1), E715–E726 (1990).

    CAS  PubMed  Google Scholar 

  77. Dayan, C. M. & Panicker, V. Novel insights into thyroid hormones from the study of common genetic variation. Nat. Rev. Endocrinol. 5, 211–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Louwerens, M. et al. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism. Eur. J. Endocrinol. 167, 809–815 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Arnaud-Lopez, L. et al. Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. Am. J. Hum. Genet. 82, 1270–1280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shields, B. M. et al. Phosphodiesterase 8B gene polymorphism is associated with subclinical hypothyroidism in pregnancy. J. Clin. Endocrinol. Metab. 94, 4608–4612 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Medici, M. et al. A large-scale association analysis of 68 thyroid hormone pathway genes with serum TSH and FT4 levels. Eur. J. Endocrinol. 164, 781–788 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Taylor, P. N. et al. A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement. Eur. J. Endocrinol. 164, 773–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peeters, R. P. et al. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J. Clin. Endocrinol. Metab. 88, 2880–2888 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Panicker, V. et al. A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and free triiodothyronine. J. Clin. Endocrinol. Metab. 93, 3075–3081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van der Deure, W. M. et al. The effect of genetic variation in the type 1 deiodinase gene on the interindividual variation in serum thyroid hormone levels: an investigation in healthy Danish twins. Clin. Endocrinol. (Oxf.) 70, 954–960 (2009).

    Article  CAS  Google Scholar 

  86. Panicker, V. et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94, 1623–1629 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Peeters, R. P. et al. A new polymorphism in the type II deiodinase gene is associated with circulating thyroid hormone parameters. Am. J. Physiol. Endocrinol. Metab. 289, E75–E81 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Torlontano, M. et al. Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J. Clin. Endocrinol. Metab. 93, 910–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Heemstra, K. A. et al. Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clin. Endocrinol. (Oxf.) 71, 279–283 (2009).

    Article  CAS  Google Scholar 

  90. Kim, B. W. & Bianco, A. C. For some, L-thyroxine replacement might not be enough: a genetic rationale. J. Clin. Endocrinol. Metab. 94, 1521–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Appelhof, B. C. et al. Polymorphisms in type 2 deiodinase are not associated with well-being, neurocognitive functioning, and preference for combined thyroxine/3,5,3′-triiodothyronine therapy. J. Clin. Endocrinol. Metab. 90, 6296–6299 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. van der Deure, W. M. et al. Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin. Endocrinol. (Oxf.) 69, 804–811 (2008).

    Article  CAS  Google Scholar 

  93. Cooper, D. S. Combined T4 and T3 therapy—back to the drawing board. JAMA 290, 3002–3004 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Celi, F. S. et al. The pharmacodynamic equivalence of levothyroxine and liothyronine: a randomized, double blind, cross-over study in thyroidectomized patients. Clin. Endocrinol. (Oxf.) 72, 709–715 (2010).

    Article  CAS  Google Scholar 

  95. Celi, F. S. et al. Metabolic effects of liothyronine therapy in hypothyroidism: a randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J. Clin. Endocrinol. Metab. 96, 3466–3474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yavuz, S. et al. The dynamic pituitary response to escalating-dose TRH stimulation test in hypothyroid patients treated with liothyronine or levothyroxine replacement therapy. J. Clin. Endocrinol. Metab. 98, E862–E866 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Russell, W. et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93, 2300–2306 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Hennemann, G., Docter, R., Visser, T. J., Postema, P. T. & Krenning, E. P. Thyroxine plus low-dose, slow-release triiodothyronine replacement in hypothyroidism: proof of principle. Thyroid 14, 271–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kaplan, M. M., Sarne, D. H. & Schneider, A. B. In search of the impossible dream? Thyroid hormone replacement therapy that treats all symptoms in all hypothyroid patients. J. Clin. Endocrinol. Metab. 88, 4540–4542 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilmar M. Wiersinga.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiersinga, W. Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism. Nat Rev Endocrinol 10, 164–174 (2014). https://doi.org/10.1038/nrendo.2013.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing