Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metformin—mode of action and clinical implications for diabetes and cancer

Key Points

  • The glucose-lowering, insulin-sensitizing agent metformin works mainly by reducing gluconeogenesis and opposing glucagon-mediated signalling in the liver and, to a lesser extent, by increasing glucose uptake in skeletal muscle

  • The primary site of metformin action is the mitochondrion

  • The antihyperglycaemic effect of metformin is probably owing to defective protein kinase A signalling

  • Metformin affects lipid metabolism primarily via 5′-AMP-activated protein kinase (AMPK) activation

  • Antitumourigenic effects of metformin, which require further study, might be partially due to systemic metabolic alterations, including the reduced availability of insulin

  • In cancer cells, metformin acts as an inducer of energetic stress; AMPK-driven inhibition of mTOR seems to be required for much of its antimitotic activity

Abstract

Metformin has been the mainstay of therapy for diabetes mellitus for many years; however, the mechanistic aspects of metformin action remained ill-defined. Recent advances revealed that this drug, in addition to its glucose-lowering action, might be promising for specifically targeting metabolic differences between normal and abnormal metabolic signalling. The knowledge gained from dissecting the principal mechanisms by which metformin works can help us to develop novel treatments. The centre of metformin's mechanism of action is the alteration of the energy metabolism of the cell. Metformin exerts its prevailing, glucose-lowering effect by inhibiting hepatic gluconeogenesis and opposing the action of glucagon. The inhibition of mitochondrial complex I results in defective cAMP and protein kinase A signalling in response to glucagon. Stimulation of 5′-AMP-activated protein kinase, although dispensable for the glucose-lowering effect of metformin, confers insulin sensitivity, mainly by modulating lipid metabolism. Metformin might influence tumourigenesis, both indirectly, through the systemic reduction of insulin levels, and directly, via the induction of energetic stress; however, these effects require further investigation. Here, we discuss the updated understanding of the antigluconeogenic action of metformin in the liver and the implications of the discoveries of metformin targets for the treatment of diabetes mellitus and cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The effects of glucagon and biguanides on gluconeogenic and glycolytic fluxes.
Figure 2: The effect of glucagon and biguanide signalling on fructose-2,6-bisphosphate.
Figure 3: Model of metformin action in the hepatocyte.
Figure 4: Proposed actions of metformin in cancer.

References

  1. Bailey, C. J. & Day, C. Traditional plant medicines as treatments for diabetes. Diabetes Care 12, 553–564 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Cicero, A. F., Tartagni, E. & Ertek, S. Metformin and its clinical use: new insights for an old drug in clinical practice. Arch. Med. Sci. 8, 907–917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salpeter, S. R., Buckley, N. S., Kahn, J. A. & Salpeter, E. E. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 121, 149–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Glueck, C. J. et al. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism 50, 856–861 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Gokcel, A. et al. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity. Diabetes Obes. Metab. 4, 49–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kita, Y. et al. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE 7, e43056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andrews, M., Soto, N. & Arredondo, M. Effect of metformin on the expression of tumor necrosis factor-α, Toll like receptors 2/4 and C reactive protein in obese type-2 diabetic patients [Spanish]. Rev. Med. Chil. 140, 1377–1382 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Giovannucci, E. et al. Diabetes and cancer: a consensus report. Diabetes Care 33, 1674–1685 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Selvin, E. et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch. Intern. Med. 168, 2070–2080 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boussageon, R. et al. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS Med. 9, e1001204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hemmingsen, B. et al. Comparison of metformin and insulin versus insulin alone for type 2 diabetes: systematic review of randomised clinical trials with meta-analyses and trial sequential analyses. Br. Med. J. 344, e1771 (2012).

    Article  CAS  Google Scholar 

  13. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McIntyre, H. D. et al. Metformin increases insulin sensitivity and basal glucose clearance in type 2 (non-insulin dependent) diabetes mellitus. Aust. NZ J. Med. 21, 714–719 (1991).

    Article  CAS  Google Scholar 

  15. Czyzyk, A., Tawecki, J., Sadowski, J., Ponikowska, I. & Szczepanik, Z. Effect of biguanides on intestinal absorption of glucose. Diabetes 17, 492–498 (1968).

    Article  CAS  PubMed  Google Scholar 

  16. Hermann, L. S. Metformin: a review of its pharmacological properties and therapeutic use. Diabetes Metab. 5, 233–245 (1979).

    CAS  Google Scholar 

  17. Shitara, Y. et al. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol. Sci. 132, 32–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Nies, A. T., Koepsell, H., Damme, K. & Schwab, M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol. 201, 105–167 (2011).

    Article  CAS  Google Scholar 

  19. Gunton, J. E., Delhanty, P. J., Takahashi, S. & Baxter, R. C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J. Clin. Endocrinol. Metab. 88, 1323–1332 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bailey, C. J. & Turner, R. C. Metformin. N. Engl. J. Med. 334, 574–579 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alengrin, F., Grossi, G., Canivet, B. & Dolais-Kitabgi, J. Inhibitory effects of metformin on insulin and glucagon action in rat hepatocytes involve post-receptor alterations. Diabetes Metab. 13, 591–597 (1987).

    CAS  Google Scholar 

  23. Fulgencio, J. P., Kohl, C., Girard, J. & Pegorier, J. P. Effect of metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes. Biochem. Pharmacol. 62, 439–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Consoli, A. & Nurjhan, N. Contribution of gluconeogenesis to overall glucose output in diabetic and nondiabetic men. Ann. Med. 22, 191–195 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Stumvoll, M., Nurjhan, N., Perriello, G., Dailey, G. & Gerich, J. E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 550–554 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Lutz, T. A., Estermann, A., Haag, S. & Scharrer, E. Depolarization of the liver cell membrane by metformin. Biochim. Biophys. Acta 1513, 176–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Otto, M., Breinholt, J. & Westergaard, N. Metformin inhibits glycogen synthesis and gluconeogenesis in cultured rat hepatocytes. Diabetes Obes. Metab. 5, 189–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Fischer, Y., Thomas, J., Rosen, P. & Kammermeier, H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology 136, 412–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Fantus, I. G. & Brosseau, R. Mechanism of action of metformin: insulin receptor and postreceptor effects in vitro and in vivo. J. Clin. Endocrinol. Metab. 63, 898–905 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Stith, B. J. et al. The antidiabetic drug metformin elevates receptor tyrosine kinase activity and inositol 1,4, 5-trisphosphate mass in Xenopus oocytes. Endocrinology 137, 2990–2999 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Prager, R. & Schernthaner, G. Insulin receptor binding to monocytes, insulin secretion, and glucose tolerance following metformin treatment. Results of a double-blind cross-over study in type II diabetics. Diabetes 32, 1083–1086 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, R. A. et al. Mechanism of metformin action in non-insulin-dependent diabetes. Diabetes 36, 632–640 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Giugliano, D. et al. Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care 16, 1387–1390 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. United Kingdom Prospective Diabetes Study (UKPDS). 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. Br. Med. J. 310, 83–88 (1995).

  35. Fruehwald-Schultes, B. et al. Metformin does not adversely affect hormonal and symptomatic responses to recurrent hypoglycemia. J. Clin. Endocrinol. Metab. 86, 4187–4192 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cho, Y. M. & Kieffer, T. J. New aspects of an old drug: metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser. Diabetologia 54, 219–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Maida, A., Lamont, B. J., Cao, X. & Drucker, D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 54, 339–349 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Lenhard, J. M., Croom, D. K. & Minnick, D. T. Reduced serum dipeptidyl peptidase-IV after metformin and pioglitazone treatments. Biochem. Biophys. Res. Commun. 324, 92–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Lindsay, J. R. et al. Inhibition of dipeptidyl peptidase IV activity by oral metformin in type 2 diabetes. Diabet. Med. 22, 654–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Yasuda, N. et al. Enhanced secretion of glucagon-like peptide 1 by biguanide compounds. Biochem. Biophys. Res. Commun. 298, 779–784 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Goldstein, B. J., Feinglos, M. N., Lunceford, J. K., Johnson, J. & Williams-Herman, D. E. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 30, 1979–1987 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Defronzo, R. A. & Abdul-Ghani, M. A. Preservation of β-cell function: the key to diabetes prevention. J. Clin. Endocrinol. Metab. 96, 2354–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Detaille, D., Guigas, B., Leverve, X., Wiernsperger, N. & Devos, P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem. Pharmacol. 63, 1259–1272 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348 (Pt 3), 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, R. A. & Birnbaum, M. J. An energetic tale of AMPK-independent effects of metformin. J. Clin. Invest. 120, 2267–2270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Logie, L. et al. Cellular responses to the metal-binding properties of metformin. Diabetes 61, 1423–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ouyang, J., Parakhia, R. A. & Ochs, R. S. Metformin activates AMP kinase through inhibition of AMP deaminase. J. Biol. Chem. 286, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Muller, S. et al. Action of metformin on erythrocyte membrane fluidity in vitro and in vivo. Eur. J. Pharmacol. 337, 103–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Quesada, I., Tuduri, E., Ripoll, C. & Nadal, A. Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. J. Endocrinol. 199, 5–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141–151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Y. et al. Inositol-1,4, 5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Johnson, R. A., Yeung, S. M., Stubner, D., Bushfield, M. & Shoshani, I. Cation and structural requirements for P site-mediated inhibition of adenylate cyclase. Mol. Pharmacol. 35, 681–688 (1989).

    CAS  PubMed  Google Scholar 

  57. Gelling, R. W. et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl Acad. Sci. USA 100, 1438–1443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420–2425 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Fryer, L. G., Parbu-Patel, A. & Carling, D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 277, 25226–25232 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Zang, M. et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 279, 47898–47905 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Lochhead, P. A., Salt, I. P., Walker, K. S., Hardie, D. G. & Sutherland, C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49, 896–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Foretz, M. et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54, 1331–1339 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, J. M. et al. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner. J. Biol. Chem. 285, 32182–32191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Caton, P. W. et al. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J. Endocrinol. 205, 97–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Samuel, V. T. et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 diabetes. Proc. Natl Acad. Sci. USA. 106, 12121–12126 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Burgess, S. C. et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5, 313–320 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ros, S. & Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1, 8 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Collier, C. A., Bruce, C. R., Smith, A. C., Lopaschuk, G. & Dyck, D. J. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291, E182–E189 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Dresner, A. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103, 253–259 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patane, G. et al. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic β-cells. Diabetes 49, 735–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Vincent, M. F., Marangos, P. J., Gruber, H. E. & Van den Berghe, G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 40, 1259–1266 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 330, 1304–1305 (2005).

    Article  Google Scholar 

  76. U.S. National Library of Medicine. ClinicalTrials.gov [online] (2013).

  77. Lee, J. H. et al. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int. J. Cancer 131, 752–759 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. He, X. et al. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann. Oncol. 23, 1771–1780 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Lega, I. C. et al. Association Between Metformin Therapy and Mortality After Breast Cancer: A Population-Based Study. Diabetes Care 36, 3018–3026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suissa, S. & Azoulay, L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care 35, 2665–2673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Niraula, S. et al. Influence of concurrent medications on outcomes of men with prostate cancer included in the TAX 327 study. Can. Urol. Assoc. J. 7, E74–E81 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hosono, K. et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev. Res. (Phila.) 3, 1077–1083 (2010).

    Article  CAS  Google Scholar 

  83. Hadad, S. et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res. Treat. 128, 783–794 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Pollak, M. N. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2, 778–790 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Emami, R. A., Fisel, P., Nies, A. T., Schaeffeler, E. & Schwab, M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol. Sci. 34, 126–135 (2013).

    Article  CAS  Google Scholar 

  86. Nies, A. T., Damme, K., Schaeffeler, E. & Schwab, M. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs. Expert Opin. Drug Metab. Toxicol. 8, 1565–1577 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Gale, E. A. Insulin glargine and cancer: another side to the story? Lancet 374, 521 (2009).

    Article  PubMed  Google Scholar 

  88. Tomimoto, A. et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci. 99, 2136–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Pierotti, M. A. et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 32, 1475–1487 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ece, H. et al. Use of oral antidiabetic drugs (metformin and pioglitazone) in diabetic patients with breast cancer: how does it effect serum Hif-1 α and 8Ohdg levels? Asian Pac. J. Cancer Prev. 13, 5143–5148 (2012).

    Article  PubMed  Google Scholar 

  92. Wang, Y. et al. Effects of antidiabetic drug metformin on human breast carcinoma cells with different estrogen receptor expressing in vitro. Xi. Bao. Yu Fen. Zi. Mian. Yi. Xue. Za Zhi. 27, 253–256 (2011).

    PubMed  Google Scholar 

  93. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ning, J. & Clemmons, D. R. AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Mol. Endocrinol. 24, 1218–1229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vazquez-Martin, A., Oliveras-Ferraros, C., Del, B. S., Martin-Castillo, B. & Menendez, J. A. If mammalian target of metformin indirectly is mammalian target of rapamycin, then the insulin-like growth factor-1 receptor axis will audit the efficacy of metformin in cancer clinical trials. J. Clin. Oncol. 27, e207–e209 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Liang, J. et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Blandino, G. et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat. Commun. 3, 865 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Dandapani, M. & Hardie, D. G. AMPK: opposing the metabolic changes in both tumour cells and inflammatory cells? Biochem. Soc. Trans. 41, 687–693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Warburg, O. Metabolism of tumours. Biochem. Z. 142, 317–333 (1923).

    CAS  Google Scholar 

  101. Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med. 12, 122–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Hardie, D. G. & Alessi, D. R. LKB1 and AMPK and the cancer-metabolism link—ten years after. BMC. Biol. 11, 36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Algire, C., Amrein, L., Zakikhani, M., Panasci, L. & Pollak, M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr. Relat. Cancer 17, 351–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412, 211–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mendoza, E. E. et al. Control of glycolytic flux by AMP-activated protein kinase in tumor cells adapted to low pH. Transl. Oncol. 5, 208–216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Algire, C. et al. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 30, 1174–1182 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Zhu, Z., Jiang, W., Thompson, M. D., McGinley, J. N. & Thompson, H. J. Metformin as an energy restriction mimetic agent for breast cancer prevention. J. Carcinog. 10, 17 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Algire, C. et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev. Res. (Phila.) 5, 536–543 (2012).

    Article  CAS  Google Scholar 

  114. Zhou, K. et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 43, 117–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Vazquez-Martin, A., Oliveras-Ferraros, C., Cufi, S., Martin-Castillo, B. & Menendez, J. A. Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA damage-like response. Cell Cycle 10, 1499–1501 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, G., Xu, S., Renko, K. & Derwahl, M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J. Clin. Endocrinol. Metab. 97, E510–E520 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Song, C. W. et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci. Rep. 2, 362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dong, L. et al. Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J. Obstet. Gynaecol. Res. 38, 1077–1085 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Janjetovic, K. et al. Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur. J. Pharmacol. 651, 41–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Iliopoulos, D., Hirsch, H. A. & Struhl, K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 71, 3196–3201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hirsch, H. A., Iliopoulos, D. & Struhl, K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc. Natl Acad. Sci. USA 110, 972–977 (2013).

    Article  PubMed  Google Scholar 

  123. Anastasiou, D. Metformin: a case of divide and conquer. Breast Cancer Res. 15, 306 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ye, Y., Perez-Polo, J. R., Aguilar, D. & Birnbaum, Y. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res. Cardiol. 106, 925–952 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Manickavasagam, S. et al. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc. Drugs Ther. 21, 321–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Hermida, N. et al. HMGCoA reductase inhibition reverses myocardial fibrosis and diastolic dysfunction through AMP-activated protein kinase activation in a mouse model of metabolic syndrome. Cardiovasc. Res. 99, 44–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Goodarzi, M. O. & Bryer-Ash, M. Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obes. Metab. 7, 654–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Sogame, Y., Kitamura, A., Yabuki, M. & Komuro, S. A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes. Biopharm. Drug Dispos. 30, 476–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Segal, E. D. et al. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem. Biophys. Res. Commun. 414, 694–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Fasshauer, M., Paschke, R. & Stumvoll, M. Adiponectin, obesity, and cardiovascular disease. Biochimie 86, 779–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Sogame, Y., Kitamura, A., Yabuki, M., Komuro, S. & Takano, M. Transport of biguanides by human organic cation transporter OCT2. Biomed. Pharmacother. 67, 425–430 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Gan, S. C., Barr, J., Arieff, A. I. & Pearl, R. G. Biguanide-associated lactic acidosis. Case report and review of the literature. Arch. Intern. Med. 152, 2333–2336 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Lemke, T. L. & Williams, D. A. Foye's Principles of Medicinal Chemistry. 5th edn (Lippincott, Williams and Wilkins, 1995).

    Google Scholar 

  134. electronic Medicines Compendium (eMC). SPC Glucophage 500 mg and 850 mg film coated tablets [online], (2010).

  135. Luft, D., Schmulling, R. M. & Eggstein, M. Lactic acidosis in biguanide-treated diabetics: a review of 330 cases. Diabetologia 14, 75–87 (1978).

    Article  CAS  PubMed  Google Scholar 

  136. Kajbaf, F., Arnouts, P., de Broe, M. & Lalau, J. D. Metformin therapy and kidney disease: a review of guidelines and proposals for metformin withdrawal around the world. Pharmacoepidemiol. Drug Saf. 22, 1027–1035 (2013).

    CAS  PubMed  Google Scholar 

  137. Brown, J. B., Pedula, K., Barzilay, J., Herson, M. K. & Latare, P. Lactic acidosis rates in type 2 diabetes. Diabetes Care 21, 1659–1663 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. UKPDS. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

  139. Cubeddu, L. X. et al. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors. Naunyn Schmiedebergs Arch. Pharmacol. 361, 85–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Donnelly, L. A., Morris, A. D. & Pearson, E. R. Adherence in patients transferred from immediate release metformin to a sustained release formulation: a population-based study. Diabetes Obes. Metab. 11, 338–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Appleyard, M. V. et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br. J. Cancer 106, 1117–1122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dilman, V. M. et al. Metabolic immunodepression and metabolic immunotherapy: an attempt of improvement in immunologic response in breast cancer patients by correction of metabolic disturbances. Oncology 39, 13–19 (1982).

    Article  CAS  PubMed  Google Scholar 

  143. Pollak, M. Potential applications for biguanides in oncology. J. Clin. Invest. 123, 3693–3700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tzvetkov, M. V. et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 86, 299–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, L. et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genomics 20, 687–699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nakamichi, N. et al. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J. Pharmacol. Sci. 102, 3407–3417 (2013).

    Article  CAS  Google Scholar 

  147. Becker, M. L. et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 58, 745–749 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou, M., Xia, L. & Wang, J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab. Dispos. 35, 1956–1962 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Morris, J. C. et al. Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors. J. Med. Chem. 54, 6905–6918 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Hamanaka, R. B. & Chandel, N. S. Targeting glucose metabolism for cancer therapy. J. Exp. Med. 209, 211–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Clem, B. F. et al. Targeting 6-Phosphofructo-2-Kinase (PFKFB3) as a Therapeutic Strategy against Cancer. Mol. Cancer Ther. 12, 1461–1470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou, W. et al. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res. 63, 7330–7337 (2003).

    CAS  PubMed  Google Scholar 

  153. Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25, 1041–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. D'Alessio, D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes. Metab. 13 (Suppl. 1), 126–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Bhat, V. K., Kerr, B. D., Flatt, P. R. & Gault, V. A. A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochem. Pharmacol. 85, 1655–1662 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Ou, H. Y. et al. Multiple mechanisms of GW-9508, a selective G protein-coupled receptor 40 agonist, in the regulation of glucose homeostasis and insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 304, E668–E676 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Christ-Crain, M. et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J. 22, 1672–1683 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Lv, W. S. et al. The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res. 1444, 11–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Stevanovic, D. et al. Intracerebroventricular administration of metformin inhibits ghrelin-induced Hypothalamic AMP-kinase signalling and food intake. Neuroendocrinol. 96, 24–31 (2012).

    Article  CAS  Google Scholar 

  160. Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Seo, S., Ju, S., Chung, H., Lee, D. & Park, S. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr. J. 55, 867–874 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Andrews, Z. B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kola, B. et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem. 280, 25196–25201 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Chau-Van, C., Gamba, M., Salvi, R., Gaillard, R. C. & Pralong, F. P. Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology 148, 507–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Lee, C. K. et al. Intracerebroventricular injection of metformin induces anorexia in rats. Diabetes Metab. J. 36, 293–299 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hermann, L. S. et al. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care 17, 1100–1109 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Chu, N. V. et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 25, 542–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Gomez-Diaz, R. A. et al. Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metabolism 61, 1247–1255 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Singh, S., Akhtar, N. & Ahmad, J. Plasma adiponectin levels in women with polycystic ovary syndrome: impact of metformin treatment in a case-control study. Diabetes Metab. Syndr. 6, 207–211 (2012).

    Article  PubMed  Google Scholar 

  170. Fanghanel, G. et al. Effects of metformin on fibrinogen levels in obese patients with type 2 diabetes. Rev. Invest. Clin. 50, 389–394 (1998).

    CAS  PubMed  Google Scholar 

  171. Chakrabarti, R., Hocking, E. D. & Fearnley, G. R. Fibrinolytic effect of metformin in coronary-artery disease. Lancet 2, 256–259 (1965).

    Article  CAS  PubMed  Google Scholar 

  172. Nagi, D. K. & Yudkin, J. S. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care 16, 621–629 (1993).

    Article  CAS  PubMed  Google Scholar 

  173. Mather, K. J., Verma, S. & Anderson, T. J. Improved endothelial function with metformin in type 2 diabetes mellitus. J. Am. Coll. Cardiol. 37, 1344–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Matsumoto, K. et al. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 64, 225–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Preiss, D. et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabet. Endocrinol. http://dx.doi.org/10.1016/S2213-8587(13)70152-9.

  176. Arai, M. et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J. Pharmacol. Exp. Ther. 334, 206–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. de Jager, J. et al. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial. J. Intern. Med. 257, 100–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Hattori, Y., Suzuki, K., Hattori, S. & Kasai, K. Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47, 1183–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Isoda, K. et al. Metformin inhibits proinflammatory responses and nuclear factor-κB in human vascular wall cells. Arterioscler. Thromb. Vasc. Biol. 26, 611–617 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yuan, H. et al. Antidiabetic drug metformin alleviates endotoxin-induced fulminant liver injury in mice. Int. Immunopharmacol. 12, 682–688 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, L., Zhang, C., Hu, Y. & Peng, B. Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor κB ligand/osteoprotegerin. J. Endod. 38, 943–947 (2012).

    Article  PubMed  Google Scholar 

  183. Kalariya, N. M., Shoeb, M., Ansari, N. H., Srivastava, S. K. & Ramana, K. V. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest. Ophthalmol. Vis. Sci. 53, 3431–3440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kang, K. Y. et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Park, C. S. et al. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase. Biochem. Pharmacol. 84, 1660–1670 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor A. B. Grossman, Oxford Centre for Diabetes, Endocrinology and Metabolism, for his expert review of this manuscript. I. Pernicova is supported by a Project Grant from the Barts Charity.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Márta Korbonits.

Ethics declarations

Competing interests

The authors have received an educational research grant from Merck.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pernicova, I., Korbonits, M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10, 143–156 (2014). https://doi.org/10.1038/nrendo.2013.256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.256

Further reading

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer