Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Consequences of excess iodine

Key Points

  • Recommendations for iodine intake in adults who are not pregnant or lactating are 150 µg of iodine a day

  • Excess iodine exposure or ingestion can result in thyroid dysfunction in certain susceptible individuals, but is generally well-tolerated in most people

  • Iodine-induced thyroid dysfunction might be subclinical or overt and either transient or permanent

  • Sources of iodine excess include iodine supplementation to prevent iodine deficiency at a population level, the diet, vitamins and supplements, medications, contrast media and topical iodine

  • Supraphysiologic doses of iodine are appropriate in certain specific medical indications, including its use in the treatment of severe hyperthyroidism before thyroid surgery and as potassium iodide following a nuclear accident

Abstract

Iodine is a micronutrient that is essential for the production of thyroid hormones. The primary source of iodine is the diet via consumption of foods that have been fortified with iodine, including salt, dairy products and bread, or that are naturally abundant in the micronutrient, such as seafood. Recommended daily iodine intake is 150 µg in adults who are not pregnant or lactating. Ingestion of iodine or exposure above this threshold is generally well-tolerated. However, in certain susceptible individuals, including those with pre-existing thyroid disease, the elderly, fetuses and neonates, or patients with other risk factors, the risk of developing iodine-induced thyroid dysfunction might be increased. Hypothyroidism or hyperthyroidism as a result of supraphysiologic iodine exposure might be either subclinical or overt, and the source of the excess iodine might not be readily apparent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Wolff–Chaikoff effect.

Similar content being viewed by others

References

  1. Food and Nutrition Board, Institute of Medicine in Dietary Reference Intakes 320–327 (National Academy Press, Washington, D. C., 2006).

  2. WHO, UNICEF and ICCIDD. Assessment of the iodine deficiency disorders and monitoring their elimination. WHO/NHD/01.1 [online], (2007).

  3. Rasmussen, L. B., Ovesen, L. & Christiansen, E. Day-to-day and within-day variation in urinary iodine excretion. Eur. J. Clin. Nutr. 53, 401–407 (1999).

    Article  CAS  Google Scholar 

  4. Zimmermann, M. B. et al. Assessment of iodine status using dried blood spot thyroglobulin: development of reference material and establishment of an international reference range in iodine-sufficient children. J. Clin. Endocrinol. Metab. 91, 4881–4887 (2006).

    Article  CAS  Google Scholar 

  5. Zimmermann, M. B. et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100–299 µg/l: a UNICEF/ICCIDD study group report. J. Clin. Endocrinol. Metab. 98, 1271–1280 (2013).

    Article  CAS  Google Scholar 

  6. Wolff, J. & Chaikoff, I. L. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J. Biol. Chem. 174, 555–564 (1948).

    CAS  PubMed  Google Scholar 

  7. Pramyothin, P., Leung, A. M., Pearce, E. N., Malabanan, A. O. & Braverman, L. E. Clinical problem-solving. A hidden solution. N. Engl. J. Med. 365, 2123–2127 (2011).

    Article  CAS  Google Scholar 

  8. Eng, P. H. et al. Escape from the acute Wolff–Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology 140, 3404–3410 (1999).

    Article  CAS  Google Scholar 

  9. Dai, G., Levy, O. & Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 379, 458–460 (1996).

    Article  CAS  Google Scholar 

  10. Saberi, M. & Utiger, R. D. Augmentation of thyrotropin responses to thyrotropin-releasing hormone following small decreases in serum thyroid hormone concentrations. J. Clin. Endocrinol. Metab. 40, 435–441 (1975).

    Article  CAS  Google Scholar 

  11. Safran, M. & Braverman, L. E. Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function. Obstet. Gynecol. 60, 35–40 (1982).

    CAS  PubMed  Google Scholar 

  12. Paul, T. et al. The effect of small increases in dietary iodine on thyroid function in euthyroid subjects. Metabolism 37, 121–124 (1988).

    Article  CAS  Google Scholar 

  13. Bahn, R. S. et al. Hyperthyroidism and other causes of thyrotoxicosis: Management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21, 593–646 (2011).

    Article  Google Scholar 

  14. Coindet, J. F. Nouvelles recherches sur les effets de l'iode, et sur les precautions a suivre dans le traitement de goitre par le nouveau remede [French]. Ann. Chim. Phys. 16, 252–256 (1821).

    Google Scholar 

  15. Vagenakis, A. G. et al. Iodide-induced thyrotoxicosis in Boston. N. Engl. J. Med. 287, 523–527 (1972).

    Article  CAS  Google Scholar 

  16. International Council for the Control of Iodine Deficiency Disorders [online], (2013).

  17. Zimmermann, M. B., Jooste, P. L. & Pandav, C. S. Iodine-deficiency disorders. Lancet 372, 1251–1262 (2008).

    Article  CAS  Google Scholar 

  18. Goyle, A. & Prakash, S. Efficacy of multi-micronutrient fortified biscuits on urinary iodine levels of adolescent girls from Jaipur, India. Malays. J. Nutr. 17, 143–150 (2011).

    CAS  PubMed  Google Scholar 

  19. Kassim, I. A. et al. Excessive iodine intake during pregnancy in Somali refugees. Matern. Child. Nutr. 8, 49–56 (2012).

    Article  Google Scholar 

  20. Sang, Z. et al. Exploration of the safe upper level of iodine intake in euthyroid Chinese adults: a randomized double-blind trial. Am. J. Clin. Nutr. 95, 367–373 (2012).

    Article  CAS  Google Scholar 

  21. Laurberg, P. et al. The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur. J. Endocrinol. 155, 219–228 (2006).

    Article  CAS  Google Scholar 

  22. Thomson, C. D., Campbell, J. M., Miller, J. & Skeaff, S. A. Minimal impact of excess iodate intake on thyroid hormones and selenium status in older New Zealanders. Eur. J. Endocrinol. 165, 745–752 (2011).

    Article  CAS  Google Scholar 

  23. Galofre, J. C., Fernandez-Calvet, L., Rios, M. & Garcia-Mayor, R. V. Increased incidence of thyrotoxicosis after iodine supplementation in an iodine sufficient area. J. Endocrinol. Invest. 17, 23–27 (1994).

    Article  CAS  Google Scholar 

  24. Todd, C. H. et al. Increase in thyrotoxicosis associated with iodine supplements in Zimbabwe. Lancet 346, 1563–1564 (1995).

    Article  CAS  Google Scholar 

  25. Parveen, S., Latif, S. A., Kamal, M. M. & Uddin, M. M. Effects of long term iodized salt consumption on serum T3, T4 and TSH in an iodine deficient area of Bangladesh. Mymensingh Med. J. 16, 57–60 (2007).

    Article  CAS  Google Scholar 

  26. Allen, E. M., Appel, M. C. & Braverman, L. E. The effect of iodine ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology 118, 1977–1998 (1986).

    Article  CAS  Google Scholar 

  27. Kahaly, G. J., Dienes, H. P., Beyer, J. & Hommel, G. Iodide induces thyroid autoimmunity in patients with endemic goiter: a randomized, double-blind, placebo-controlled trial. Eur. J. Endocrinol. 139, 290–297 (1998).

    Article  CAS  Google Scholar 

  28. Dong, W. et al. The changing incidence of thyroid carcinoma in Shenyang, China before and after universal salt iodization. Med. Sci. Monit. 19, 49–53 (2013).

    Article  CAS  Google Scholar 

  29. Blomberg, M., Feldt-Rasmussen, U., Andersen, K. K. & Kjaer, S. K. Thyroid cancer in Denmark 1943–2008, before and after iodine supplementation. Int. J. Cancer 131, 2360–2366 (2012).

    Article  CAS  Google Scholar 

  30. Murray, C. W., Egan, S. K., Kim, H., Beru, N. & Bolger, P. M. US Food and Drug Administration's Total Diet Study: dietary intake of perchlorate and iodine. J. Expo. Sci. Environ. Epidemiol. 18, 571–580 (2008).

    Article  CAS  Google Scholar 

  31. Perrine, C. G., Sullivan, K. M., Flores, R., Caldwell, K. L. & Grummer-Strawn, L. M. Intakes of dairy products and dietary supplements are positively associated with iodine status among U. S. children. J. Nutr. 143, 1155–1160 (2013).

    Article  CAS  Google Scholar 

  32. Clifton, V. L. et al. The impact of iodine supplementation and bread fortification on urinary iodine concentrations in a mildly iodine deficient population of pregnant women in South Australia. Nutr. J. 12, 32 (2013).

    Article  CAS  Google Scholar 

  33. Zimmermann, M. B. Iodine deficiency. Endocr. Rev. 30, 376–408 (2009).

    Article  CAS  Google Scholar 

  34. Zava, T. T. & Zava, D. T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res. 4, 14–20 (2011).

    Article  CAS  Google Scholar 

  35. Rhee, S. S., Braverman, L. E., Pino, S., He, X. & Pearce, E. N. High iodine content of Korean seaweed soup: a health risk for lactating women and their infants? Thyroid 21, 927–928 (2011).

    Article  Google Scholar 

  36. Teas, J., Pino, S., Critchley, A. & Braverman, L. E. Variability of iodine content in common commercially available edible seaweeds. Thyroid 14, 836–841 (2004).

    Article  CAS  Google Scholar 

  37. Mussig, K. et al. Iodine-induced thyrotoxicosis after ingestion of kelp-containing tea. J. Gen. Intern. Med. 21, C11–C14 (2006).

    Article  Google Scholar 

  38. Eliason, B. C. Transient hyperthyroidism in a patient taking dietary supplements containing kelp. J. Am. Board Fam. Pract. 11, 478–480 (1998).

    Article  CAS  Google Scholar 

  39. Teas, J. et al. Seaweed and soy: companion foods in Asian cuisine and their effects on thyroid function in American women. J. Med. Food 10, 90–100 (2007).

    Article  CAS  Google Scholar 

  40. Miyai, K., Tokushige, T., Kondo, M. & Iodine Research Group. Suppression of thyroid function during ingestion of seaweed “Kombu” (Laminaria japonoca) in normal Japanese adults. Endocr. J. 55, 1103–1108 (2008).

    Article  CAS  Google Scholar 

  41. Kasahara, T. et al. Delayed onset congenital hypothyroidism in a patient with DUOX2 mutations and maternal iodine excess. Am. J. Med. Genet. A. 161A, 214–217 (2013).

    Article  Google Scholar 

  42. Fuse, Y., Saito, N., Tsuchiya, T., Shishiba, Y. & Irie, M. Smaller thyroid gland volume with high urinary iodine excretion in Japanese schoolchildren: normative reference values in an iodine-sufficient area and comparison with the WHO/ICCIDD reference. Thyroid 17, 145–155 (2007).

    Article  CAS  Google Scholar 

  43. Konno, N., Makita, H., Iizuka, N. & Kawasaki, K. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J. Clin. Endocrinol. Metab. 78, 393–397 (1994).

    CAS  PubMed  Google Scholar 

  44. Michikawa, T. et al. Seaweed consumption and the risk of thyroid cancer in women: the Japan Public Health Center-based Prospective Study. Eur. J. Cancer Prev. 21, 254–260 (2012).

    Article  CAS  Google Scholar 

  45. Dasgupta, P. K., Liu, Y. & Dyke, J. V. Iodine nutrition: iodine content of iodized salt in the United States. Environ. Sci. Technol. 42, 1315–1323 (2008).

    Article  CAS  Google Scholar 

  46. Leung, A. M., Pearce, E. N. & Braverman, L. E. Iodine content of prenatal multivitamins in the United States. N. Engl. J. Med. 360, 939–940 (2009).

    Article  CAS  Google Scholar 

  47. Connelly, K. J. et al. Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. J. Pediatr. 161, 760–762 (2012).

    Article  Google Scholar 

  48. Nishiyama, S. et al. Transient hypothyroidism or persistent hyperthyrotropinemia in neonates born to mothers with excessive iodine intake. Thyroid 14, 1077–1083 (2004).

    Article  CAS  Google Scholar 

  49. Emder, P. J. & Jack, M. M. Iodine-induced neonatal hypothyroidism secondary to maternal seaweed consumption: a common practice in some Asian cultures to promote breast milk supply. J. Paediatr. Child Health 47, 750–752 (2011).

    Article  Google Scholar 

  50. Shumer, D. E., Mehringer, J. E., Braverman, L. E. & Dauber, A. Acquired Hypothyroidism in an Infant Related to Excessive Maternal Iodine Intake: Food for Thought. Endocr. Pract. 9, 729–731 (2013).

    Article  Google Scholar 

  51. American Thyroid Association. ATA Statement on the Potential Risks of Excess Iodine Ingestion and Exposure [online], (2013).

  52. Minelli, R., Gardini, E., Bianconi, L., Salvi, M. & Roti, E. Subclinical hypothyroidism, overt thyrotoxicosis and subclinical hypothyroidism: the subsequent phases of thyroid function in a patient chronically treated with amiodarone. J. Endocrinol. Invest. 15, 853–855 (1992).

    Article  CAS  Google Scholar 

  53. Danzi, S. & Klein, I. Amiodarone-induced thyroid dysfunction. J. Intensive Care Med. http://dx.doi.org/10.1177/0885066613503278.

  54. Bogazzi, F., Tomisti, L., Bartalena, L., Aghini-Lombardi, F. & Martino, E. Amiodarone and the thyroid: a 2012 update. J. Endocrinol. Invest. 35, 340–348 (2012).

    CAS  PubMed  Google Scholar 

  55. Eskes, S. A. et al. Treatment of amiodarone-induced thyrotoxicosis type 2: a randomized clinical trial. J. Clin. Endocrinol. Metab. 97, 499–506 (2012).

    Article  CAS  Google Scholar 

  56. Tomisti, L. et al. Total thyroidectomy in patients with amiodarone-induced thyrotoxicosis and severe left ventricular systolic dysfunction. J. Clin. Endocrinol. Metab. 97, 3515–3521 (2012).

    Article  CAS  Google Scholar 

  57. Bogazzi, F. et al. Preparation with iopanoic acid rapidly controls thyrotoxicosis in patients with amiodarone-induced thyrotoxicosis before thyroidectomy. Surgery 132, 1114–1117 (2002).

    Article  Google Scholar 

  58. Bogazzi, F. et al. Color flow Dopploer sonography rapidly differentiates type I and type II amiodarone-induced thyrotoxicosis. Thyroid 7, 541–545 (1997).

    Article  CAS  Google Scholar 

  59. Tomisti, L. et al. Effects of amiodarone, thyroid hormones and CYP2C9 and VKORC1 polymorphisms on warfarin metabolism: a review of the literature. Endocr. Pract. 19, 1043–1049 (2013).

    Article  Google Scholar 

  60. Rhee, C. M., Bhan, I., Alexander, E. K. & Brunelli, S. M. Association between iodinated contrast media exposure and incident hyperthyroidism and hypothyroidism. Arch. Intern. Med. 172, 153–159 (2012).

    Article  CAS  Google Scholar 

  61. Nimmons, G. L., Funk, G. F., Graham, M. M. & Pagedar, N. A. Urinary iodine excretion after contrast computed tomography scan: implications for radioactive iodine use. JAMA Otolaryngol. Head Neck Surg. 139, 479–482 (2013).

    Article  Google Scholar 

  62. Padovani, R. P. et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid 22, 926–930 (2012).

    Article  CAS  Google Scholar 

  63. Alkhuja, S., Pyram, R. & Odeyemi, O. In the eye of the storm: Iodinated contrast medium induced thyroid storm presenting as cardiopulmonary arrest. Heart Lung 42, 267–269 (2013).

    Article  Google Scholar 

  64. Gartner, W. & Weissel, M. Do iodine-containing contrast media induce clinically relevant changes in thyroid function parameters of euthyroid patients within the first week? Thyroid 14, 521–524 (2004).

    Article  CAS  Google Scholar 

  65. Koroscil, T. M., Pelletier, P. R., Slauson, J. W. & Hennessey, J. Short-term effects of coronary angiographic contrast agents on thyroid function. Endocr. Pract. 3, 219–221 (1997).

    Article  CAS  Google Scholar 

  66. Ozkan, S. et al. Thyroid functions after contrast agent administration for coronary angiography: a prospective observational study in euthyroid patients. Anadolu Kardiyol Derg. 13, 363–369 (2013).

    CAS  PubMed  Google Scholar 

  67. Kochi, M. H., Kaloudis, E. V., Ahmed, W. & Moore, W. H. Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function. J. Comput. Assist. Tomogr. 36, 165–169 (2012).

    Article  Google Scholar 

  68. Thaker, V., Levine, B.-S., Leung, A. M. & Braverman, L. E. Neonatal iodine-induced hypothyroidism after cardiac arteriography. Presented at ENDO2013.

  69. Conn, J. J., Sebastian, M. J., Deam, D., Tam, M. & Martin, F. I. A prospective study of the effect of nonionic contrast media on thyroid function. Thyroid 6, 107–110 (1996).

    Article  CAS  Google Scholar 

  70. Martin, F. I., Tress, B. W., Colman, P. G. & Deam, D. R. Iodine-induced hyperthyroidism due to nonionic contrast radiography in the elderly. Am. J. Med. 95, 78–82 (1993).

    Article  CAS  Google Scholar 

  71. van der Molen, A. J., Thomsen, H. S., Morcos, S. K. & Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Effect of iodinated contrast media on thyroid function in adults. Eur. Radiol. 14, 902–907 (2004).

    Article  Google Scholar 

  72. Gordon, C. M., Rowitch, D. H., Mitchell, M. L. & Kohane, I. S. Topical iodine and neonatal hypothyroidism. Arch. Pediatr. Adolesc. Med. 149, 1336–1339 (1995).

    Article  CAS  Google Scholar 

  73. Linder, N. et al. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J. Pediatr. 131, 434–439 (1997).

    Article  CAS  Google Scholar 

  74. Vermeulen, H. et al. Benefit and harm of iodine in wound care: a systematic review. J. Hosp. Infect. 76, 191–199 (2010).

    Article  CAS  Google Scholar 

  75. Ader, A. W. et al. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J. Clin. Endocrinol. Metab. 66, 632–635 (1988).

    Article  CAS  Google Scholar 

  76. McMonigal, K. A. et al. Thyroid function changes related to use of iodinated water in the U. S.Space Program. Aviat. Space Environ. Med. 71, 1120–1125 (2000).

    CAS  PubMed  Google Scholar 

  77. Georgitis, W. J., McDermott, M. T. & Kidd, G. S. An iodine load from water-purification tablets alters thyroid function in humans. Mil. Med. 158, 794–797 (1993).

    Article  CAS  Google Scholar 

  78. Pearce, E. N. et al. Effects of chronic iodine excess in a cohort of long-term American workers in West Africa. J. Clin. Endocrinol. Metab. 87, 5499–5502 (2002).

    Article  CAS  Google Scholar 

  79. Nauman, J. & Wolff, J. Iodide prophylaxis in Poland after the Chernobyl reactor accident: benefits and risks. Am. J. Med. 94, 524–532 (1993).

    Article  Google Scholar 

  80. Pearce, E. N., Pino, S., Bazrafshan, H. R., Lee, S. L. & Braverman, L. E. Sources of dietary iodine: bread, cows' milk, and infant formula in the Boston area. J. Clin. Endocrinol. Metab. 89, 3421–3424 (2004).

    Article  CAS  Google Scholar 

  81. Allegrini, M., Pennington, J. A. T. & Tanner, J. T. Total diet study: determination of iodine intake by neutron activation analysis. J. Am. Diet. Assoc. 83, 18–24 (1983).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. M. Leung would like to acknowledge the support of NIH grant 7K23HD06855204.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Lewis E. Braverman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, A., Braverman, L. Consequences of excess iodine. Nat Rev Endocrinol 10, 136–142 (2014). https://doi.org/10.1038/nrendo.2013.251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing