Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vitamin D and energy homeostasis—of mice and men

Key Points

  • Adipose tissue is a target tissue for vitamin D, as 1,25-dihydroxyvitamin D3 stimulates the expression of typical adipocyte genes, such as leptin, and inhibits the expression of uncoupling proteins in vitro

  • Vdr−/− and Cyp27b1−/− mice display increased energy expenditure and lower fat mass accumulation with ageing, whereas mice overexpressing Vdr in adipocytes become obese

  • Two mechanisms might explain the increased energy expenditure of Vdr−/− and Cyp27b1−/− mice: increased adipocyte expression of uncoupling proteins, such as UCP1 and UCP2, or an increased bile acid pool

  • Bile acids are known stimulators of nuclear receptors, for example, BAR (also known as FXR), CAR, PXR and VDR, and G-protein-coupled receptors, such as GPBAR1 (also known as TGR5), which can act as potent regulators of energy expenditure

  • Cross-sectional and long-term observational studies in different populations worldwide show that human obesity and the metabolic syndrome and its components are associated with poor vitamin D status

  • Vitamin D deficiency generates resistance to diet-induced obesity in mice, whereas in humans poor vitamin D status is strongly associated with obesity: no satisfactory explanation for this discrepancy exists

Abstract

The vitamin D endocrine system has many extraskeletal targets, including adipose tissue. 1,25-Dihydroxyvitamin D3, the active form of vitamin D, not only increases adipogenesis and the expression of typical adipocyte genes but also decreases the expression of uncoupling proteins. Mice with disrupted vitamin D action—owing to gene deletion of the nuclear receptor vitamin D receptor (Vdr) or the gene encoding 1α-hydroxylase (Cyp27b1)—lose fat mass over time owing to an increase in energy expenditure, whereas mice with increased Vdr-mediated signalling in adipose tissue become obese. The resistance to diet-induced obesity in mice with disrupted Vdr signalling is caused at least partially by increased expression of uncoupling proteins in white adipose tissue. However, the bile acid pool is also increased in these animals, and bile acids are known to be potent inducers of energy expenditure through activation of several nuclear receptors, including Vdr, and G-protein-coupled receptors, such as GPBAR1 (also known as TGR5). By contrast, in humans, obesity is strongly associated with poor vitamin D status. A causal link has not been firmly proven, but most intervention studies have failed to demonstrate a beneficial effect of vitamin D supplementation on body weight. The reasons for the major discrepancy between mouse and human data are unclear, but understanding the link between vitamin D status and energy homeostasis could potentially be very important for the human epidemic of obesity and the metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocrine feedback loop between the vitamin D endocrine system and adipocytes.
Figure 2: Energy expenditure of Vdr−/− mice.
Figure 3: Feedback control of bile acid metabolism by activation of the vitamin D endocrine system.
Figure 4: Bile acid metabolism of Vdr−/− mice.

Similar content being viewed by others

References

  1. Van Belle, T. L., Gysemans, C. & Mathieu, C. Vitamin D and diabetes: the odd couple. Trends Endocrinol. Metab. http://dx.doi.org/10.1016/j.tem.2013.07.002.

  2. Bouillon, R. in Endocrinology Vol. 1 (eds Jameson, J. L. & De Groot, L. J.) 1089–1110 (Saunders Elsevier, Philadelphia, 2010).

    Google Scholar 

  3. Bouillon, R. et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouillon, B., Lieben, L., Mathieu, C., Verstuyf, A. & Carmeliet, G. Vitamin D action: lessons from VDR and Cyp27b1 null mice. Pediatric Endocrinol. Rev. 10 (Suppl. 2), 354–366 (2013).

    Google Scholar 

  5. Kriebitzsch, C. et al. The impact of 1,25(OH)2D3 and its structural analogs on gene expression in cancer cells—a microarray approach. Anticancer Res. 29, 3471–3483 (2009).

    CAS  PubMed  Google Scholar 

  6. Carlberg, C., Seuter, S. & Heikkinen, S. The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Anticancer Res. 32, 271–282 (2012).

    CAS  PubMed  Google Scholar 

  7. Pike, J. W. & Meyer, M. B. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Rheum. Dis. Clin. North Am. 38, 13–27 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Rosen, C. J. et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr. Rev. 33, 456–492 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    CAS  PubMed  Google Scholar 

  10. Mauvais-Jarvis, F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 22, 24–33 (2011).

    CAS  PubMed  Google Scholar 

  11. Ding, C., Gao, D., Wilding, J., Trayhurn, P. & Bing, C. Vitamin D signalling in adipose tissue. Br. J. Nutr. 108, 1915–1923 (2012).

    CAS  PubMed  Google Scholar 

  12. Lee, H., Bae, S. & Yoon, Y. Anti-adipogenic effects of 1,25-dihydroxyvitamin D3 are mediated by the maintenance of the wingless-type MMTV integration site/β-catenin pathway. Int. J. Mol. Med. 30, 1219–1224 (2012).

    CAS  PubMed  Google Scholar 

  13. Blumberg, J. M. et al. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J. Biol. Chem. 281, 11205–11213 (2006).

    CAS  PubMed  Google Scholar 

  14. Narvaez, C. J. et al. Induction of STEAP4 correlates with 1 25-dihydroxyvitamin D stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J. Cell. Physiol. 228, 2024–2036 (2013).

    CAS  PubMed  Google Scholar 

  15. Cianferotti, L. & Demay, M. B. VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J. Cell. Biochem. 101, 80–88 (2007).

    CAS  PubMed  Google Scholar 

  16. Nimitphong, H., Holick, M. F., Fried, S. K. & Lee, M. J. 25-hydroxyvitamin D3 and 1 25-dihydroxyvitamin D3 promote the differentiation of human subcutaneous preadipocytes. PLoS ONE 7, e52171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Manna, P. & Jain, S. K. Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J. Biol. Chem. 287, 42324–42332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Elbein, S. C. et al. Global gene expression profiles of subcutaneous adipose and muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI. Diabetes 60, 1019–1029 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, X., Morris, K. L. & Zemel, M. B. Role of calcitriol and cortisol on human adipocyte proliferation and oxidative and inflammatory stress: a microarray study. J. Nutrigenet. Nutrigenomics 1, 30–48 (2008).

    CAS  PubMed  Google Scholar 

  20. Malloy, P. J. & Feldman, B. J. Cell-autonomous regulation of brown fat identity gene UCP1 by unliganded vitamin D receptor. Mol. Endocrinol. 27, 1632–1642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong, J., Chen, Y., Zhu, G., Zhao, Q. & Li, Y. C. 1,25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue. J. Endocrinol. 216, 265–271 (2013).

    CAS  PubMed  Google Scholar 

  22. Craig, T. A. et al. Research resource: whole transcriptome RNA sequencing detects multiple 1α, 25-dihydroxyvitamin D(3)-sensitive metabolic pathways in developing zebrafish. Mol. Endocrinol. 26, 1630–1642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouillon, R. & Decallonne, B. The white adipose tissue connection with calcium and bone homeostasis. J. Bone Miner. Res. 25, 1707–1710 (2010).

    PubMed  Google Scholar 

  24. Menendez, C. et al. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J. Endocrinol. 170, 425–431 (2001).

    CAS  PubMed  Google Scholar 

  25. Breslavsky, A. et al. Effect of high doses of vitamin D on arterial properties, adiponectin, leptin and glucose homeostasis in type 2 diabetic patients. Clin. Nutr. http://dx.doi.org/10.1016/j.clnu.2013.01.020.

  26. Li, Y. C. et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc. Natl Acad. Sci. USA 94, 9831–9835 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Guzey, M. et al. Increased apoptosis of periprostatic adipose tissue in VDR null mice. J. Cell. Biochem. 93, 133–141 (2004).

    CAS  PubMed  Google Scholar 

  28. Zinser, G. M. & Welsh, J. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice. Carcinogenesis 25, 2361–2372 (2004).

    CAS  PubMed  Google Scholar 

  29. Welsh, J. et al. Age-related changes in the epithelial and stromal compartments of the mammary gland in normocalcemic mice lacking the vitamin D3 receptor. PLoS ONE 6, e16479 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Narvaez, C. J., Matthews, D., Broun, E., Chan, M. & Welsh, J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology 150, 651–661 (2009).

    CAS  PubMed  Google Scholar 

  31. Weber, K. & Erben, R. G. Differences in triglyceride and cholesterol metabolism and resistance to obesity in male and female vitamin D receptor knockout mice. J. Anim. Physiol. Anim. Nutr. 4, 675–683 (2013).

    Google Scholar 

  32. Yamamoto, Y. et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154, 1008–1020 (2013).

    CAS  PubMed  Google Scholar 

  33. Wong, K. E. et al. Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am. J. Physiol. Endocrinol. Metab. 296, E820–E828 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, H., Norman, A. W., Okamura, W. H., Sen, A. & Zemel, M. B. 1α,25-dihydroxyvitamin D3 inhibits uncoupling protein 2 expression in human adipocytes. FASEB J. 16, 1808–1810 (2002).

    CAS  PubMed  Google Scholar 

  35. Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, K. E. et al. Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J. Biol. Chem. 286, 33804–33810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martens, K., Bottelbergs, A. & Baes, M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 584, 1054–1058 (2010).

    CAS  PubMed  Google Scholar 

  38. Steenbock, H. & Herting, D. C. Vitamin D and growth. J. Nutr. 57, 449–468 (1955).

    CAS  PubMed  Google Scholar 

  39. Halloran, B. P. & DeLuca, H. F. Vitamin D deficiency and reproduction in rats. Science 204, 73–74 (1979).

    CAS  PubMed  Google Scholar 

  40. Nyomba, B. L., Bouillon, R. & De Moor, P. Influence of vitamin D status on insulin secretion and glucose tolerance in the rabbit. Endocrinology 115, 191–197 (1984).

    CAS  PubMed  Google Scholar 

  41. Bhat, M., Kalam, R., Qadri, S. S., Madabushi, S. & Ismail, A. Vitamin D deficiency induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154, 4018–4029 (2013).

    CAS  PubMed  Google Scholar 

  42. Choi, M. et al. Vitamin D receptor activation induces peptide YY transcription in pancreatic islets. Endocrinology 153, 5188–5199 (2012).

    CAS  PubMed  Google Scholar 

  43. Lancha, A., Frühbeck, G. & Gómez-Ambrosi, J. Peripheral signalling involved in energy homeostasis control. Nutr. Res. Rev. 25, 223–248 (2012).

    CAS  PubMed  Google Scholar 

  44. Francis, G. A., Fayard, E., Picard, F. & Auwerx, J. Nuclear receptors and the control of metabolism. Annu. Rev. Physiol. 65, 261–311 (2003).

    CAS  PubMed  Google Scholar 

  45. Pearen, M. A. & Muscat, G. E. Orphan nuclear receptors and the regulation of nutrient metabolism: understanding obesity. Physiology (Bethesda) 27, 156–166 (2012).

    CAS  Google Scholar 

  46. Mauvais-Jarvis, F., Cleqq, D. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan, W. et al. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 54, 1000–1008 (2005).

    CAS  PubMed  Google Scholar 

  48. Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Deeb, S. S. et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 20, 284–287 (1998).

    CAS  PubMed  Google Scholar 

  50. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans, R. M., Barish, G. D. & Wang, Y. X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).

    CAS  PubMed  Google Scholar 

  52. Li, L. et al. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell. Metab. 9, 77–87 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. et al. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol. Endocrinol. 26, 272–280 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. He, J. et al. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 62, 1876–1887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dong, B. et al. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl Acad. Sci. USA 106, 18831–18836 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalaany, N. Y. et al. LXRs regulate the balance between fat storage and oxidation. Cell. Metab. 1, 231–244 (2005).

    CAS  PubMed  Google Scholar 

  57. Moreau, A., Maurel, P., Vilarem, M. J. & Pascussi, J. M. Constitutive androstane receptor-vitamin D receptor crosstalk: consequence on CYP24 gene expression. Biochem. Biophys. Res. Commun. 360, 76–82 (2007).

    CAS  PubMed  Google Scholar 

  58. Pols, T. W., Noriega, L. G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig. Dis. 29, 37–44 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Harach, T. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2, 430 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    CAS  PubMed  Google Scholar 

  61. Watanabe, M. et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286, 26913–26920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  63. Ockenga, J. et al. Plasma bile acids are associated with energy expenditure and thyroid function in humans. J. Clin. Endocrinol. Metab. 97, 535–542 (2012).

    CAS  PubMed  Google Scholar 

  64. Svensson, P. A. et al. The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate. Biochem. Biophys. Res. Commun. 433, 563–566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    CAS  PubMed  Google Scholar 

  66. Narisawa, T., Magadia, N. E., Weisburger, J. H. & Wynder, E. L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats. J. Natl Cancer Inst. 53, 1093–1097 (1974).

    CAS  PubMed  Google Scholar 

  67. Bartik, L. et al. Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. J. Nutr. Biochem. 21, 1153–1161 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nehring, J. A., Zierold, C. & DeLuca, H. F. Lithocholic acid can carry out in vivo functions of vitamin D. Proc. Natl Acad. Sci. USA 104, 10006–10009 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmidt, D. R. et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem. 285, 14486–14494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Han, S., Li, T., Ellis, E., Strom, S. & Chiang, J. Y. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol. Endocrinol. 24, 1151–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoshizawa, T. et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat. Genet. 16, 391–396 (1997).

    CAS  PubMed  Google Scholar 

  72. Sakakura, H. et al. Simultaneous determination of bile acids in rat bile and serum by high-performance liquid chromatography. J. Chromatogr. 621, 123–131 (1993).

    CAS  PubMed  Google Scholar 

  73. Nishida, S., Ozeki, J. & Makishima, M. Modulation of bile acid metabolism by 1α-hydroxyvitamin D3 administration in mice. Drug Metab. Dispos. 37, 2037–2044 (2009).

    CAS  PubMed  Google Scholar 

  74. Mathieu, C., Gysemans, C., Giulietti, A. & Bouillon, R. Vitamin D and diabetes. Diabetologia 48, 1247–1257 (2005).

    CAS  PubMed  Google Scholar 

  75. Hyppönen, E., Boucher, B. J., Berry, D. J. & Power, C. 25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. Diabetes 57, 298–305 (2008).

    PubMed  Google Scholar 

  76. Earthman, C. P., Beckman, L. M., Masodkar, K. & Sibley, S. D. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int. J. Obes. (Lond.) 36, 387–396 (2012).

    CAS  Google Scholar 

  77. Vimaleswaran, K. S. et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 10, e1001383 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Soares, M. J., Chan She Ping-Delfos, W. & Ghanbari, M. H. Calcium and vitamin D for obesity: a review of randomized controlled trials. Eur. J. Clin. Nutr. 65, 994–1004 (2011).

    CAS  PubMed  Google Scholar 

  79. Song, Q. & Sergeev, I. N. Calcium and vitamin D in obesity. Nutr. Res. Rev. 25, 130–141 (2012).

    CAS  PubMed  Google Scholar 

  80. Davidson, M. B., Duran, P., Lee, M. L. & Friedman, T. C. High-dose vitamin D supplementation in people with prediabetes and hypovitaminosis D. Diabetes Care 36, 260–266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Boon, N. et al. The effects of increasing serum calcitriol on energy and fat metabolism and gene expression. Obesity (Silver Spring) 14, 1739–1746 (2006).

    CAS  Google Scholar 

  82. Kayaniyil, S. et al. Prospective association of 25(OH)D with metabolic syndrome. Clin. Endocrinol. (Oxf.) http://dx.doi.org/10.1111/cen.12190.

  83. Auwerx, J., Bouillon, R. & Kesteloot, H. Relation between 25-hydroxyvitamin D3, apolipoprotein A-I, and high density lipoprotein cholesterol. Arterioscler. Thromb. 12, 671–674 (1992).

    CAS  PubMed  Google Scholar 

  84. Song, Y. et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 36, 1422–1428 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pittas, A. G. et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann. Intern. Med. 152, 307–314 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Mitri, J., Muraru, M. D. & Pittas, A. G. Vitamin D and type 2 diabetes: a systematic review. Eur. J. Clin. Nutr. 65, 1005–1015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. von Hurst, P. R., Stonehouse, W. & Coad, J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—a randomised, placebo-controlled trial. Br. J. Nutr. 103, 549–555 (2010).

    CAS  PubMed  Google Scholar 

  88. Bouillon, R. Vitamin D as potential baseline therapy for blood pressure control. Am. J. Hypertens. 22, 816 (2009).

    CAS  PubMed  Google Scholar 

  89. Wortsman, J., Matsuoka, L. Y., Chen, T. C., Lu, Z. & Holick, M. F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 72, 690–693 (2000).

    CAS  PubMed  Google Scholar 

  90. Drincic, A. T., Armas, L. A., Van Diest, E. E. & Heaney, R. P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 20, 1444–1448 (2012).

    CAS  Google Scholar 

  91. Mason, C. et al. Effects of weight loss on serum vitamin D in postmenopausal women. Am. J. Clin. Nutr. 94, 95–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gallagher, J. C., Peacock, M., Yalamanchili, V. & Smith, L. M. Effects of vitamin D supplementation in older African American women. J. Clin. Endocrinol. Metab. 98, 1137–1146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gallagher, J. C., Yalamanchili, V. & Smith, L. M. The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J. Steroid Biochem. Mol. Biol. 136, 195–200 (2013).

    CAS  PubMed  Google Scholar 

  94. Sinha, A., Hollingsworth, K. G., Ball, S. & Cheetham, T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J. Clin. Endocrinol. Metab. 98, E509–E513 (2013).

    CAS  PubMed  Google Scholar 

  95. Bouillon, R. & Verstuyf, A. Vitamin D, mitochondria, and muscle. J. Clin. Endocrinol. Metab. 98, 961–963 (2013).

    CAS  PubMed  Google Scholar 

  96. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. White, J. H. Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: past, present and future. J. Steroid. Biochem. Mol. Biol. 121, 234–238 (2010).

    CAS  PubMed  Google Scholar 

  98. Bal, B. S., Finelli, F. C., Shope, T. R. & Koch, T. R. Nutritional deficiencies after bariatric surgery. Nat. Rev. Endocrinol. 8, 544–556 (2012).

    CAS  PubMed  Google Scholar 

  99. Pols, T. W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell. Metab. 14, 747–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gascon-Barré, M. et al. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37, 1034–1042 (2003).

    PubMed  Google Scholar 

  101. Ding, N. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153, 601–613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Vdr−/− mice were generated by S. Kato's laboratory and breeder pairs were kindly provided by D. Metzger and P. Chambon. The authors' work was supported by grants from the Fund for Scientific Research (G.0587.09; G.0859.11, G.0573.13), the KU Leuven (GOA 2009/10) and the Swiss National Science Foundation (SNF 310030_143748/1).

Author information

Authors and Affiliations

Authors

Contributions

R. Bouillon, G. Carmeliet, M. Watanabe, A. Perino, J. Auwerx and K. Schoonjans researched the data for the article. R. Bouillon, G. Carmeliet, L. Lieben, J. Auwerx, K. Schoonjans and A. Verstuyf provided a substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roger Bouillon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillon, R., Carmeliet, G., Lieben, L. et al. Vitamin D and energy homeostasis—of mice and men. Nat Rev Endocrinol 10, 79–87 (2014). https://doi.org/10.1038/nrendo.2013.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing