Key Points
-
Despite mounting evidence for close interconnectivity, the clinical association of autoimmunity with female infertility has remained a subject of considerable controversy
-
Following implantation, the female immune system usually induces tolerance towards the embryo, whereas tolerance induction is incomplete in a hyperactive immune system, reducing fertility and increasing the risk of miscarriage
-
Autoimmunity can adversely affect female fertility by prematurely diminishing ovarian reserve, adversely affecting fertilization and implantation, and by increasing the risk of miscarriage and of various pregnancy complications
-
Similar to other autoimmune diseases, autoimmune endocrine diseases affect reproduction, including fertility and miscarriage risk, even at prodromal clinical stages, often months to years before diagnosis of the disease
-
Androgen supplementation in hypoandrogenic conditions of low ovarian reserve (whatever the aetiology) established a treatment paradigm, expanding interventions from the gonadotropin-sensitive stage (last 2 weeks) into earlier follicle maturation stages
-
Insufficient knowledge about the interplay between autoimmunity and reproduction suggests that reproductive immunology is an urgent target area for multi-specialty research by reproductive biologists, rheumatologists, immunologists and endocrinologists
Abstract
An increasing body of evidence suggests that immune-mediated processes affect female reproductive success at multiple levels. Crosstalk between endocrine and immune systems regulates a large number of biological processes that affect target tissues, and this crosstalk involves gene expression, cytokine and/or lymphokine release and hormone action. In addition, endocrine–immune interactions have a major role in the implantation process of the fetal (paternally derived) semi-allograft, which requires a reprogramming process of the maternal immune system from rejection to temporary tolerance for the length of gestation. Usually, the female immune system is supportive of all of these processes and, therefore, facilitates reproductive success. Abnormalities of the female immune system, including autoimmunity, potentially interfere at multiple levels. The relevance of the immune system to female infertility is increasingly recognized by investigators, but clinically is often not adequately considered and is, therefore, underestimated. This Review summarizes the effect of individual autoimmune endocrine diseases on female fertility, and points towards selected developments expected in the near future.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Effect of levothyroxine supplementation on pregnancy outcomes in women with subclinical hypothyroidism and thyroid autoimmuneity undergoing in vitro fertilization/intracytoplasmic sperm injection: an updated meta-analysis of randomized controlled trials
Reproductive Biology and Endocrinology Open Access 24 September 2018
-
Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics
Stem Cell Research & Therapy Open Access 27 July 2017
-
The importance of adrenal hypoandrogenism in infertile women with low functional ovarian reserve: a case study of associated adrenal insufficiency
Reproductive Biology and Endocrinology Open Access 26 April 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Cho, J. H. & Gregersen, P. K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).
Jasani, B. et al. Natural antibody status in patients with Hashimoto's thyroiditis. J. Clin. Lab. Immunol. 51, 9–20 (1999).
Tagoe, C. E., Zezon, A. & Khattri, S. Rheumatic manifestations of autoimmune thyroid disease: the other autoimmune disease. J. Rheumatol. 39, 1125–1129 (2012).
MedlinePlus, US National Library of Medicine, NIH, National Institutes of Health. Autoimmune Diseases [online] (2013).
Targher, G. et al. Prevalence of thyroid autoimmunity and subclinical hypothyroidism in persons with chronic kidney disease not requiring chronic dialysis. Clin. Chem. Lab. Med. 47, 1367–1371 (2009).
Tzioufas, A. G. et al. Subclinical manifestations of autoimmune rheumatic diseases in primary Raynaud's phenomenon. Clin. Exp. Rheumatol. 3, 243–247 (1985).
Carp, H. J., Selmi, C. & Shoenfeld, Y. The autoimmune bases of infertility and pregnancy loss. J. Autoimmun. 38, J266–J274 (2012).
Gleicher, N. Reproductive failure prior to the onset of clinical autoimmune disease. Rheumatology (Oxford) 38, 485–487 (1999).
Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil. Steril. 99, 63 (2012).
Gleicher, N. & Barad, D. H. Gender as risk factor for autoimmune diseases. J. Autoimmun. 28, 1–6 (2007).
Practice Committee of the American Society for Reproductive Medicine. Ant-phospholipid antibodies do not affect IVF success. Fertil. Steril. 86 (Suppl. 1), S224–S225 (2006).
Silverman, M. N. & Sternberg, E. M. Neuroendocrine-immune interactions in rheumatoid arthritis: mechanisms of glucocorticoid resistance. Neuroimmunomodulation 15, 19–28 (2008).
Tzioufas, A. G., Tsonis, J. & Moutsopoulos, H. M. Neuroendocrine dysfunction in Sjogren syndrome. Neuroimmunomodulation 15, 37–45 (2008).
Tanriverdi, F., Silveira, L. F. G., MacColl, G. S. & Boulox, P. M. G. The hypothalamic–pituitary–gonadal axis: immune function and autoimmunity. J. Endocrinol. 176, 293–304 (2003).
McGrogan, A., Seaman, H. E., Wright, J. W. & de Vries, C. S. The incidence of autoimmune thyroid disease: a systemic review of the literature. Clin. Endocrinol. (Oxf.) 69, 687–696 (2008).
Fromont, A. et al. National estimate of multiple sclerosis incidence in France (2001–2007). Mult. Scler. 18, 1108–1115 (2012).
Ahlgren, C., Odén, A. & Lycke, J. High nationwide prevalence of multiple sclerosis in Sweden. Mult. Scler. 17, 901–908 (2011).
Minagar, A. et al. The thalamus and multiple sclerosis: modern view of pathology, imaging, and clinical aspects. Neurology 80, 210–219 (2013).
Greer, J. M., McCombe, P. A. Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J. Neuroimmunol. 234, 7–18 (2011).
Cavalla, P. et al. Fertility in patients with multiple sclerosis: current knowledge and future perspectives. Neurol. Sci. 27, 231–239 (2006).
Nielsen, N. M. et al. Reproductive history and risk of multiple sclerosis. Epidemiology 22, 546–552 (2011).
Alwan, S., Sadovnick, A. D. Multiple sclerosis and pregnancy: maternal considerations. Women's Health (Lond. Engl.) 8, 399–414 (2012).
Cocco, E. et al. Frequency and risk factors of mitoxantrone-induced amenorrhea in multiple sclerosis: the FEMIMS study. Mult. Scler. 14, 1225–1233 (2008).
Martinelli, V., Radaelli, M., Straffi, L., Rodeghe, M. & Comi, G. Mitoxantrone: benefits and risks in multiple sclerosis patients. Neurol. Sci. 30 (Suppl. 2), S167–S170 (2009).
Correale, J., Farez, M. F. & Ysraelit, M. C. Increase in multiple sclerosis activity after assisted reproduction technology. Ann. Neurol. 72, 682–694 (2012).
D'Hooghe, M. B., D'Hooghe, T. & De Keyser, J. Female gender and reproductive factors affecting risk, relapses and progression if multiple sclerosis. Gynecol. Obstet. Invest. 75, 73–84 (2013).
Quintanar, J. L., Salinas, E. & Quintanar-Stephano, A. Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Neuropeptides 45, 43–48 (2011).
Guzmaán-Soto, I., Salinas, E., Hernández-Jasso, I. & Quintanar, J. L. Leuprolide acetate, a GnRH agonist, improves experimental autoimmune encephalomyelitis: a possible therapy for multiple sclerosis. Neurochem. Res. 37, 2190–2197 (2012).
Bellstella, A. et al. Subclinical diabetes insipidus. Best Pract. Res. Endocrinol. Metab. 26, 471–483 (2012).
De Bellis, A. et al. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells. J. Clin. Endocrinol. 97, 3684–3690 (2012).
Gutiérrez Cruz, O. & Careaga Benitez, R. Diabetes insipidus and pregnancy. Ginecol. Obstet. Mex. 75, 224–229 (2007).
Caturegli, P., Lupi I, Landek-Salgado, M., Kimura, H. & Rose, N. R. Pituitary autoimmunity: 30 years later. Autoimmun. Rev. 7, 631–637 (2008).
Glezer, A. & Bronstein, M. D. Pituitary autoimmune disease: nuances in clinical presentation. Endocrine 42, 74–79 (2012).
Mirocha, S., Elagin, R. B., Salamat, S. & Jaume, J. C. T regulatory cells distinguish two types of primary hypophysitis. Clin. Exp. Immunol. 155, 403–411 (2008).
Bellastella, G. et al. Predictive role of the immunostaining pattern of immunofluorescence and the titers of antipituitary antibodies at presentation for the occurrence of autoimmune hypopituitarism in patients with autoimmune polyendocrine syndrome over a five-year follow-up. J. Clin. Endocrinol. Metab. 95, 3750–3757 (2010).
Smith, C. et al. Identification of TPIT and other novel autoantigens in lymphocytic hypophysitis: immunoscreening of a pituitary cDNA library and development of immunoprecipitation assays. Eur. J. Endocrinol. 166, 391–398 (2012).
Shimatsu, A., Oki, Y., Fujisawa, I. & Sano, T. Pituitary and stalk lesions (infundibulo-hypophysitis) associated with immunoglobulin G4-related systemic disease: an emerging clinical entity. Endocr. J. 56, 1033–1041 (2009).
Lupi, I. et al. From pituitary expansion to empty sella: disease progression in a mouse model of autoimmune hypophysitis. Endocrinology 152, 4190–4198 (2011).
Landek-Salgado, M. A., Rose, N. R. & Caturegli, P. Placenta suppresses experimental autoimmune hypophysitis through soluble TNF receptor 1. J. Autoimmun. 38, J88–J96 (2012).
de Graaff, L. C., De Bellis, A., Bellastella, A. & Hokken-Koelega, A. C. Antipituitary antibodies in Dutch patients with idiopathic hypopituitarism. Horm. Res. 71, 22–27 (2009).
Lupi, I. et al. Pituitary autoimmunity is associated with hypopituitarism in patients with primary empty sella. J. Endocrinol. Invest. 34, e240–e244 (2011).
Yamamoto, M. et al. Adult combined GH, prolactin, and TSH deficiency associated with PIT-1 antibody in humans. J. Clin. Invest. 121, 113–119 (2011).
De Bellis, A. et al. Anti-hypothalamic and anti-pituitary antibodies may contribute to perpetuate the hypopituitarism in patients with Shehan's syndrome. Eur. J. Endocrinol. 158, 147–152 (2008).
De Bellis, A. et al. Detection of antipituitary and antihypothalamus antibodies to investigate the role of pituitary or hypothalamic autoimmunity in patients with selective idiopathic hypopituitarism. Clin. Endocrinol. (Oxf.) 75, 361–366 (2011).
Gleicher, N. et al. Hypoandrogenism in association with diminished functional ovarian reserve. Hum. Reprod. 28, 1084–1091 (2013).
Alpañés, M., Sanchón, R., Martinez-Garcia, M. A., Martinez-Bermeio, E. & Escobar-Morreale, H. E. Prevalence of hyperprolactinemia in female premenopausal blood donors. Clin. Endocrinol. (Oxf.) 79, 545–549 (2013).
Lee, D. Y., Oj, Y. K., Yoon, B. K. & Choi, D. Prevalence of hyperprolactinemia in adolescents and young women with menstruation-related problems. Am. J. Obstet. Gynecol. 206, e1–e5 (2012).
Kasum, M. et al. Macroprolactinemia: new insights in hyperprolactinemia. Biochemia. Med. (Zagreb) 22, 171–179 (2012).
De Bellis, A., Bizzarro, A., Pivonello, R., Lombardi, G. & Bellastella, A. Prolactin and autoimmunity. Pituitary 8, 25–30 (2005).
Orbach, H. & Shoenfeld, Y. Hyperprolactinemia and autoimmune diseases. Autoimmun. Rev. 6, 537–542 (2007).
Shelly, S., Boaz, M. & Orbach, H. Prolactin and autoimmunity. Autoimmun. Rev. 11, A465–A470 (2012).
Parra, A. et al. Moderate hyperprolactinemia is associated with survival in patients with acute graft-versus host disease after allogeneic stem cell transplantation. Hematology 17, 85–92 (2012).
Sharma, N., Baliarsingh, S. & Kaushik, G. G. Biochemical association of hyperprolactinemia with hypothyroidism in infertile women. Clin. Lab. 58, 805–810 (2012).
Praprotnik, S. et al. Prolactin's role in the pathogenesis of the antiphospholipid syndrome. Lupus 19, 1515–1519 (2010).
Unuane, D., Tournaye, H., Velkeniers, B. & Poppe, K. Endocrine disorders & female infertility. Best Pract. Res. Clin. Endocrinol. Metab. 25, 861–873 (2011).
Shibli-Rahhal, A. & Schlechte, J. Hyperprolactinemia and infertility. Endocrinol. Metab. Clin. North Am. 40, 837–846 (2011).
Berinder, K., Hulting, A. L., Granath, F., Hirschberg, A. L. & Akre, O. Parity, pregnancy and neonatal outcomes in women treated for hyperprolactinemia compared with a control group. Clin. Endocrinol. (Oxf.) 67, 393–397 (2007).
Wang, H., Gorpudolo, N. & Behr, B. The role of prolactin- and endometriosis-associated infertility. Obstet. Gynecol. Surv. 64, 542–547 (2009).
Gleicher, N., el-Roeiy, A., Cofino, E. & Friberg, J. Is endometriosis an autoimmune disease? Obstet. Gynecol. 70, 115–122 (1987).
Grattan, D. R., Jasoni, C. L., Liu, X., Anderson, G. M. & Herbison, A. E. Prolactin regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone secretion in mice. Endocrinology 148, 4344–4351 (2007).
Ratner, L. D. et al. Short-term pharmacological suppression of the hyperprolactinemia of infertile hCG-overproducing female mice persistently restores their fertility. Endocrinology 153, 5980–5992 (2012).
Sonigo, C. et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J. Clin. Invest. 122, 3791–3795 (2012).
De Bellis, A. et al. Characterization of antipituitary antibodies targeting pituitary hormone-secreting cells in idiopathic growth hormone deficiency and autoimmune endocrine disease. Clin. Endocrinol. (Oxf.) 63, 45–49 (2005).
De Bellis, A. et al. Autoimmunity as a possible cause of growth hormone deficiency. J. Endocrinol. Invest. 31, 1132–1134 (2008).
van Nieuwpoort, J. C. Dutch National Registry of GH treatment in adults: patient characteristics and diagnostic test procedures. Eur. J. Endocrinol. 164, 491–497 (2011).
Hall, R., Manski-Nankervis, J., Goni, N., Davies, M. C. & Conway, G. S. Fertility outcomes in women with hypopituitarism. Clin. Endocrinol. (Oxf.) 65, 71–74.
Daniel, A., Ezzat, S. & Greenblatt, E. Adjuvant growth hormone for ovulation induction with gonadotropins in the treatment of a woman with hypopituitarism. Case Rep. Endocrinol. 2012, 356429 (2012).
Nelson, L. M. Clinical practice, primary ovarian insufficiency. N. Engl. J. Med. 360, 606–614 (2009).
Gleicher, N., Weghofer, A. & Barad, D. H. Defining ovarian reserve to better understand ovarian aging. Reprod. Biol. Endocrinol. 9 23 (2011).
Gleicher, N., Weghofer, A., Oktay, K. & Barad, D. Do etiologies of premature ovarian aging (POA) mimic those of premature ovarian failure (POF)? Hum. Reprod. 24, 2395–2400 (2009).
Monnier-Barbarino, P., Forges, T., Faure, G. C. & Béné, M. C. Gonadal antibodies interfering with female reproduction. Best Pract. Res. Clin. Endocrinol. 19, 135–148 (2005).
Zou, S. H., Zhang, P., Song, D. P. & Wu, R. Y. Impact of antiovarian antibodies (AOA) on ovarian responsiveness in vitro fertilization and embryo transfer. Neuro Endocrinol. Lett. 29, 949–952 (2008).
Pires, E. S. et al. Can anti-ovarian antibody testing be useful in an IVF-ET clinic? J. Assist. Reprod. Genet. 28, 55–64 (2011).
Hoek, A., Schoemaker, J. & Drexhage, H. A. Premature ovarian failure and ovarian autoimmunity. Endocrine Rev. 18, 107–134 (1997).
Pires, E. Multiplicity of molecular and cellular targets in human ovarian autoimmunity: an update. J. Assist. Reprod. Genet. 27, 519–524 (2010).
Mande, P. V. et al. Identification and validation of candidate biomarkers involved in human ovarian autoimmunity. Reprod. Biomed. Online 23, 471–483 (2011).
Edassery, S. L. et al. Autoantigens in ovarian autoimmunity associated with unexplained infertility and premature ovarian failure. Fertil. Steril. 94, 2636–2641 (2010).
Pires, E. S. & Khole, V. V. A block in the road to fertility: autoantibodies to heat-shock protein 90-β in human ovarian autoimmunity. Fertil. Steril. 92, 1395–1409 (2009).
Geva, E. et al. The possible role of antiovary antibodies in repeated in vitro fertilization failures. Am. J. Reprod. Immunol. 42, 292–296 (1999).
Shamilova, N. N., Marchenko, L. A., Dolgushina, N. V., Zaletaev, D. V. & Sukhikh, G. T. The role of genetic and autoimmune factors in premature ovarian failure. J. Assist. Reprod. Genet. 30, 617–622 (2013).
Geva, E. et al. Circulating autoimmune antibodies may be responsible for implantation failure in in vitro fertilization. Fertil. Steril. 62, 802–806 (1994).
Hill, J. A. & Scott, R. T. Immunologic tests and IVF: “Please, enough already”. Fertil. Steril. 74, 439–442 (2000).
Goswami, R. et al. Prevalence of thyroid autoimmunity in sporadic idiopathic hyperparathyroidism in comparison to type 1 diabetes and premature ovarian failure. J. Clin. Endocrinol. Metab. 91, 4256–4259 (2006).
Kelkar, R. L., Meherji, P. K., Kadam, S. S., Gupta, S. K. & Nandedkar, T. D. Circulating auto-antibodies against the zona pellucida and thyroid microsomal antigen in women with premature ovarian failure. J. Reprod. Immunol. 66, 53–67 (2005).
Gleicher, N., Weghofer, A. & Barad, D. H. The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment? Reprod. Biol. Endocrinol. 9 116 (2011).
Sen, A. & Hammes, S. R. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol. Endocrinol. 24, 1393–1403 (2010).
Mande, P. V., Thomas, S., Khan, S., Jadhav, S. & Khole, V. V. Immunization with ovarian autoantigens leads to reduced fertility in mice following follicular dysfunction. Reproduction 143, 309–323 (2012).
Albertini, D. F. Searching for answers to the riddle of ovarian aging. J. Assist. Reprod. Genet. 29, 577–578 (2012).
Altuntas, C. Z., Johnson, J. M. & Tuohy, V. K. Autoimmune targeted disruption of the pituitary-ovarian axis causes premature ovarian failure. J. Immunol. 177, 1988–1996 (2006).
Gleicher, N., Weghofer, A., Lee, I. H. & Barad, D. H. FMR1 genotypes with autoimmunity-associated polycystic ovary-like phenotype and decreased pregnancy chance. PLoS ONE 5, e15303 (2010).
Welt, C. K. Autoimmune oophoritis in the adolescent. Ann. N.Y. Acad. Sci. 1135, 118–122 (2008).
Tsigkou, A. et al. High serum inhibin concentration discriminates autoimmune oophoritis from other forms of primary ovarian insufficiency. J. Clin. Endocrinol. Metab. 93, 1263–1269 (2008).
La Marca, A. et al. Primary ovarian insufficiency: autoimmune causes. Curr. Opin. Obstet. Gynecol. 22, 277–282 (2010).
Bats, A. S., Barbarino, P. M., Bene, M. C., Faure, G. C. & Forges, T. Local lymphocytic and epithelial activation in a case of autoimmune oophoritis. Fertil. Steril. 90, e5–e8 (2008).
Page, K., Pagidas, K., Derosa, M. C. & Quddus, M. R. Eosinophilic perifolliculitis presenting as a painful cystic ovarian mass in a woman with fibromyalgia: a case report. J. Reprod. Med. 51, 141–144 (2006).
Nelson, L. M. Autoimmune ovarian failure: comparing the mouse model and the human disease. J. Soc. Gynecol. Investig. 8 (1 Suppl. Proceedings), S55–S57 (2001).
del Rio, R., Sun, Y., Alard, P., Tung, K. S. & Teuscher, C. H2 control of natural T regulatory cell frequency in the lymph node correlates with susceptibility to day 3 thymectomy-induced autoimmune disease. J. Immunol. 186, 382–389 (2011).
Fu, L., Feng, W., Li, S. R. & Huang, B. Y. ZP3 peptides administered orally suppress murine experimental autoimmune ovarian disease. J. Reprod. Immunol. 75, 40–47 (2007).
Tong, Z. B. & Nelson, L. M. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140, 3720–3726 (1999).
Otsuka, N. et al. Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of mater. Endocrinology 152, 2465–2473 (2011).
Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nat. Rev. Immunol. 6, 183–195 (2006).
Alimohammmadi, M. et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N. Engl. J. Med. 358, 1018–1028 (2008).
Kojima, A. & Prehn, R. T. Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics 14, 15–27 (1981).
Nair, S., Caspi, R. R. & Nelson, L. M. Susceptibility to murine experimental autoimmune oophoritis is associated with genes outside the major histocompatibility complex (MHC). Am. J. Reprod. Immunol. 36 107–110 (1996).
Teuscher, C., Wardell, B. B., Lunceford, J. K., Michael, S. D. & Tung, K. S. Aod2, the locus controlling development of atrophy in neonatal thymectomy-induced autoimmune ovarian dysgenesis, co-localizes with IL2, Fgfb, and Idd3. J. Exp. Med. 183, 631–637 (1996).
Dewhurst, C. J., de Koos, E. B. & Ferreira, H. P. The resistant ovary syndrome. Br. J. Obstet. Gynecol. 82, 341–345 (1975).
Okoroh, E. M., Hooper, W. C., Atrash, H. K., Yusuf, H. R. & Boulet, S. L. Prevalence of polycystic ovary syndrome among the privately insured. United States, 2003–2008. Am. J. Obstet. Gynecol. 207, 299.e1–e7 (2012).
Azziz, R. et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89, 2745–2749 (2004).
Yidiz, B. O., Bozdag, G., Yapici, Z., Esinler, I. & Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 27, 3067–3073 (2012).
Deligeoroglou, E. et al. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol. Endocrinol. 28, 974–978 (2012).
Ebejer, K. & Calleja-Agius, J. The role of cytokines in polycystic ovary syndrome. Gynecol. Endocrinol. 29, 536–540 (2013).
Ojeda-Ojeda, M., Murri, M., Insenser, M. & Escobar-Morrealee, H. F. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS). Curr. Pharm. Des. 19, 5775–5791 (2013).
Kahal, H. et al. Polycystic ovary syndrome has no independent effect on vascular, inflammatory or thrombotic markers when matched for obesity. Clin. Endocrinol. (Oxf.) 79, 252–258 (2013).
Ezeh, U., Yidiz, B. O. & Azziz, R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E1088–E1096 (2013).
van Gelderern, C. J. & Gomes dos Santos, M. L. Polycystic ovarian syndrome. Evidence for an autoimmune mechanism in some cases. J. Reprod. Med. 38, 381–386 (1993).
Petriková, J. & Lazúrová, I. Ovarian failure and polycystic ovary syndrome. Autoimmun. Rev. 11, A471–A478 (2012).
Hefler-Frischmuth, K. et al. Serologic markers of autoimmunity in women with polycystic ovary syndrome. Fertil. Steril. 93, 2291–2294 (2010).
Katsas, G. A. et al. How common are polycystic ovaries and polycystic ovarian syndrome in women with Cushing's syndrome. Clin. Endocrinol. (Oxf.) 53, 493–500 (2000).
Moro, F. et al. Psoriatic patients have an increased risk of polycystic ovary syndrome: results of a cross-sectional analysis. Fertil. Steril. 99, 936–942 (2013).
Kachuei, M., Jafari, F., Kachei, A. & Keshteli, A. H. Prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Arch. Gynecol. Obstet. 285, 853–856 (2012).
Benetti-Pinto, C. L., Berini Piccolo, V. R. S., Garmes, H. M. & Teatin Juliato, C. R. Subclinical hypothyroidism in young women with polycystic ovary syndrome: an analysis of clinical, hormonal, and metabolic parameters. Fertil. Steril. 99, 588–592 (2013).
Garelli, S. et al. High prevalence of chronic thyroiditis in patients with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 169, 248–251 (2013).
Nisar, S. et al. Association of polycystic ovary syndrome and Graves' disease: Is autoimmunity the link between the two diseases. Indian J. Endocrinol. Metab. 16, 982–986 (2012).
Lewis, V. Polycystic ovary syndrome. A diagnostic challenge. Obstet. Gynecol. Clin. North Am. 28, 1–20 (2001).
Gleicher, N. et al. Is androgen production in association with immune system activation potential evidence for existence of a functional adrenal/ovarian autoimmune system in women? Reprod. Biol. Endocrinol. 11, 58 (2013).
González, F., Sia, C. L., Stanczyk, F. Z., Blair, H. E. & Krupa, M. E. Hyperandrogenism exerts an anti-inflammatory effect in obese women with polycystic ovary syndrome. Endocrine 42, 726–735 (2012).
Krassas, G. E., Poppe, K. & Glinoer, D. Thyroid function and human reproductive health. Endocr. Rev. 31, 702–755 (2010).
Klecha, A. J., Barreiro Arcos, M. L., Frick, L., Genaro, A. M. & Cremaschi, G. Immune-endocrine interactions in autoimmune thyroid diseases. Neuroimmunomodulation 15, 68–75 (2008).
Poppe, K., Velkeniers, B. & Glinoer, D. Thyroid disease and female reproduction. Clin. Endocrinol. (Oxf.) 66, 309–321 (2007).
Gleicher, N., el-Roeiy, A., Confino, E. & Friberg, J. Is endometriosis an autoimmune disease? Obstet. Gynecol. 70, 115–122 (1987).
Zhong, Y. P. et al. Relationship between antithyroid antibody and pregnancy outcome following in vitro fertilization and embryo transfer. Int. J. Med. Sci. 9, 121–125 (2012).
Bellver, J. et al. The role of thrombophilia and thyroid autoimmunity in unexplained infertility, implantation failure and recurrent spontaneous abortion. Hum. Reprod. 23, 278–284 (2008).
Fumarola, A. et al. Thyroid function in infertile patients undergoing assisted reproduction. Am. J. Reprod. Immunol. 70, 336–341 (2013).
Busnelli, A. et al. In vitro fertilization outcomes in treated hypothyroidism. Thyroid 23, 1319–1325 (2013).
Kim, N. Y. et al. Thyroid autoimmunity and its association with cellular and humoral immunity in women with reproductive failure. Am. J. Reprod. Immunol. 65, 78–87 (2011).
Chen, L. & Hu, R. Thyroid autoimmunity and miscarriage: a meta-analysis. Clin. Endocrinol. (Oxf.) 74, 513–519 (2011).
Twig, G., Shina, A., Amital, H. & Shoenfeld, Y. pathogenesis of infertility and recurrent pregnancy loss in thyroid autoimmunity. J. Autoimmun. 38, J275–J281 (2012).
Hutfless, S., Matos, P., Talor, M. V., Caturegli, P. & Rose, N. R. Significance of prediagnostic thyroid antibodies in women with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 96, E1466–E1477 (2011).
Gleicher, N. Does the immune system induce labor? Lessons from preterm deliveries in women with autoimmune diseases. Clin. Rev. Allergy Immunol. 39, 194–206 (2010).
He, X. et al. Thyroid antibodies and risk of preterm delivery: a meta-analysis of prospective cohort studies. Eur. J. Endocrinol. 167, 455–464 (2012).
Karakosta, P. et al. Thyroid dysfunction and autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes. J. Clin. Endocrinol. Metab. 97, 4464–4472 (2012).
Vitacolonna, E. et al. Gestational diabetes and thyroid autoimmunity. Int. J. Endocrinol. 2012, 867415 (2012).
Glinoer, D. et al. Pregnancy in patients with mild thyroid abnormalities: maternal and neonatal repercussions. J. Clin. Endocrinol. Metab. 73, 421–427 (1991).
Pratt, D. E., Kaberlein, G., Dudkiewicz, A., Karande, V. & Gleicher, N. The association of antithyroid antibodies in euthyroid nonpregnant women with recurrent first trimester abortions in the next pregnancy. Fertil. Steril. 60, 1001–1005 (1993).
Lazzarin, N., Moretti, C., De Felice, G., Vaquero, E. & Manfellotto, D. Further evidence on the role of thyroid autoimmunity in women with recurrent miscarriage. Int. J. Endocrinol. 2012, 717185 (2012).
Stagnaro-Green, A. Maternal thyroid disease and preterm delivery. J. Clin. Endocrinol. Metab. 94, 21–25 (2009).
Negro, R. et al. Thyroid antibody positivity in the first trimester of pregnancy is associated with negative pregnancy outcome. J. Clin. Endocrinol. Metab. 96, E920–E924 (2011).
Vasudevan, N., Ogawa, S. & Paff, D. Estrogen and thyroid hormone receptor interaction: physiological flexibility and molecular specificity. Phsyiol. Rev. 82, 923–944 (2002).
Lee, Y. L. et al. Increased fetal abortion rate in autoimmune thyroid disease is related to circulating to autoantibodies in an autoimmune thyroiditis animal model. Fertil. Steril. 91, 2104–2109 (2009).
Betterle, C. & Morlin, L. Autoimmune Addison's disease. Endocr. Dev. 20, 161–172 (2011).
Lahera Vargas, M. & da Costa, C. V. Prevalence, etiology and clinical findings of Cushing's syndrome [Spanish]. Endocrinol. Nutr. 56, 32–39 (2009).
Medvei, V. C. The history of Cushing's disease: a controversial tale. J. R. Soc. Med. 84, 363–366 (1991).
Baker, P. R. et al. Predicting the onset of Addison's disease: ACTH, renin, cortisol and 21-hydroxylase autoantibodies. Clin. Endocrinol. (Oxf.) 76, 617–624 (2012).
Mitchell, A. L. & Pearce, S. H. Autoimmune Addison disease: pathophysiology and genetic complexity. Nat. Rev. Endocrinol. 8, 306–316 (2012).
Bratland, E., Hellesen, A. & Husebye, E. S. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Mol. Cell. Endocrinol. 365, 75–83 (2013).
Bernecker, C. et al. MicroRNA expression in PMBCs, CD4+, and CD8+ T-cells from patients suffering from autoimmune Addison's disease. Horm. Metab. Res. 45, 599–604 (2013).
Falorni, A., Minarelli, V. & Morelli, S. Therapy of adrenal insufficiency: an update. Endocrine 43, 514–528 (2013).
Kim, S. S. & Brody, K. H. Dehydroepiandrosterone replacement in Addison's disease. Eur. J. Obstet. Gynecol. Reprod. Biol. 97, 96–97 (2011).
Mavrangi, C. P., Schini, M., Gravani, F., Kaltsas, G. & Moutsopoulos, H. M. Brief report: adrenal autoimmunity in primary Sjögren's syndrome. Arthritis Rheum. 64, 4066–4071 (2012).
Simunkova, K. et al. Adrenocortical function in young adults with diabetes mellitus type 1. J. Steroid. Biochem. Med. Sci. 122, 35–41 (2010).
Azziz, R., Chang, W. Y. & Stancyk, F. Z. Effect of bilateral oophorectomy on adrenocortical function in women with polycystic ovary syndrome. Fertil. Steril. 99, 599–604 (2013).
González, F. Adrenal dysfunction in polycystic ovary syndrome: has it been lost to follow up? Fertil. Steril. 99, 352–353 (2013).
Dite, P., Novotny, I., Trna, J. & Sevcikova, A. Autoimmune pancreatitis. Best Pract. Res. Clin. Gastroenterol. 22, 131–143 (2008).
Bauman, B., Salem, H. H. & Boehm, B. O. Anti-inflammatory therapy in type 1 diabetes. Curr. Diab. Rep. 12, 499–509 (2012).
Pietropaolo, M., Towns, R. & Eisenbarth, G. S. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb. Perspect. Med. 2, Pii: a012831 (2012).
Skog, O., Korsgren, S., Melhus, A. & Korsgren, O. Revisiting the notion of type 1 diabetes being a T-cell mediated autoimmune disease. Curr. Opin. Endocrinol. Diabetes Obes. 20, 118–123 (2013).
Kanczkowski, W., Ziegler, C. G., Zacharowski, K. & Bornstein, S. R. Toll-like receptors in endocrine disease and diabetes. Neuroimmunomodulation 15, 54–60 (2008).
Beauquis, J., Homo-Delarche, F., Revsin Y, de Nicola, A. F. & Saravia, F. Brain alterations in autoimmune and pharmacological models of diabetes mellitus: focus on hypothalamic-pituitary-adrenocortical axis disturbances. Neuroimmunomodulation 15, 61–67 (2008).
Lee, J. S. et al. B7x in the periphery abrogates pancreas-specific damage mediated by self-reactive CD8 T cells. J. Immunol. 189, 4165–4175 (2012).
Stumpf, M., Zhou, X. & Bluestone, J. A. The B7-independent isoform of CTLA-4 functions to regulate autoimmune diabetes. J. Immunol. 190, 961–969 (2013).
Livshits, A. & Seidman, D. S. Fertility issues in women with diabetes. Women's Health (Lond. Engl.) 5, 701–717 (2009).
Holstein, A., Patzer, O., Tiemann, T., Vortherms, J. & Kovacs, P. Number and sex ratio of children and impact of parental diabetes in individuals with type 1 diabetes. Diabet. Med. 29, 1268–1271 (2012).
Whitworth, K. W., Baird, D. D., Stene, L. C., Skjaerven, R. & Longnecker, M. P. Fecundability among women with type 1 and type 2 diabetes in the norwegian mother and child cohort study. Diabetologia 54, 516–522 (2011).
Codner, E. et al. Ovulation rate in adolescents with type 1 diabetes mellitus. Fertil. Steril. 95, 197–202 (2011).
Murphy, H. R. et al. Obstetric and perinatal outcomes in pregnancies complicated by type 1 and type 2 diabetes: influences of glycemic control, obesity and social disadvantage. Diabet. Med. 28, 1060–1067 (2011).
Al-Agha, R. et al. Outcome of pregnancy type 1 diabetes mellitus (T1DMP): results from combined diabetes-obstetrical clinics in Dublin in three university teaching hospitals (1995–2006). Ir. J. Med. Sci. 181, 105–109 (2012).
Riskin-Mashiah, S. & Auslander, R. Quality of medical care in diabetic women undergoing fertility treatment: we should do better! Diabetes Care 34, 2164–2169 (2001).
Vargas, R., Repke, J. T. & Ural, S. H. Type I diabetes mellitus and pregnancy. Rev. Obstet. Gynecol. 3, 92–100 (2010).
Ramin, N. et al. Maternal diabetes impairs gastrulation and insulin and IGF-1 receptor expression in rabbit blastocysts. Endocrinology 151, 4158–4167 (2010).
Wang, W., Lin, Y., Zeng, S. & Li, D. J. Improvement of fertility with adoptive CD25+ natural killer cell transfer in subfertile non-obese diabetic mice. Reprod. Biomed. Online 18, 95–103 (2009).
Guma, M. & Firestein, G. S. IgG4-related diseases. Best Pract. Res. Clin. Rheumatol. 26, 425–438 (2012).
Watanabe, T. et al. Clinical features of a new disease concept of IgG4-related thyroiditis. Scand. J. Rheumatol. 42, 325–330 (2013).
Neufeld, M., Maclaren, N. & Blizzard, R. Autoimmune polyglandular syndromes. Pediatr. Ann. 9, 154–162 (1980).
Betterle, C., Dal Pra, C., Mantero, F. & Zanchetta, R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev. 23, 327–364 (2002).
Betterle, C. & Zanchetta, R. Update on autoimmune polyendocrine syndromes (APS). Acta Biomed. 74, 9–33 (2003).
Eisenbarth, G. S. & Gottlieb, P. A. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 350, 2068–2079 (2004).
Michels, A. W. & Gottlieb, P. A. Autoimmune polyglandular syndromes. Nat. Rev. Endocrinol. 6, 270–277 (2010).
Gleicher, N., Weghofer, A. & Barad, D. Female infertility due to abnormal autoimmunity: frequently overlooked and greatly underappreciated. Part II. Expert Rev. Obstet. Gynecol. 2, 465–475 (2007).
Cushman, R. A. Evidence that the autoimmune regulator gene influences thymic production of ovarian antigens and prevents autoimmune-mediated premature reproductive senescence. Biol. Reprod. 86, 109 (2012).
Jasti, S. et al. The autoimmune regulator prevents premature reproductive senescence in female mice. Biol. Reprod. 86, 110 (2012).
Gleicher, N., Weghofer, A. & Barad, D. Do etiologies of premature ovarian aging (POA) mimic those of premature ovarian failure (POF)? Hum. Reprod. 24, 2395–2400 (2009).
Unuanae, D., Tournaye, H., Velkeniers, B. & Poppe, K. Endocrine disorders & female infertility. Best Pract. Res. Clin. Endocrinol. Metab. 25, 861–873 (2011).
Acknowledgements
The authors would like to acknowledge the support of The Center for Human Reproduction.
Author information
Authors and Affiliations
Contributions
A.S. and N.G. researched data for the article, provided a substantial contribution to discussion of the content, wrote the article and reviewed and edited the manuscript before submission. V.A.K. and D.H.B. contributed to writing the article and reviewing and editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
N. Gleicher and D. H. Barad are listed as co-owners of a number of already awarded and still pending U.S. patents. Awarded patents relate to beneficial therapeutic effects of androgen supplementation on female infertility in women with low ovarian reserve. Pending patents relate to diagnostic claims that the FMR1 gene can be utilized to assess ovarian ageing patterns, and to predict fertility treatment chances in association with in vitro fertilization. N. Gleicher is a shareholder in Fertility Nutraceuticals, LLC, and owner of the Center for Human Reproduction (CHR). The CHR supported this manuscript through salary support to all authors. N. Gleicher and D. H. Barad receive patent royalties from Fertility Nutraceuticals, LLC. A. Sen and V. A. Kushnir have no potential conflicts to report.
PowerPoint slides
Rights and permissions
About this article
Cite this article
Sen, A., Kushnir, V., Barad, D. et al. Endocrine autoimmune diseases and female infertility. Nat Rev Endocrinol 10, 37–50 (2014). https://doi.org/10.1038/nrendo.2013.212
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrendo.2013.212
This article is cited by
-
P450 Side-Chain Cleavage Enzyme (P450-SCC) Is an Ovarian Autoantigen in a Mouse Model for Autoimmune Oophoritis
Reproductive Sciences (2022)
-
Basal serum level of Δ4-androstenedione reflects the ovaries’ ability to respond to stimulation in IVF cycles: setting up a new reliable index of both ovarian reserve and response
Journal of Assisted Reproduction and Genetics (2022)
-
A form of secondary ovarian insufficiency (SOI) due to adrenal hypoandrogenism as new infertility diagnosis
Endocrine (2021)
-
Ovarian reserve in patients with ankylosing spondylitis
Archives of Gynecology and Obstetrics (2021)
-
Altered ciliary morphofunction in the oviductal infundibulum of systemic autoimmune disease-prone MRL/MpJ-Faslpr/lpr mice
Cell and Tissue Research (2020)