Adipose tissue browning and metabolic health

Key Points

  • The term browning describes the emergence of beige adipocytes in white adipose tissue—a reversible process that represents adaptation to increased thermogenic demand and exercise

  • Human brown adipose tissue is diverse and consists of both brown and beige adipocytes, in proportions that differ according to the fat depot's anatomical location and the age of the person

  • Beige adipocytes are generated by both de novo recruitment from progenitor cells and transdifferentiation from white adipocytes—independent processes that might coexist

  • Cellular energy sensing, in addition to sympathetic tone, are the driving forces that regulate the transcriptional networks controlling browning

  • Cold exposure and other metabolic challenges elicit complex hormonal responses that facilitate communication between tissues and prepare the body for adaptive thermogenesis

  • Brown adipose tissue is a critical regulator of metabolic health in mice; yet, whether induction of browning will be a promising avenue to treat metabolic disorders in humans remains unclear

Abstract

Accumulation of excess white adipose tissue (WAT) has deleterious consequences for metabolic health. The activation of brown adipose tissue (BAT), the primary organ for heat production, confers beneficial effects on adiposity, insulin resistance and hyperlipidaemia, at least in mice. As the amount of metabolically active BAT seems to be particularly low in patients with obesity or diabetes mellitus who require immediate therapy, new avenues are needed to increase the capacity for adaptive thermogenesis. In this light, we review the findings that BAT in human adults might consist of not only classic brown adipocytes but also inducible brown adipocytes (also called beige, brown-in-white, or brite adipocytes), which are phenotypically distinct from both white and brown adipocytes. Stimulating the development of beige adipocytes in WAT (so called 'browning') might reduce adverse effects of WAT and could help to improve metabolic health. This article focuses on the development and regulatory control of beige adipocytes at the transcriptional and hormonal levels. Emerging insights into the metabolic role of beige adipocytes are also discussed, along with the developments that can be expected from these promising targets for therapy of metabolic disease in the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Phenotypes of adipose tissue depots.
Figure 2: Browning of adipose tissue is an adaptive and reversible response to environmental challenges.
Figure 3: Anatomical sites of brown, white and beige adipocytes in mice and humans.
Figure 4: Hormonal control of browning.
Figure 5: Contributions of browning to systemic nutrient handling.

References

  1. 1

    Zechner, R. et al. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signalling. Cell Metab. 15, 279–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    Article  CAS  Google Scholar 

  3. 3

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Yoneshiro, T. et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19, 13–16 (2011).

    Article  Google Scholar 

  7. 7

    Ouellet, V. et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J. Clin. Endocrinol. Metab. 96, 192–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Cinti, S. The adipose organ at a glance. Dis. Model. Mech. 5, 588–594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Klingenspor, M., Herzig, S. & Pfeifer, A. Brown fat develops a brite future. Obes. Facts 5, 890–896 (2012).

    Article  Google Scholar 

  12. 12

    Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    Article  CAS  Google Scholar 

  15. 15

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Pfannenberg, C. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 1789–1793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  CAS  Google Scholar 

  18. 18

    Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  Google Scholar 

  19. 19

    Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  Google Scholar 

  20. 20

    Kopecky, J., Clarke, G., Enerbäck, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest 96, 2914–2923 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).

    Article  CAS  Google Scholar 

  22. 22

    Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Bartelt, A. & Heeren, J. The holy grail of metabolic disease: brown adipose tissue. Curr. Opin. Lipidol. 23, 190–195 (2012).

    Article  CAS  Google Scholar 

  24. 24

    Nedergaard, J. & Cannon, B. How brown is brown fat? It depends where you look. Nat. Med. 19, 540–541 (2013).

    Article  CAS  Google Scholar 

  25. 25

    Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    Article  CAS  Google Scholar 

  26. 26

    Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Tran, K. V. et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 15, 222–229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Lee, Y. H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Gupta, R. K. et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15, 230–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor gamma (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    Article  CAS  Google Scholar 

  31. 31

    Klaus, S., Ely, M., Encke, D. & Heldmaier, G. Functional assessment of white and brown adipocyte development and energy metabolism in cell culture. Dissociation of terminal differentiation and thermogenesis in brown adipocytes. J. Cell Sci. 108, 3171–3180 (1995).

    CAS  PubMed  Google Scholar 

  32. 32

    Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    Article  Google Scholar 

  33. 33

    Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000).

    Article  CAS  Google Scholar 

  35. 35

    Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244–E1253 (2010).

    Article  CAS  Google Scholar 

  36. 36

    Rosenwald, M., Perdikari, A., Rülicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    Article  CAS  Google Scholar 

  37. 37

    Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    Article  CAS  Google Scholar 

  40. 40

    Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631–634 (2013).

    Article  CAS  Google Scholar 

  41. 41

    Walden, T. B., Hansen, I. R., Timmons, J. A., Cannon, B. & Nedergaard, J. Recruited vs. nonrecruited molecular signatures of brown, “brite, ” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Linhart, H. G. et al. C/EBPα is required for differentiation of white, but not brown, adipose tissue. Proc. Natl Acad. Sci. USA 98, 12532–12537 (2001).

    Article  CAS  Google Scholar 

  45. 45

    Gesta, S. et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl Acad. Sci. USA 103, 6676–6681 (2006).

    Article  CAS  Google Scholar 

  46. 46

    Lee, K. Y. et al. Shox2 is a molecular determinant of depot-specific adipocyte function. Proc. Natl Acad. Sci. USA 110, 11409–11414 (2013).

    Article  Google Scholar 

  47. 47

    Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563–573 (2001).

    Article  CAS  Google Scholar 

  48. 48

    Hansen, J. B. et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA 101, 4112–4117 (2004).

    Article  CAS  Google Scholar 

  49. 49

    Calo, E. et al. Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110–1114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Scime, A. et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell Metab. 2, 283–295 (2005).

    Article  CAS  Google Scholar 

  51. 51

    Tsukiyama-Kohara, K. et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7, 1128–1132 (2001).

    Article  CAS  Google Scholar 

  52. 52

    Leonardsson, G. et al. Nuclear receptor co-repressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA 101, 8437–8442 (2004).

    Article  CAS  Google Scholar 

  53. 53

    Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931–941 (2002).

    Article  CAS  Google Scholar 

  54. 54

    Bonet, M. L., Oliver, P. & Palou, A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta 1831, 969–985 (2013).

    Article  CAS  Google Scholar 

  55. 55

    Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell Biol. 24, 3057–3067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Martinez-deMena, R. & Obregón, M. J. Insulin increases the adrenergic stimulation of 5′ deiodinase activity and mRNA expression in rat brown adipocytes; role of MAPK and PI3K. J. Mol. Endocrinol. 34, 139–151 (2005).

    Article  CAS  Google Scholar 

  57. 57

    Muller, T. D. et al. p62 links β-adrenergic input to mitochondrial function and thermogenesis. J. Clin. Invest 123, 469–478 (2013).

    Article  CAS  Google Scholar 

  58. 58

    Ye, L. et al. Fat cells directly sense temperature to activate thermogenesis. Proc. Natl Acad. Sci. USA 110, 12480–12485 (2013).

    Article  Google Scholar 

  59. 59

    Nedergaard, J. & Cannon, B. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta 1831, 943–949 (2013).

    Article  CAS  Google Scholar 

  60. 60

    Puigserver, P. et al. A cold-inducible co-activator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  Google Scholar 

  61. 61

    Hondares, E. et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-co-activator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ co-activation. Endocrinology 147, 2829–2838 (2006).

    Article  CAS  Google Scholar 

  62. 62

    Hondares, E. et al. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ co-activator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286, 43112–43122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Alvarez, R. et al. A novel regulatory pathway of brown fat thermogenesis. Retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J. Biol. Chem. 270, 5666–5673 (1995).

    Article  CAS  Google Scholar 

  65. 65

    Mercader, J. et al. Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 147, 5325–5332 (2006).

    Article  CAS  Google Scholar 

  66. 66

    Kiefer, F. W. et al. Retinaldehyde dehydrogenase 1 regulates a thermogenic programme in white adipose tissue. Nat. Med. 18, 918–925 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Pan, D., Fujimoto, M., Lopes, A. & Wang, Y. X. Twist-1 is a PPARδ-inducible, negative-feedback regulator of PGC-1α in brown fat metabolism. Cell 137, 73–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Kajimura, S., Seale, P. & Spiegelman, B. M. Transcriptional control of brown fat development. Cell Metab. 11, 257–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Seale, P. et al. Prdm16 determines the thermogenic programme of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article  CAS  Google Scholar 

  71. 71

    Wilson-Fritch, L. et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest. 114, 1281–1289 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Trajkovski, M., Ahmed, K., Esau, C. C. & Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14, 1330–1335 (2012).

    Article  CAS  Google Scholar 

  74. 74

    Liu, W. et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 9, e1003626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Sun, L. et al. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 13, 958–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Chen, Y. et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4, 1769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Mori, M., Nakagami, H., Rodriguez-Araujo, G., Nimura, K. & Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Galmozzi, A. et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62, 732–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Villanueva, C. J. et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programmes. Cell Metab. 17, 423–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  CAS  Google Scholar 

  84. 84

    Hawley, S. A. et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Park, S. J. et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Gaidhu, M. P. et al. Chronic AMP-kinase activation with AICAR reduces adiposity by remodeling adipocyte metabolism and increasing leptin sensitivity. J. Lipid Res. 52, 1702–1711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Vila-Bedmar, R., Lorenzo, M. & Fernandez-Veledo, S. Adenosine 5′-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151, 980–992 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    Article  CAS  Google Scholar 

  92. 92

    Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Mottillo, E. P., Bloch, A. E., Leff, T. & Granneman, J. G. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J. Biol. Chem. 287, 25038–25048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Nishino, N. et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Invest. 118, 2808–2821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Toh, S. Y. et al. Upregulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS ONE 3, e2890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Sawada, T. et al. Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. PLoS ONE 5, e14006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest 119, 3329–3339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Heeren, J. & Munzberg, H. Novel aspects of brown adipose tissue biology. Endocrinol. Metab. Clin. North Am. 42, 89–107 (2013).

    Article  Google Scholar 

  102. 102

    Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Madsen, L. et al. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS ONE 5, e11391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Vegiopoulos, A. et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328, 1158–1161 (2010).

    Article  CAS  Google Scholar 

  106. 106

    Qian, S. W. et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc. Natl Acad. Sci. USA 110, E798–E807 (2013).

    Article  Google Scholar 

  107. 107

    Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Lodhi, I. J. et al. Inhibiting adipose tissue lipogenesis reprogrammes thermogenesis and PPARγ activation to decrease diet-induced obesity. Cell Metab. 16, 189–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Bartelt, A. et al. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning. Biochim. Biophys. Acta 1831, 934–942 (2013).

    Article  CAS  Google Scholar 

  110. 110

    Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148, 556–567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Hondares, E. et al. Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Tang, Q. Q., Otto, T. C. & Lane, M. D. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl Acad. Sci. USA 101, 9607–9611 (2004).

    Article  CAS  Google Scholar 

  116. 116

    Bowers, R. R. & Lane, M. D. A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 6, 385–389 (2007).

    Article  CAS  Google Scholar 

  117. 117

    Morrison, S. F., Madden, C. J. & Tupone, D. Central control of brown adipose tissue thermogenesis. Front. Endocrinol. 3, 00005 (2012).

    Article  CAS  Google Scholar 

  118. 118

    Di Marzo, V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585–589 (2005).

    Article  CAS  Google Scholar 

  119. 119

    Zeltser, L. M., Seeley, R. J. & Tschöp, M. H. Synaptic plasticity in neuronal circuits regulating energy balance. Nat. Neurosci. 15, 1336–1342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Yi, C. X. & Tschöp, M. H. Brain-gut-adipose-tissue communication pathways at a glance. Dis. Model. Mech. 5, 583–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Cao, L. et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic–adipocyte axis. Cell Metab. 14, 324–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Paedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  Google Scholar 

  123. 123

    Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic programme in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Mitschke, M. M. et al. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J. 27, 1621–1630 (2013).

    Article  CAS  Google Scholar 

  125. 125

    Sun, Z. Cardiovascular responses to cold exposure. Front. Biosci. (Elite Ed) 2, 495–503 (2010).

    Article  Google Scholar 

  126. 126

    Handschin, C. & Spiegelman, B. M. The role of exercise and PGC1α in inflammation and chronic disease. Nature 454, 463–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Bostrom, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Zhang, C. et al. Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 55, 183–193 (2012).

    Article  CAS  Google Scholar 

  129. 129

    Shan, T., Liang, X., Bi, P. & Kuang, S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α–Fndc5 pathway in muscle. FASEB J. 27, 1981–1989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Ruas, J. L. et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151, 1319–1331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Huh, J. Y. et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61, 1725–1738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Lecker, S. H. et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ. Heart Fail. 5, 812–818 (2012).

    Article  CAS  Google Scholar 

  133. 133

    Moreno-Navarrete, J. M. et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 98, E769–E778 (2013).

    Article  CAS  Google Scholar 

  134. 134

    Raschke S. et al. Evidence against a Beneficial Effect of Irisin in Humans. PLoS ONE 8, e73680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Staiger, H. et al. Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived 'browning' factor irisin, determines insulin sensitivity. PLoS ONE 8, e61903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Bartelt, A., Merkel, M. & Heeren, J. A new, powerful player in lipoprotein metabolism: brown adipose tissue. J. Mol. Med. (Berl.) 90, 887–893 (2012).

    Article  CAS  Google Scholar 

  137. 137

    Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  Google Scholar 

  138. 138

    Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Liu, X. et al. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res. 23, 851–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Kim, J. H., Bachmann, R. A. & Chen, J. Interleukin-6 and insulin resistance. Vitam. Horm. 80, 613–633 (2009).

    Article  CAS  Google Scholar 

  141. 141

    Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Bachmanov, A. A., Reed, D. R., Tordoff, M. G., Price, R. A. & Beauchamp, G. K. Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiol. Behav. 72, 603–613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Chechi, K., Blanchard, P. G., Mathieu, P., Deshaies, Y. & Richard, D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int. J. Cardiol. 167, 2264–2270 (2013).

    Article  Google Scholar 

  147. 147

    Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    Article  CAS  Google Scholar 

  148. 148

    Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring) http://dx.doi.org/10.1002/oby.20456.

  150. 150

    Nisoli, E. et al. Tumour necrosis factor α mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity. Proc. Natl Acad. Sci. USA 97, 8033–8038 (2000).

    Article  CAS  Google Scholar 

  151. 151

    Miranda, S., González-Rodriguez, A., Revuelta-Cervantes, J., Rondinone, C. M. & Valverde, A. M. Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection against apoptosis induced by pro- and anti-inflammatory stimuli. Cell Signal. 22, 645–659 (2010).

    Article  CAS  Google Scholar 

  152. 152

    Bagchi, M. et al. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J. 27, 3257–3271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Xu, X. et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1115–R1125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Russell, A. P. et al. Brown adipocyte progenitor population is modified in obese and diabetic skeletal muscle. Int. J. Obes. (Lond.) 36, 155–158 (2012).

    Article  CAS  Google Scholar 

  155. 155

    Hu, H. H., Smith, D. L. Jr., Nayak, K. S., Goran, M. I. & Nagy, T. R. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. J. Magn. Reson. Imaging 31, 1195–1202 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Chen, Y. I. et al. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity (Silver Spring) 20, 1519–1526 (2012).

    Article  CAS  Google Scholar 

  157. 157

    Iris Chen, Y. C. et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J. Nucl. Med. 54, 1584–1587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Vliegenthart, R. et al. Dual-energy CT of the heart. AJR Am. J. Roentgenol. 199 (Suppl. 5), S54–S63 (2012).

    Article  Google Scholar 

  159. 159

    Bruns, O. T. et al. Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat. Nanotechnol. 4, 193–201 (2009).

    Article  CAS  Google Scholar 

  160. 160

    Heeren, J. & Bruns, O. Nanocrystals, a new tool to study lipoprotein metabolism and atherosclerosis. Curr. Pharm. Biotechnol. 13, 365–372 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Heeren lab for continuous support and enjoyable atmosphere, and are grateful to Rudolph Reimer for providing pictures taken by electron microscopy. A. Bartelt is supported by a Deutsche Forschungsgemeinschaft Research Fellowship (BA 4925/1-1). J. Heeren is supported by a grant from the Fondation Leducq—Triglyceride Metabolism in Obesity and Cardiovascular Disease and by EU FP7 project RESOLVE (FP7-HEALTH-2012-305707).

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding authors

Correspondence to Alexander Bartelt or Joerg Heeren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bartelt, A., Heeren, J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10, 24–36 (2014). https://doi.org/10.1038/nrendo.2013.204

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing