Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis and management of Graves disease: a global overview

Key Points

  • Diagnosis of Graves disease is now usually based on anti-TSH-receptor antibody assays and thyroid ultrasonography

  • Options for management of Graves disease include antithyroid drugs, 131I-radiotherapy and thyroidectomy; however, drug-treated patients have a high relapse rate, and ablative therapies induce lifelong hypothyroidism

  • In Europe and Japan, antithyroid drugs remain the preferred first-line therapy for Graves disease, whereas in North America 131I-radiotherapy is the preferred option, despite increasing use of antithyroid drugs

  • Thyroidectomy is rarely used as a first-line treatment for Graves disease in any geographical region

  • Methimazole or carbimazole are the preferred thionamide antithyroid drugs; use of propylthiouracil is restricted to patients who cannot tolerate other thionamides and to women in the first trimester of pregnancy

Abstract

Graves disease is an autoimmune disorder characterized by goitre, hyperthyroidism and, in 25% of patients, Graves ophthalmopathy. The hyperthyroidism is caused by thyroid hypertrophy and stimulation of function, resulting from interaction of anti-TSH-receptor antibodies (TRAb) with the TSH receptor on thyroid follicular cells. Measurements of serum levels of TRAb and thyroid ultrasonography represent the most important diagnostic tests for Graves disease. Management of the condition currently relies on antithyroid drugs, which mainly inhibit thyroid hormone synthesis, or ablative treatments (131I-radiotherapy or thyroidectomy) that remove or decrease thyroid tissue. None of these treatments targets the disease process, and patients with treated Graves disease consequently experience either a high rate of recurrence, if receiving antithyroid drugs, or lifelong hypothyroidism, after ablative therapy. Geographical differences in the use of these therapies exist, partially owing to the availability of skilled thyroid surgeons and suitable nuclear medicine units. Novel agents that might act on the disease process are currently under evaluation in preclinical or clinical studies, but evidence of their efficacy and safety is lacking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The use of diagnostic tests for Graves disease in North America, Europe, and Asia and Oceania.
Figure 2: Changes over time in the use of antithyroid drugs and 131I-radiotherapy as first-line treatments for Graves disease in North America, Europe, and Asia and Oceania.

Similar content being viewed by others

Terry F. Davies, Stig Andersen, … George J. Kahaly

References

  1. Brent, G. A. Clinical practice. Graves' disease. N. Engl. J. Med. 358, 2594–2605 (2008).

    CAS  Google Scholar 

  2. Filipsson Nystrom, H., Jansson, S. & Berg, G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin. Endocrinol. (Oxf.) 78, 768–776 (2013).

    Google Scholar 

  3. Weetman, A. P. Graves' disease. N. Engl. J. Med. 343, 1236–1248 (2000).

    CAS  PubMed  Google Scholar 

  4. Brix, T. H., Kyvik, K. O., Christensen, K. & Hegedüs, L. Evidence for a major role of heredity in Graves' disease: a population-based study of two Danish twin cohorts. J. Clin. Endocrinol. Metab. 86, 930–934 (2001).

    CAS  PubMed  Google Scholar 

  5. Brand, O. J. & Gough, S. C. L. Genetics of thyroid autoimmunity and the role of the TSHR. Mol. Cell. Endocrinol. 322, 135–143 (2010).

    CAS  PubMed  Google Scholar 

  6. Morshed, S. A., Latif, R. & Davies, T. F. Delineating the autoimmune mechanisms in Graves' disease. Immunol. Res. 54, 191–203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Prabhakar, B. S., Bahn, R. S. & Smith, T. J. Current perspective on the pathogenesis of Graves' disease and ophthalmopathy. Endocr. Rev. 24, 802–835 (2003).

    CAS  PubMed  Google Scholar 

  8. Franklyn, J. A. & Boelaert, K. Thyrotoxicosis. Lancet 379, 1155–1166 (2012).

    CAS  PubMed  Google Scholar 

  9. Bartalena, L. & Tanda, M. L. Clinical practice. Graves' ophthalmopathy. N. Engl. J. Med. 360, 994–1001 (2009).

    CAS  PubMed  Google Scholar 

  10. Tanda, M. L. et al. Prevalence and natural history of Graves' orbitopathy in a large series of patients with newly diagnosed Graves' hyperthyroidism seen at a single center. J. Clin. Endocrinol. Metab. 98, 1443–1449 (2013).

    CAS  PubMed  Google Scholar 

  11. Piantanida, E., Tanda, M. L., Lai, A., Sassi, L. & Bartalena, L. Prevalence and natural history of Graves' orbitopathy in the XXI century. J. Endocrinol. Invest. 36, 444–449 (2013).

    CAS  PubMed  Google Scholar 

  12. Fatourechi, V. Thyroid dermopathy and acropachy. Best Pract. Res. Clin. Endocrinol. Metab. 26, 553–565 (2012).

    CAS  PubMed  Google Scholar 

  13. Boelaert, K., Torlinska, B., Holder, R. L. & Frannklyn, J. A. Older subjects with hyperthyroidism present with a paucity of symptoms and signs: a large cross-sectional study. J. Clin. Endocrinol. Metab. 95, 2715–2726 (2010).

    CAS  PubMed  Google Scholar 

  14. Bartalena, L., Pinchera, A. & Marcocci, C. Management of Graves' ophthalmopathy: reality and perspectives. Endocr. Rev. 21, 168–199 (2000).

    CAS  PubMed  Google Scholar 

  15. Burch, H. B., Burman, K. D. & Cooper, D. S. A 2011 survey of clinical practice patterns in the management of Graves' disease. J. Clin. Endocrinol. Metab. 97, 4549–4558 (2012).

    CAS  PubMed  Google Scholar 

  16. Bahn, R. S. et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21, 593–646 (2011).

    Google Scholar 

  17. Yoshimura Noh, J. et al. Evaluation of a new rapid and fully automated electroluminescence immunoassay for thyrotropin receptor autoantibodies. Thyroid 18, 1157–1164 (2008).

    CAS  PubMed  Google Scholar 

  18. Schott, M. et al. Clinical value of the first automated TSH receptor autoantibody assay for the diagnosis of Graves' disease (GD): an international multicentre trial. Clin. Endocrinol. (Oxf.) 71, 566–573 (2009).

    CAS  Google Scholar 

  19. Hermsen, D. et al. Technical evaluation of the first fully automated assay for the detection of TSH receptor autoantibodies. Clin. Chim. Acta 401, 84–89 (2009).

    CAS  PubMed  Google Scholar 

  20. Lytton, S. D. et al. A novel thyroid-stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves' orbitopathy. J. Clin. Endocrinol. Metab. 95, 2123–2131 (2010).

    CAS  PubMed  Google Scholar 

  21. Kamijo, K., Murayama, H., Uzu, T., Togashi, K. & Kahaly, G. J. A novel bioreporter assay for thyrotropin receptor antibodies using a chimeric thyrotropin receptor (mc4) is more useful in differentiation of Graves' disease from painless thyroiditis than conventional thyrotropin-stimulating antibody assay using porcine thyroid cells. Thyroid 20, 851–856 (2010).

    CAS  PubMed  Google Scholar 

  22. Ajjan, R. A. & Weetman, A. P. Techniques to quantify TSH receptor antibodies. Nat. Clin. Pract. Endocrinol. Metab. 4, 461–468 (2008).

    CAS  PubMed  Google Scholar 

  23. Tozzoli, R., Bagnasco, M., Giavarina, D. & Bizzaro, N. TSH receptor autoantibody immunoassay in patients with Graves' disease: improvement of diagnostic accuracy over different generations of methods. Systematic review and meta-analysis. Autoimmun. Rev. 12, 107–113 (2012).

    CAS  PubMed  Google Scholar 

  24. Dasgupta, S. & Savage, M. W. Evaluation of management of Graves' disease in district general hospital: achievement of consensus guidelines. Int. J. Clin. Pract. 59, 1097–1100 (2005).

    CAS  PubMed  Google Scholar 

  25. Kahaly, G. J., Bartalena, L. & Hegedüs, L. The American Association/American Association of Clinical Endocrinologists guidelines for hyperthyroidism and other causes of thyrotoxicosis: a European perspective. Thyroid 21, 585–591 (2011).

    PubMed  Google Scholar 

  26. Pearce, E. N., Hennessey, J. V. & McDermott, M. T. New American Thyroid Association and American Association of Clinical Endocrinologists guidelines for thyrotoxicosis and other forms of hyperthyroidism: significant progress for the clinician and a guide to future research. Thyroid 21, 573–576 (2011).

    PubMed  Google Scholar 

  27. Yamashita, S., Amino, N. & Shong, Y. S. The American Thyroid Association and American Association of Clinical Endocrinologists hyperthyroidism and other causes of thyrotoxicosis guidelines: viewpoints from Japan and Korea. Thyroid 21, 577–580 (2011).

    PubMed  Google Scholar 

  28. Solomon, B., Glinoer, D., Lagasse, R. & Wartofsky, L. Current trends in the management of Graves' disease. J. Clin. Endocrinol. Metab. 70, 1518–1524 (1990).

    CAS  PubMed  Google Scholar 

  29. Glinoer, D., Hesch, D., Lagasse, R. & Laurberg, P. The management of hyperthyroidism due to Graves' disease in Europe in 1986. Results of an international survey. Acta Endocrinol. Suppl. (Copenh.) 285, 3–23 (1987).

    CAS  Google Scholar 

  30. Nagayama, Y., Izumi, M. & Nagataki, S. The management of hyperthyroidism due to Graves' disease in Japan in 1988. Endocrinol. Jpn 36, 299–314 (1989).

    CAS  PubMed  Google Scholar 

  31. Wartofsky, L. et al. Differences and similarities in the diagnosis and treatment of Graves' disease in Europe, Japan, and the United States. Thyroid 1, 129–135 (1991).

    CAS  PubMed  Google Scholar 

  32. Okosieme, O. E., Chan, D., Price, S. A. & Lazarus, J. H. The utility of radioiodine uptake and thyroid scintigraphy in the diagnosis and management of hyperthyroidism. Clin. Endocrinol. (Oxf.) 72, 122–127 (2010).

    CAS  Google Scholar 

  33. Franklyn, J. A. What is the role of radioiodine uptake measurement and thyroid scintigraphy in the diagnosis and management of hyperthyroidism? Clin. Endocrinol. (Oxf.) 72, 11–12 (2010).

    Google Scholar 

  34. Bogazzi, F. & Vitti, P. Could improved ultrasound and power Doppler replace thyroidal radioiodine uptake to assess thyroid disease? Nat. Clin. Pract. Endocrinol. Metab. 4, 70–71 (2008).

    PubMed  Google Scholar 

  35. Vitti, P. et al. Thyroid blood flow evaluation by color-flow Doppler sonography distinguishes Graves' disease from Hashimoto's thyroiditis. J. Endocrinol. Invest. 18, 857–861 (1995).

    CAS  PubMed  Google Scholar 

  36. Cappelli, C. et al. The role of imaging in Graves' disease: a cost-effectiveness analysis. Eur. J. Radiol. 65, 99–103 (2008).

    CAS  PubMed  Google Scholar 

  37. Boi, F., Loy, M., Piga, M., Serra, A. & Mariotti, S. The usefulness of conventional and echo colour Doppler sonography in the differential diagnosis of toxic multinodular goitres. Eur. J. Endocrinol. 143, 339–346 (2000).

    CAS  PubMed  Google Scholar 

  38. Kurita, S. et al. Measurement of thyroid blood flow area is useful for diagnosing the cause of thyrotoxicosis. Thyroid 15, 1249–1252 (2005).

    CAS  PubMed  Google Scholar 

  39. Ota, H. et al. Quantitative measurement of thyroid blood flow for differentiation of painless thyroiditis from Graves' disease. Clin. Endocrinol. (Oxf.) 67, 41–45 (2007).

    Google Scholar 

  40. Hari Kumar, K. V. et al. Role of thyroid Doppler in differential diagnosis of thyrotoxicosis. Endocr. Pract. 15, 6–9 (2009).

    CAS  PubMed  Google Scholar 

  41. Bogazzi, F. et al. Thyroid vascularity and blood flow are not dependent on serum thyroid hormone levels: studies in vivo by color flow Doppler sonography. Eur. J. Endocrinol. 140, 452–456 (1999).

    CAS  PubMed  Google Scholar 

  42. Erdogan, M. F., Anil, C., Cesur, M., Baskal, N. & Erdogan, G. Color flow Doppler sonography for the etiologic diagnosis of hyperthyroidism. Thyroid 17, 223–228 (2007).

    PubMed  Google Scholar 

  43. Bahn, R. S. Emerging pharmacotherapy for treatment of Graves' disease. Expert Rev. Clin. Pharmacol. 5, 605–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abraham, P. & Acharya, S. Current and emerging treatment options for Graves' hyperthyroidism. Ther. Clin. Risk Manag. 6, 29–40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Weetman, A. P. How antithyroid drugs work in Graves' disease. Clin. Endocrinol. (Oxf.) 37, 317–318 (1992).

    CAS  Google Scholar 

  46. Cooper, D. S. Antithyroid drugs. N. Engl. J. Med. 352, 905–917 (2005).

    CAS  PubMed  Google Scholar 

  47. Bogazzi, F., Tomisti, L., Bartalena, L., Aghini-Lombardi, F. & Martino, E. Amiodarone and the thyroid: a 2012 update. J. Endocrinol. Invest. 35, 340–348 (2012).

    CAS  PubMed  Google Scholar 

  48. Karlsson, F. A., Axelsson, O. & Melhus, H. Severe embriopathy and exposure to methimazole in early pregnancy. J. Clin. Endocrinol. Metab. 87, 947–948 (2001).

    Google Scholar 

  49. Foulds, N., Walpole, I., Elmslie, F. & Mansour, S. Carbimazole embryopathy: an emerging phenotype. Am. J. Med. Genet. A 132A, 130–135 (2005).

    PubMed  Google Scholar 

  50. Clementi, M. et al. Treatment of hyperthyroidism in pregnancy and birth defects. J. Clin. Endocrinol. Metab. 95, E337–E341 (2010).

    PubMed  Google Scholar 

  51. Emiliano, A. B., Governale, L., Parks, M. & Cooper, D. S. Shifts in propylthiouracil and methimazole prescribing practices: antithyroid drug use in the United States from 1991 to 2008. J. Clin. Endocrinol. Metab. 95, 2227–2233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ruiz, J. K. et al. Fulminant hepatic failure associated with propylthiouracil. Ann. Pharmacother. 37, 224–228 (2003).

    PubMed  Google Scholar 

  53. Bahn, R. S. et al. The role of propylthiouracil in the management of Graves' disease in adults: report of a meeting jointly sponsored by the American Thyroid Association and the Food and Drug Administration. Thyroid 19, 673–674 (2009).

    CAS  PubMed  Google Scholar 

  54. Cooper, D. S. & Rivkees, S. A. Putting propylthiouracil in perspective. J. Clin. Endocrinol. Metab. 94, 1881–1882 (2009).

    CAS  PubMed  Google Scholar 

  55. Abraham, P., Avenell, A., McGeoch, S. C., Clark, L. F. & Bevan, J. S. Antithyroid drug regimen for treating Graves' hyperthyroidism. Cochrane Database of Systematic Reviews, Issue 1, Art no.: CD003420. http://dx.doi.org/10.1002/14651858.CD003420.pub4.

  56. Hashizume, K. et al. Administration of thyroxine in treated Graves' disease. Effects on the level of antibodies to thyroid-stimulating hormone receptors and on the risk of recurrence of hyperthyroidism. N. Engl. J. Med. 324, 947–953 (1991).

    CAS  PubMed  Google Scholar 

  57. Abraham, P., Avell, A., Park, C. M., Watson, W. A. & Bevan, J. S. A systematic review of drug therapy for Graves' hyperthyroidism. Eur. J. Endocrinol. 153, 489–498 (2005).

    CAS  PubMed  Google Scholar 

  58. Weetman, A. P., Pickerill, A. P., Watson, P., Chatterjee, V. K. & Edwards, O. M. Treatment of Graves' disease with the block-replace regimen of antithyroid drugs: the effect of treatment duration and immunogenetic susceptibility on relapse. Q. J. Med. 87, 337–341 (1994).

    CAS  PubMed  Google Scholar 

  59. Azizi, F., Atale, L., Hedayati, M., Mehrabi, Y. & Sheikholeslami, F. Effect of long-term continuous methimazole treatment of hyperthyroidism: comparison with radioiodine. Eur. J. Endocrinol. 152, 695–701 (2005).

    CAS  PubMed  Google Scholar 

  60. Laurberg, P. Remission of Graves' disease during anti-thyroid drug therapy. Time to reconsider the mechanism? Eur. J. Endocrinol. 155, 783–786 (2006).

    CAS  PubMed  Google Scholar 

  61. Mazza, E. et al. Long-term follow-up of patients with hyperthyroidism due to Graves' disease treated with methimazole. Comparison of usual treatment schedule with drug discontinuation vs continuous treatment with low methimazole doses: a retrospective study. J. Endocrinol. Invest. 31, 866–872 (2008).

    CAS  PubMed  Google Scholar 

  62. Solomon, B. L., Wartofsky, L. & Burman, K. D. Adjunctive cholestyramine therapy for thyrotoxicosis. Clin. Endocrinol. (Oxf.) 38, 39–43 (1993).

    CAS  Google Scholar 

  63. Tsai, W. C. et al. The effect of combination therapy with propylthiouracil and cholestyramine in the treatment of Graves' hyperthyroidism. Clin. Endocrinol. (Oxf.) 62, 521–524 (2005).

    CAS  Google Scholar 

  64. Takata, K. et al. Benefit of short-term iodide supplementation to antithyroid drug treatment of thyrotoxicosis due to Graves' disase. Clin. Endocrinol. (Oxf.) 72, 845–850 (2010).

    CAS  Google Scholar 

  65. Bartalena, L., Bogazzi, F. & Martino, E. Adverse effects of thyroid hormone preparations and antithyroid drugs. Drug Saf. 15, 53–63 (1996).

    CAS  PubMed  Google Scholar 

  66. Takata, K. et al. Methimazole-induced agranulocytosis in patients with Graves' disease is more frequent with an initial dose of 30 mg daily than with 15 mg daily. Thyroid 19, 559–563 (2009).

    CAS  PubMed  Google Scholar 

  67. Vitti, P. et al. Clinical features of patients with Graves' disease undergoing remission after antithyroid drug treatment. Thyroid 7, 369–375 (1997).

    CAS  PubMed  Google Scholar 

  68. Allahabadia, A., Daykin, J., Holder, R. L., Sheppard, M. C. & Franklyn, J. A. Age and gender predict the outcome of treatment for Graves' hyperthyroidism. J. Clin. Endocrinol. Metab. 85, 1038–1042 (2000).

    CAS  PubMed  Google Scholar 

  69. Nedrebo, B. G. et al. Predictors of outcome and comparison of different drug regimens for the prevention of relapse in patients with Graves' disease. Eur. J. Endocrinol. 147, 583–589 (2002).

    CAS  PubMed  Google Scholar 

  70. Kashiwai, T. et al. Practical treatment with minimum maintenance dose of antithyroid drugs for prediction of remission in Graves' disease. Endocr. J. 50, 45–49 (2003).

    CAS  PubMed  Google Scholar 

  71. Rotondi, M. et al. The effects of pregnancy on subsequent relapse from Graves' disease after a successful course of antithyroid drug therapy. J. Clin. Endocrinol. Metab. 93, 3985–3988 (2008).

    CAS  PubMed  Google Scholar 

  72. Ross, D. S. Radioiodine therapy for hyperthyroidism. N. Engl. J. Med. 364, 542–550 (2011).

    CAS  PubMed  Google Scholar 

  73. Vaidya, B., Williams, G. R., Abraham, P. & Pearce, S. H. S. Radioiodine treatment for benign thyroid disorders: results of a nationwide survey of UK endocrinologists. Clin. Endocrinol. (Oxf.) 68, 814–820 (2008).

    Google Scholar 

  74. Sztal-Mazer, S. et al. Evidence for higher success rates and successful treatment earlier in Graves' disease with higher radioactive iodine doses. Thyroid 22, 991–995 (2012).

    CAS  PubMed  Google Scholar 

  75. Sisson, J. C. et al. Radiation safety in the treatment of patients with thyroid diseases by radioiodine 131I: practice recommendations of the American Thyroid Association. Thyroid 21, 335–346 (2011).

    PubMed  Google Scholar 

  76. Walter, M. A. et al. Effects of antithyroid drugs on radioiodine treatment: systematic review and meta-analysis of randomized controlled trials. BMJ 334, 514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alexander, E. K. & Larsen, P. R. High dose of 131I therapy for the treatment of hyperthyroidism caused by Graves' disease. J. Clin. Endocrinol. Metab. 87, 1073–1077 (2002).

    CAS  PubMed  Google Scholar 

  78. Bonnema, S. J. et al. Resumption of methimazole after 131I therapy of hyperthyroid diseases: effect on thyroid function and volume evaluated by a randomized clinical trial. Eur. J. Endocrinol. 149, 485–492 (2003).

    CAS  PubMed  Google Scholar 

  79. Bogazzi, F. et al. Comparison of radioiodine with radioiodine plus lithium in the treatment of Graves' hyperthyroidism. J. Clin. Endocrinol. Metab. 84, 499–503 (1999).

    CAS  PubMed  Google Scholar 

  80. Bogazzi, F. et al. Impact of lithium on efficacy of radioactive iodine therapy for Graves' disease: a cohort study on cure rate, time to cure, and frequency of increased serum thyroxine after antithyroid drug withdrawal. J. Clin. Endocrinol. Metab. 95, 201–208 (2010).

    CAS  PubMed  Google Scholar 

  81. Martin, N. M. et al. Adjuvant lithium improves the efficacy of radioactive iodine treatment in Graves' and toxic nodular disease. Clin. Endocrinol. (Oxf.) 77, 621–627 (2012).

    CAS  Google Scholar 

  82. Franklyn, J. A., Maisonneuve, P., Sheppard, M. C., Betteridge, J. & Boyle, P. Mortality after the treatment of hyperthyroidism with radioactive iodine. N. Engl. J. Med. 338, 712–718 (1998).

    CAS  PubMed  Google Scholar 

  83. Metso, S. et al. Increased cardiovascular and cancer mortality after radioiodine treatment for hyperthyroidism. J. Clin. Endocrinol. Metab. 92, 2190–2196 (2007).

    CAS  PubMed  Google Scholar 

  84. Vanderpump, M. Cardiovascular and cancer mortality after radioiodine treatment of hyperthyroidism. J. Clin. Endocrinol. Metab. 92, 2033–2035 (2007).

    CAS  PubMed  Google Scholar 

  85. Boelaert, K., Maisonneuve, P., Torlinska, B. & Franklyn, J. A. Comparison of mortality in hyperthyroidism during the periods of treatment with thionamides and after radioiodine. J. Clin. Endocrinol. Metab. 98, 1869–1882 (2013).

    CAS  PubMed  Google Scholar 

  86. Holm, L. E. et al. Cancer risk after iodine-131 therapy for hyperthyroidism. J. Natl Cancer Inst. 83, 1072–1077 (1991).

    CAS  PubMed  Google Scholar 

  87. Ron, E. et al. Cancer mortality following treatment for adult hyperthyroidism. JAMA 280, 347–355 (1998).

    CAS  PubMed  Google Scholar 

  88. Read, C. H. Jr, Tansey, M. J. & Menda, Y. A 36-year retrospective analysis of the efficacy and safety of radioiodine in treating young Graves' patients. J. Clin. Endocrinol. Metab. 89, 4229–4233 (2004).

    CAS  PubMed  Google Scholar 

  89. Metso, S. et al. Increased cancer incidence after radioiodine treatment for hyperthyroidism. Cancer 109, 1972–1979 (2007).

    CAS  PubMed  Google Scholar 

  90. Franklyn, J. A., Maisonneuve, P., Sheppard, M., Betteridge, J. & Boyle, P. Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population-based cohort study. Lancet 353, 2111–2115 (1999).

    CAS  PubMed  Google Scholar 

  91. Rivkees, S. A. & Dinauer, C. An optimal treatment for pediatric Graves' disease is radioiodine. J. Clin. Endocrinol. Metab. 92, 797–800 (2007).

    CAS  PubMed  Google Scholar 

  92. Tallstedt, L. et al. Occurrence of ophthalmopathy after treatment for hyperthyroidism. N. Engl. J. Med. 326, 1733–1738 (1992).

    CAS  PubMed  Google Scholar 

  93. Bartalena, L. et al. Relation between therapy for hyperthyroidism and the course of Graves' ophthalmopathy. N. Engl. J. Med. 338, 73–78 (1998).

    CAS  PubMed  Google Scholar 

  94. Träisk, F. et al. Thyroid-associated ophthalmopathy after treatment for hyperthyroidism with antithyroid drugs or iodine-131. J. Clin. Endocrinol. Metab. 94, 3700–3707 (2009).

    PubMed  Google Scholar 

  95. Acharya, S. H. et al. Radioiodine therapy (RAI) for Graves' disease (GD) and the effect on ophthalmopathy: a systematic review. Clin. Endocrinol. (Oxf.) 69, 943–950 (2008).

    Google Scholar 

  96. Bartalena, L. et al. Use of corticosteroids to prevent progression of Graves' ophthalmopathy after radioiodine treatment for hyperthyroidism. N. Engl. J. Med. 321, 1349–1352 (1989).

    CAS  PubMed  Google Scholar 

  97. Lai, A. et al. Lower dose prednisone prevents radioiodine-associated exacerbation of initially mild or absent Graves' orbitopathy: a retrospective cohort study. J. Clin. Endocrinol. Metab. 95, 1333–1337 (2010).

    CAS  PubMed  Google Scholar 

  98. Tallstedt, L., Lundell, G., Blomgren, H. & Bring, J. Does early administration of thyroxine reduce the development of Graves' ophthalmopathy after radioiodine treatment? Eur. J. Endocrinol. 130, 494–497 (1994).

    CAS  PubMed  Google Scholar 

  99. Perros, P., Kendall-Taylor, P., Neoh, C., Frewin, S. & Dickinson, J. A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 90, 5321–5323 (2005).

    CAS  PubMed  Google Scholar 

  100. Bartalena, L. Glucocorticoids for Graves' orbitopathy: how and when. J. Clin. Endocrinol. Metab. 90, 5497–5499 (2005).

    CAS  PubMed  Google Scholar 

  101. Bartalena, L. et al. Consensus statement of the European Group on Graves' orbitopathy (EUGOGO) on management of GO. Eur. J. Endocrinol. 158, 273–285 (2008).

    CAS  PubMed  Google Scholar 

  102. Palit, T. K., Miller, C. C. 3rd & Miltenburg, D. M. The efficacy of thyroidectomy for Graves' disease: a meta-analysis. J. Surg. Res. 90, 161–165 (2000).

    CAS  PubMed  Google Scholar 

  103. Annerbo, M., Stålberg, P. & Hellman, P. Management of Graves' disease is improved by total thyroidectomy. World J. Surg. 36, 1943–1946 (2012).

    PubMed  Google Scholar 

  104. Al-Adhami, A., Craig, W. & Krukowski, Z. H. Quality of life after surgery for Graves' disease: comparison of those having surgery intended to preserve thyroid function with those having ablative surgery. Thyroid 22, 494–500 (2012).

    PubMed  Google Scholar 

  105. In, H. et al. Treatment options for Graves disease: a cost-effectiveness analysis. J. Am. Coll. Surg. 209, 170–179 (2009).

    PubMed  Google Scholar 

  106. Genovese, B. M., Noureldine, S. I., Gleeson, E. M., Tufano, R. P. & Kandil, E. What is the best definitive treatment for Graves' disease? A systematic review of the existing literature. Ann. Surg. Oncol. 20, 660–667 (2013).

    PubMed  Google Scholar 

  107. Grodski, S., Stålberg, P., Robinson, B. G. & Delbridge, L. W. Surgery versus radioiodine therapy as definitive management for Graves' disease: the role of patient preference. Thyroid 17, 157–160 (2007).

    PubMed  Google Scholar 

  108. Miccoli, P. et al. Minimally invasive video-assisted thyroidectomy for benign thyroid disease: an evidence-based review. World J. Surg. 32, 1333–1340 (2008).

    PubMed  Google Scholar 

  109. Sasaki, A. et al. Endoscopic thyroidectomy by the breast approach: a single institution's 9-year experience. World J. Surg. 32, 381–385 (2008).

    PubMed  Google Scholar 

  110. Lee, J. & Chung, W. Y. Robotic surgery for thyroid disease. Eur. Thyroid J. 2, 93–101 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Sosa, J. A., Mehta, P. J., Wang, T. S., Boudourakis, L. & Roman, S. A. A population-based study of outcomes from thyroidectomy in aging Americans: at what cost? J. Am. Coll. Surg. 206, 1097–1105 (2008).

    PubMed  Google Scholar 

  112. Erbil, Y. et al. Effect of lugol solution on thyroid gland blood flow microvessel density in the patients with Graves' disease. J. Clin. Endocrinol. Metab. 92, 2182–2189 (2007).

    CAS  PubMed  Google Scholar 

  113. Marcocci, C. et al. The course of Graves' ophthalmopathy is not influenced by near total thyroidectomy: a case–control study. Clin. Endocrinol. (Oxf.) 51, 503–508 (1999).

    CAS  Google Scholar 

  114. Laurberg, P. et al. TSH-receptor autoimmunity in Graves' disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur. J. Endocrinol. 158, 69–75 (2008).

    CAS  PubMed  Google Scholar 

  115. Barczinsky, M., Konturek, A., Hubalewska-Dydejczyk, A., Golkowski, F. & Nowak, W. Randomized clinical trial of bilateral subtotal thyroidectomy versus total thyroidectomy for Graves' disease with a 5-year follow-up. Br. J. Surg. 99, 515–522 (2012).

    Google Scholar 

  116. Jin, J., Sandoval, V., Lawless, M. E., Sehgal, A. R. & McHenry, C. R. Disparity in the management of Graves' disease observed at an urban county hospital: a decade-long experience. Am. J. Surg. 204, 199–202 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Sidibé, E. H. Thyréopathies en Afrique subsaharienne [French]. Cahiers Santé 17, 33–39 (2007).

    Google Scholar 

  118. Mithal, A., Shah, A. & Kumar, S. The management of Graves' disease by Indian thyroidologists. Natl Med. J. India 6, 163–166 (1993).

    CAS  PubMed  Google Scholar 

  119. Pradeep, V. P. et al. Safety and efficacy of surgical management of hyperthyroidism: 15-year experience from a tertiary care center in a developing country. World J. Surg. 31, 306–312 (2007).

    CAS  PubMed  Google Scholar 

  120. Sankar, R., Sekhri, T., Sripathy, G., Walia, R. P. & Jain, S. K. Radioactive iodine therapy in Graves' hyperthyroidism: a prospective study from a tertiary referral centre in north India. J. Assoc. Physicians India 53, 603–606 (2005).

    CAS  PubMed  Google Scholar 

  121. Ahmed, M. E., ElWasila, A. A., Sanhouri, M. & Yagi, K. Surgical management of toxic goiter in Khartoum. Trop. Geogr. Med. 45, 124–125 (1993).

    CAS  PubMed  Google Scholar 

  122. Akossou, S. Y. et al. Problems in the management of thyrotoxicosis in Black Africa: the Tongolese experience [French]. Ann. Endocrinol. (Paris) 62, 516–520 (2001).

    CAS  Google Scholar 

  123. Walsh, J. P. Management of Graves' disease in Australia. Aust. NZ J. Med. 30, 559–566 (2000).

    CAS  Google Scholar 

  124. Ford, H. C., Delahunt, J. W. & Feek, C. M. The management of Graves' disease in New Zealand: results of national survey. NZ Med. J. 104, 251–252 (1991).

    CAS  Google Scholar 

  125. Bartalena, L. The dilemma of how to manage Graves' hyperthyroidism in patients with associated orbitopathy. J. Clin. Endocrinol. Metab. 96, 592–599 (2011).

    CAS  PubMed  Google Scholar 

  126. Prummel, M. F. et al. Amelioration of eye changes of Graves' ophthalmopathy by achieving euthyroidism. Acta Endocrinol. (Copenh.) 121 (Suppl. 2), 185–189 (1989).

    Google Scholar 

  127. Prummel, M. F. et al. Effect of abnormal thyroid function on the severity of Graves' ophthalmopathy. Arch. Intern. Med. 150, 1098–1101 (1990).

    CAS  PubMed  Google Scholar 

  128. Perros, P. et al. A questionnaire survey on the management of Graves' orbitopathy in Europe. Eur. J. Endocrinol. 155, 207–211 (2006).

    CAS  PubMed  Google Scholar 

  129. Zang, S., Ponto, K. A., Pitz, S. & Kahaly, G. J. Dose of intravenous steroids and therapy outcome in Graves' orbitopathy. J. Endocrinol. Invest. 34, 876–880 (2011).

    CAS  PubMed  Google Scholar 

  130. Bartalena, L. et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active Graves' orbitopathy. J. Clin. Endocrinol. Metab. 97, 4454–4463 (2012).

    CAS  PubMed  Google Scholar 

  131. Tanda, M. L. & Bartalena, L. Efficacy and safety of orbital radiotherapy for Graves' orbitopathy. J. Clin. Endocrinol. Metab. 97, 3857–3865 (2012).

    CAS  PubMed  Google Scholar 

  132. Elbers, L., Mourits, M. & Wiersinga, W. Outcome of very long-term treatment with antithyroid drugs in Graves' hyperthyroidism associated with Graves' orbitopathy. Thyroid 21, 279–283 (2011).

    PubMed  Google Scholar 

  133. Laurberg, P., Berman, D. C., Andersen, S. & Bülow Pedersen, I. Sustained control of Graves' hyperthyroidism during long-term low-dose antithyroid drug therapy of patients with severe Graves' orbitopathy. Thyroid 21, 951–956 (2011).

    CAS  PubMed  Google Scholar 

  134. Moleti, M. et al. Effects of thyroidectomy alone or followed by radioiodine ablation of thyroid remnants on the outcome of Graves' ophthalmopathy. Thyroid 13, 653–658 (2003).

    PubMed  Google Scholar 

  135. Menconi, F. et al. Effects of total thyroid ablation versus near-total thyroidectomy alone on mild to moderate Graves' orbitopathy treated with intravenous glucocorticoids. J. Clin. Endocrinol. Metab. 92, 1653–1658 (2007).

    CAS  PubMed  Google Scholar 

  136. Leo, M. et al. Outcome of Graves' orbitopathy after total thyroid ablation and glucocorticoid treatment: follow-up of a randomized clinical trial. J. Clin. Endocrinol. Metab. 97, E44–E48 (2012).

    CAS  PubMed  Google Scholar 

  137. De Bellis, A. et al. Time course of Graves' ophthalmopathy after total thyroidectomy alone or followed by radioiodine therapy: a 2-year longitudinal study. Endocrine 41, 320–326 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Prof. Aldo Pinchera (1934–2012), the author's mentor and an outstanding scientist in the field of endocrinology. The author also thanks Prof. Stefano Mariotti, University of Cagliari, Italy, for critically reviewing the manuscript. L. Bartalena's research is partly supported by grants from the Ministero della Istruzione, Università e Ricerca (MIUR) Rome, and the University of Insubria at Varese.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Bartalena.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartalena, L. Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol 9, 724–734 (2013). https://doi.org/10.1038/nrendo.2013.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing