Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

KATP channels and islet hormone secretion: new insights and controversies

This article has been updated

Abstract

ATP-sensitive potassium channels (KATP channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of KATP channels is crucial for insulin secretion. Emerging data suggest that KATP channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of KATP channels in insulin and glucagon secretion. We discuss how KATP channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of KATP channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in KATP channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit KATP channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.

Key Points

  • Closure of ATP-sensitive potassium channels (KATP channels) stimulates insulin secretion but inhibits glucagon release

  • The role of KATP channels in insulin secretion is well understood, but precisely how glucose inhibits glucagon release remains controversial

  • Activating mutations in KATP channel genes cause neonatal diabetes mellitus, whereas loss-of-function mutations cause congenital hyperinsulinism

  • Both insufficient insulin secretion and dysregulation of glucagon release contribute to impaired glucose homeostasis in type 2 diabetes mellitus (T2DM)

  • A common KATP channel haplotype predisposes to T2DM

  • An age-dependent decline in metabolism may also contribute to T2DM via mechanisms that are both dependent on, and independent of, KATP channels

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KATP channel modulation of β-cell electrical activity.
Figure 2: Patch clamping enables the activity of one or more ion channels to be recorded from single cells or isolated membrane patches with high precision.
Figure 3: KATP channel modulation of α-cell electrical activity.
Figure 4: Relationship between KATP channel activity and hormone release.

Similar content being viewed by others

Change history

  • 09 October 2013

    In the version of this article initially published online in Figure 3, part c was incorrectly labelled as part b. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Ashcroft, F. M. & Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell 148, 1160–1171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nichols, C. G. KATP channels as molecular sensors of cellular metabolism. Nature 440, 470–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ashcroft, F. M., Harrison, D. E. & Ashcroft, S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446–448 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Q. et al. R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat. Cell Biol. 9, 453–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gromada, J. et al. ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1−/− mouse α-cells. Diabetes 53 (Suppl. 3), S181–S189 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Shiota, C., Rocheleau, J. V., Shiota, M., Piston, D. W. & Magnuson, M. A. Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. Am. J. Physiol. Endocrinol. Metab. 289, E570–E577 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Inagaki, N. et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Sakura, H., Ammala, C., Smith, P. A., Gribble, F. M. & Ashcroft, F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic β-cells, brain, heart and skeletal muscle. FEBS Lett. 377, 338–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, S. & Ashcroft, F. M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387, 179–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Shyng, S., Ferrigni, T. & Nichols, C. G. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J. Gen. Physiol. 110, 643–654 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gribble, F. M., Tucker, S. J. & Ashcroft, F. M. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J. 16, 1145–1152 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nichols, C. G. et al. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272, 1785–1787 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Trube, G., Rorsman, P. & Ohno-Shosaku, T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflugers Arch. 407, 493–499 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Gribble, F. M. & Reimann, F. Sulphonylurea action revisited: the post-cloning era. Diabetologia 46, 875–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Sturgess, N. C., Ashford, M. L., Cook, D. L. & Hales, C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2, 474–475 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Ashcroft, F. M., Ashcroft, S. J. & Harrison, D. E. Properties of single potassium channels modulated by glucose in rat pancreatic β-cells. J. Physiol. 400, 501–527 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashcroft, F. & Rorsman, P. Type 2 diabetes mellitus: not quite exciting enough? Hum. Mol. Genet. 13 (Suppl. 1), R21–R31 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Rorsman, P., Eliasson, L., Kanno, T., Zhang, Q. & Gopel, S. Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog. Biophys. Mol. Biol. 107, 224–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Schulla, V. et al. Impaired insulin secretion and glucose tolerance in beta cell-selective CaV1.2 Ca2+ channel null mice. EMBO J. 22, 3844–3854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braun, M. et al. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57, 1618–1628 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Henquin, J. C. & Meissner, H. P. Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic β-cells. Experientia 40, 1043–1052 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Atwater, I., Ribalet, B. & Rojas, E. Mouse pancreatic beta-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J. Physiol. 288, 561–574 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dean, P. M. & Matthews, E. K. Electrical activity in pancreatic islet cells. Nature 219, 389–390 (1968).

    Article  CAS  PubMed  Google Scholar 

  26. Meissner, H. P. Electrical characteristics of the β-cells in pancreatic islets. J. Physiol. (Paris) 72, 757–767 (1976).

    CAS  Google Scholar 

  27. Atwater, I., Ribalet, B. & Rojas, E. Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J. Physiol. 278, 117–139 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cook, D. L., Crill, W. E. & Porte, D., Jr. Plateau potentials in pancreatic islet cells are voltage-dependent action potentials. Nature 286, 404–406 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Kanno, T., Rorsman, P. & Gopel, S. O. Glucose-dependent regulation of rhythmic action potential firing in pancreatic beta-cells by K(ATP)-channel modulation. J. Physiol. 545, 501–507 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larsson, O., Kindmark, H., Brandstrom, R., Fredholm, B. & Berggren, P. O. Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc. Natl Acad. Sci. USA 93, 5161–5165 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ammala, C. et al. Inositol trisphosphate-dependent periodic activation of a Ca2+-activated K+ conductance in glucose-stimulated pancreatic β-cells. Nature 353, 849–852 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Worley, J. F., 3rd . et al. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet β-cells. J. Biol. Chem. 269, 14359–14362 (1994).

    CAS  PubMed  Google Scholar 

  33. Satin, L. S., Tavalin, S. J. & Smolen, P. D. Inactivation of HIT cell Ca2+ current by a simulated burst of Ca2+ action potentials. Biophys. J. 66, 141–148 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sherman, A., Rinzel, J. & Keizer, J. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith, P. A., Ashcroft, F. M. & Rorsman, P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K+-currents in isolated mouse pancreatic β-cells. FEBS Lett. 261, 187–190 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Gopel, S. O. et al. Activation of Ca2+-dependent K+ channels contributes to rhythmic firing of action potentials in mouse pancreatic β cells. J. Gen. Physiol. 114, 759–770 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goforth, P. B. et al. Calcium-activated K+ channels of mouse β-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J. Gen. Physiol. 120, 307–322 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tarasov, A. I. et al. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS ONE 7, e39722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Detimary, P., Gilon, P. & Henquin, J. C. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem. J. 333, 269–274 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rolland, J. F., Henquin, J. C. & Gilon, P. Feedback control of the ATP-sensitive K+ current by cytosolic Ca2+ contributes to oscillations of the membrane potential in pancreatic β-cells. Diabetes 51, 376–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Henquin, J. C. ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic β-cells. Biochem. Biophys. Res. Commun. 156, 769–775 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Henquin, J. C. The fiftieth anniversary of hypoglycaemic sulphonamides. How did the mother compound work? Diabetologia 35, 907–912 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Zunkler, B. J., Lins, S., Ohno-Shosaku, T., Trube, G. & Panten, U. Cytosolic ADP enhances the sensitivity to tolbutamide of ATP-dependent K+ channels from pancreatic β-cells. FEBS Lett. 239, 241–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Gribble, F. M., Tucker, S. J. & Ashcroft, F. M. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J. Physiol. 504, 35–45 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Proks, P., Reimann, F., Green, N., Gribble, F. & Ashcroft, F. Sulfonylurea stimulation of insulin secretion. Diabetes 51 (Suppl. 3), S368–S376 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Masia, R. et al. An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes. Diabetes 56, 328–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Gromada, J., Franklin, I. & Wollheim, C. B. α-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr. Rev. 28, 84–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Rorsman, P., Salehi, S. A., Abdulkader, F., Braun, M. & MacDonald, P. E. KATP-channels and glucose-regulated glucagon secretion. Trends Endocrinol. Metab. 19, 277–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Miki, T. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat. Neurosci. 4, 507–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Munoz, A. et al. Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 146, 5514–5521 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Kawamori, D. et al. Insulin signaling in α cells modulates glucagon secretion in vivo. Cell Metab. 9, 350–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishihara, H., Maechler, P., Gjinovci, A., Herrera, P. L. & Wollheim, C. B. Islet β-cell secretion determines glucagon release from neighbouring α-cells. Nat. Cell Biol. 5, 330–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rorsman, P. et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341, 233–236 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Franklin, I., Gromada, J., Gjinovci, A., Theander, S. & Wollheim, C. B. β-cell secretory products activate α-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54, 1808–1815 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Prost, A. L., Bloc, A., Hussy, N., Derand, R. & Vivaudou, M. Zinc is both an intracellular and extracellular regulator of KATP channel function. J. Physiol. 559, 157–167 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hardy, A. B., Serino, A. S., Wijesekara, N., Chimienti, F. & Wheeler, M. B. Regulation of glucagon secretion by zinc: lessons from the β cell-specific Znt8 knockout mouse model. Diabetes Obes. Metab. 13 (Suppl. 1), 112–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Cheng-Xue, R. et al. Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of KATP channels from both α-cells and δ-cells. Diabetes 62, 1612–1622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hauge-Evans, A. C. et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13 (Suppl. 1), 95–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. MacDonald, P. E. et al. A KATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol. 5, e143 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gopel, S. O., Kanno, T., Barg, S. & Rorsman, P. Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J. Physiol. 528, 497–507 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rorsman, P. & Hellman, B. Voltage-activated currents in guinea pig pancreatic α2 cells. Evidence for Ca2+-dependent action potentials. J. Gen. Physiol. 91, 223–242 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Manning Fox, J. E., Gyulkhandanyan, A. V., Satin, L. S. & Wheeler, M. B. Oscillatory membrane potential response to glucose in islet β-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147, 4655–4663 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Quoix, N. et al. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse α-cells. Diabetes 58, 412–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barg, S., Galvanovskis, J., Gopel, S. O., Rorsman, P. & Eliasson, L. Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting α-cells. Diabetes 49, 1500–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Gopel, S. O. et al. Regulation of glucagon release in mouse-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J. Physiol. 528, 509–520 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bokvist, K. et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic α-cells. Pflugers Arch. 438, 428–436 (1999).

    CAS  PubMed  Google Scholar 

  68. Huang, Y. C., Rupnik, M. & Gaisano, H. Y. Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J. Physiol. 589, 395–408 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Tarasov, A. I., Girard, C. A. & Ashcroft, F. M. ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic β-cells. Diabetes 55, 2446–2454 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Leung, Y. M. et al. Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse. Endocrinology 146, 4766–4775 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Ramracheya, R. et al. Membrane potential-dependent inactivation of voltage-gated ion channels in α-cells inhibits glucagon secretion from human islets. Diabetes 59, 2198–2208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gopel, S. et al. Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. J. Physiol. 556, 711–726 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olsen, H. L. et al. Glucose stimulates glucagon release in single rat α-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells. Endocrinology 146, 4861–4870 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, C. et al. Regulation of glucagon secretion in normal and diabetic human islets by γ-hydroxybutyrate and glycine. J. Biol. Chem. 288, 3938–3951 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Geng, X., Li, L., Watkins, S., Robbins, P. D. & Drain, P. The insulin secretory granule is the major site of KATP channels of the endocrine pancreas. Diabetes 52, 767–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Ozanne, S. E., Guest, P. C., Hutton, J. C. & Hales, C. N. Intracellular localization and molecular heterogeneity of the sulphonylurea receptor in insulin-secreting cells. Diabetologia 38, 277–282 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Guiot, Y. et al. Morphological localisation of sulfonylurea receptor 1 in endocrine cells of human, mouse and rat pancreas. Diabetologia 50, 1889–1899 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, S. N. et al. Glucose recruits KATP channels via non-insulin-containing dense-core granules. Cell Metab. 6, 217–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Shibasaki, T., Sunaga, Y., Fujimoto, K., Kashima, Y. & Seino, S. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J. Biol. Chem. 279, 7956–7961 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Eliasson, L. et al. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic β-cells. J. Gen. Physiol. 121, 181–197 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakazaki, M. et al. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51, 3440–3449 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Kang, G., Leech, C. A., Chepurny, O. G., Coetzee, W. A. & Holz, G. G. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic β-cells and rat INS-1 cells. J. Physiol. 586, 1307–1319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang, Y. et al. ATP modulates interaction of syntaxin-1A with sulfonylurea receptor 1 to regulate pancreatic β-cell KATP channels. J. Biol. Chem. 286, 5876–5883 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Eliasson, L. et al. PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic β cells. Science 271, 813–815 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Hoy, M. et al. Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells. J. Physiol. 527 Pt 1, 109–120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mariot, P., Gilon, P., Nenquin, M. & Henquin, J. C. Tolbutamide and diazoxide influence insulin secretion by changing the concentration but not the action of cytoplasmic Ca2+ in β-cells. Diabetes 47, 365–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, C. L. et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 325, 607–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Hattersley, A. T. & Ashcroft, F. M. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54, 2503–2513 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Rubio-Cabezas, O., Flanagan, S. E., Damhuis, A., Hattersley, A. T. & Ellard, S. KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatr. Diabetes 13, 322–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Flanagan, S. E. et al. Update of mutations in the genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum. Mutat. 30, 170–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Clark, R. H. et al. Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in origin. Science 329, 458–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Proks, P. et al. Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc. Natl Acad. Sci. USA 101, 17539–17544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McTaggart, J. S., Clark, R. H. & Ashcroft, F. M. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J. Physiol. 588, 3201–3209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ellard, S. et al. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am. J. Hum. Genet. 81, 375–382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355, 456–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Proks, P., Girard, C. & Ashcroft, F. M. Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP. Hum. Mol. Genet. 14, 2717–2726 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Koster, J. C., Marshall, B. A., Ensor, N., Corbett, J. A. & Nichols, C. G. Targeted overactivity of β cell KATP channels induces profound neonatal diabetes. Cell 100, 645–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Girard, C. A. et al. Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes. J. Clin. Invest. 119, 80–90 (2009).

    CAS  PubMed  Google Scholar 

  101. Remedi, M. S. et al. Secondary consequences of β cell inexcitability: identification and prevention in a murine model of KATP-induced neonatal diabetes mellitus. Cell Metab. 9, 140–151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pearson, E. R. et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 355, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Ashcroft, F. M. New uses for old drugs: neonatal diabetes and sulphonylureas. Cell Metab. 11, 179–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Zung, A., Glaser, B., Nimri, R. & Zadik, Z. Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J. Clin. Endocrinol. Metab. 89, 5504–5507 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Remedi, M. S., Agapova, S. E., Vyas, A. K., Hruz, P. W. & Nichols, C. G. Acute sulfonylurea therapy at disease onset can cause permanent remission of KATP-induced diabetes. Diabetes 60, 2515–2522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dunne, M. J., Cosgrove, K. E., Shepherd, R. M., Aynsley-Green, A. & Lindley, K. J. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol. Rev. 84, 239–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Thomas, P. M. et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268, 426–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Huopio, H. et al. A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet 361, 301–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Ocal, G. et al. Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8/KCNJ11 genes encoding the ATP-sensitive potassium channel in the pancreatic β cell. J. Pediatr. Endocrinol. Metab. 24, 1019–1023 (2011).

    Article  PubMed  Google Scholar 

  110. Hussain, K., Bryan, J., Christesen, H. T., Brusgaard, K. & Aguilar-Bryan, L. Serum glucagon counterregulatory hormonal response to hypoglycemia is blunted in congenital hyperinsulinism. Diabetes 54, 2946–2951 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Hardy, O. T. et al. Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J. Clin. Endocrinol. Metab. 92, 4706–4711 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Blomberg, B. A., Moghbel, M. C., Saboury, B., Stanley, C. A. & Alavi, A. The value of radiologic interventions and 18F-DOPA PET in diagnosing and localizing focal congenital hyperinsulinism: systematic review and meta-analysis. Mol. Imaging Biol. 15, 97–105 (2013).

    Article  PubMed  Google Scholar 

  113. Kane, C. et al. Loss of functional KATP channels in pancreatic β-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat. Med. 2, 1344–1347 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Henquin, J. C. et al. In vitro insulin secretion by pancreatic tissue from infants with diazoxide-resistant congenital hyperinsulinism deviates from model predictions. J. Clin. Invest. 121, 3932–3942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Henquin, J. C. The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Res. Clin. Pract. 93 (Suppl. 1), S27–S31 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Hugill, A., Shimomura, K., Ashcroft, F. M. & Cox, R. D. A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse. Diabetologia 53, 2352–2356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl Acad. Sci. USA 95, 10402–10406 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Seghers, V., Nakazaki, M., DeMayo, F., Aguilar-Bryan, L. & Bryan, J. Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J. Biol. Chem. 275, 9270–9277 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Remedi, M. S. et al. Hyperinsulinism in mice with heterozygous loss of KATP channels. Diabetologia 49, 2368–2378 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Szollosi, A., Nenquin, M. & Henquin, J. C. Overnight culture unmasks glucose-induced insulin secretion in mouse islets lacking ATP-sensitive K+ channels by improving the triggering Ca2+ signal. J. Biol. Chem. 282, 14768–14776 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Rodriguez-Diaz, R. et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming β cell function in humans. Nat. Med. 17, 888–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. De Marinis, Y. Z. et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab. 11, 543–553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cryer, P. E. Hypoglycaemia: the limiting factor in the glycaemic management of type I and type II diabetes. Diabetologia 45, 937–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Shah, P. et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 85, 4053–4059 (2000).

    CAS  PubMed  Google Scholar 

  125. Lee, Y., Wang, M. Y., Du, X. Q., Charron, M. J. & Unger, R. H. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60, 391–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thorel, F. et al. Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 60, 2872–2882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sakura, H. et al. Sequence variations in the human Kir6.2 gene, a subunit of the β-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 39, 1233–1236 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52, 568–572 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Tschritter, O. et al. The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 51, 2854–2860 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Riedel, M. J., Boora, P., Steckley, D., de Vries, G. & Light, P. E. Kir6.2 polymorphisms sensitize β-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 52, 2630–2635 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Schwanstecher, C., Meyer, U. & Schwanstecher, M. K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes 51, 875–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Villareal, D. T. et al. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58, 1869–1878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hamming, K. S. et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes 58, 2419–2424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fatehi, M. et al. The ATP-sensitive K+ channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity. Diabetes 61, 241–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. U. K. prospective diabetes study 16. Overview of 6 years' therapy of type II diabetes: a progressive disease. U. K. Prospective Diabetes Study Group. Diabetes 44, 1249–1258 (1995).

  136. Doliba, N. M. et al. Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am. J. Physiol. Endocrinol. Metab. 302, E87–E102 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Iafusco, D. et al. No beta cell desensitisation after a median of 68 months on glibenclamide therapy in patients with KCNJ11-associated permanent neonatal diabetes. Diabetologia 54, 2736–2738 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Njolstad, P. R. et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Engl. J. Med. 344, 1588–1592 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Gloyn, A. L. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum. Mutat. 22, 353–362 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Rosengren, A. H. et al. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes. Diabetes 61, 1726–1733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is funded by the Wellcome Trust, the European Union, Diabetes UK, the Medical Research Council and the Royal Society. F. M. Ashcroft holds the Wolfson-Royal Society merit award.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of manuscript preparation.

Corresponding author

Correspondence to Frances M. Ashcroft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashcroft, F., Rorsman, P. KATP channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol 9, 660–669 (2013). https://doi.org/10.1038/nrendo.2013.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing