Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Muscles, exercise and obesity: skeletal muscle as a secretory organ


During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.

Key Points

  • Myokines are cytokines or other peptides that are produced, expressed and released by muscle fibres

  • Myokines may exert autocrine, paracrine or endocrine effects

  • Myokines may balance and counteract the effects of adipokines

  • The muscle–cell secretome consists of several hundred secreted products

  • Identified myokines include myostatin, LIF, IL-6, IL-7, BDNF, IGF-1, FGF-2, FSTL-1 and irisin

  • Myokines may mediate protective effects of muscular exercise, with regard to diseases associated with a physically inactive lifestyle

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Interplay between adipokines and myokines represent a yin–yang balance.
Figure 2: Skeletal muscle is a secretory organ.
Figure 3: Links between physical inactivity and disease development.
Figure 4


  1. 1

    Cook, K. S. et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237, 402–405 (1987).

    Article  CAS  Google Scholar 

  2. 2

    Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  3. 3

    Scherer, P. E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006).

    Article  CAS  Google Scholar 

  4. 4

    Shetty, S., Kusminski, C. M. & Scherer, P. E. Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol. Sci. 30, 234–239 (2009).

    Article  CAS  Google Scholar 

  5. 5

    Olsen, R. H., Krogh-Madsen, R., Thomsen, C., Booth, F. W. & Pedersen, B. K. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA 299, 1261–1263 (2008).

    Article  CAS  Google Scholar 

  6. 6

    Krogh-Madsen, R. et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J. Appl. Physiol. 108, 1034–1040 (2010).

    Article  CAS  Google Scholar 

  7. 7

    Booth, F. W., Chakravarthy, M. V., Gordon, S. E. & Spangenburg, E. E. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol. 93, 3–30 (2002).

    Article  Google Scholar 

  8. 8

    Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  Google Scholar 

  9. 9

    Nocon, M. et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 15, 239–246 (2008).

    Article  Google Scholar 

  10. 10

    Wolin, K. Y., Yan, Y., Colditz, G. A. & Lee, I. M. Physical activity and colon cancer prevention: a meta-analysis. Br. J. Cancer 100, 611–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Monninkhof, E. M. et al. Physical activity and breast cancer: a systematic review. Epidemiology 18, 137–157 (2007).

    Article  Google Scholar 

  12. 12

    Borer, K. T. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med. 35, 779–830 (2005).

    Article  Google Scholar 

  13. 13

    Goldstein, M. S. Humoral nature of the hypoglycemic factor of muscular work. Diabetes 10, 232–234 (1961).

    Article  CAS  Google Scholar 

  14. 14

    Pedersen, B. K. et al. Searching for the exercise factor: is IL-6 a candidate? J. Muscle Res. Cell Motil. 24, 113–119 (2003).

    Article  CAS  Google Scholar 

  15. 15

    Kjaer, M. et al. Hormonal and metabolic responses to electrically induced cycling during epidural anesthesia in humans. J. Appl. Physiol. 80, 2156–2162 (1996).

    Article  CAS  Google Scholar 

  16. 16

    Mohr, T. et al. Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35, 1–16 (1997).

    Article  CAS  Google Scholar 

  17. 17

    Bortoluzzi, S., Scannapieco, P., Cestaro, A., Danieli, G. A. & Schiaffino, S. Computational reconstruction of the human skeletal muscle secretome. Proteins 62, 776–792 (2006).

    Article  CAS  Google Scholar 

  18. 18

    Yoon, J. H. et al. Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics 9, 51–60 (2009).

    Article  CAS  Google Scholar 

  19. 19

    Henningsen, J., Rigbolt, K. T., Blagoev, B., Pedersen, B. K. & Kratchmarova, I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell. Proteomics 9, 2482–2496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Long, A., Donelson, R. & Fung, T. Does it matter which exercise? A randomized control trial of exercise for low back pain. Spine (Phila. Pa. 1976) 29, 2593–2602 (2004).

    Article  Google Scholar 

  21. 21

    Pedersen, B. K. The diseasome of physical inactivity–and the role of myokines in muscle-fat cross talk. J. Physiol. 587, 5559–5568 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Walsh, K. Adipokines, myokines and cardiovascular disease. Circ. J. 73, 13–18 (2009).

    Article  Google Scholar 

  23. 23

    Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    Article  CAS  Google Scholar 

  24. 24

    Pedersen, B. K., Akerström, T. C., Nielsen, A. R. & Fischer, C. P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 103, 1093–1098 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Pedersen, B. K. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem. 42, 105–117 (2006).

    Article  CAS  Google Scholar 

  26. 26

    McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90 (1997).

    Article  CAS  Google Scholar 

  27. 27

    Rodgers, B. D. & Garikipati, D. K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev. 29, 513–534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Allen, D. L. et al. Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am. J. Physiol. Endocrinol. Metab. 294, E918–E927 (2008).

    Article  CAS  Google Scholar 

  29. 29

    Feldman, B. J., Streeper, R. S., Farese, R. V. Jr & Yamamoto, K. R. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc. Natl Acad. Sci. USA 103, 15675–15680 (2006).

    Article  CAS  Google Scholar 

  30. 30

    Guo, T. et al. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE 4, e4937 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Zhao, B., Wall, R. J. & Yang, J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem. Biophys. Res. Commun. 337, 248–255 (2005).

    Article  CAS  Google Scholar 

  32. 32

    Lin, J. et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 291, 701–706 (2002).

    Article  CAS  Google Scholar 

  33. 33

    McPherron, A. C. & Lee, S. J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest. 109, 595–601 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Allen, D. L., Hittel, D. S. & McPherron, A. C. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med. Sci. Sports Exerc. 43, 1828–1835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Hittel, D. S., Berggren, J. R., Shearer, J., Boyle, K. & Houmard, J. A. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58, 30–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Hansen, J. et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 152, 164–171 (2011).

    Article  CAS  Google Scholar 

  37. 37

    Fischer, C. P. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc. Immunol. Rev. 12, 6–33 (2006).

    PubMed  Google Scholar 

  38. 38

    De Rossi, M., Bernasconi, P., Baggi, F., de Waal Malefyt, R. & Mantegazza, R. Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int. Immunol. 12, 1329–1335 (2000).

    Article  CAS  Google Scholar 

  39. 39

    Bartoccioni, E., Michaelis, D. & Hohlfeld, R. Constitutive and cytokine-induced production of interleukin-6 by human myoblasts. Immunol. Lett. 42, 135–138 (1994).

    Article  CAS  Google Scholar 

  40. 40

    Keller, C., Hellsten, Y., Steensberg, A. & Pedersen, B. K. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine 36, 141–147 (2006).

    Article  CAS  Google Scholar 

  41. 41

    Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M. & Muñoz-Cánoves, P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7, 33–44 (2008).

    Article  CAS  Google Scholar 

  42. 42

    Haugen, F. et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol. 298, C807–C816 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Green, C. J., Pedersen, M., Pedersen, B. K. & Scheele, C. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase. Diabetes 60, 2810–2819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Nieman, D. C. et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med. Sci. Sports Exerc. 30, 671–678 (1998).

    Article  CAS  Google Scholar 

  45. 45

    Nehlsen-Cannarella, S. L. et al. Carbohydrate and the cytokine response to 2.5 h of running. J. Appl. Physiol. 82, 1662–1667 (1997).

    Article  CAS  Google Scholar 

  46. 46

    Ullum, H. et al. Bicycle exercise enhances plasma IL-6 but does not change IL-1 alpha, IL-1 beta, IL-6, or TNF-alpha pre-mRNA in BMNC. J. Appl. Physiol. 77, 93–97 (1994).

    Article  CAS  Google Scholar 

  47. 47

    Starkie, R. L., Angus, D. J., Rolland, J., Hargreaves, M. & Febbraio, M. Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. J. Physiol. 528, 647–655 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Starkie, R. L., Rolland, J., Angus, D. J., Anderson, M. J. & Febbraio, M. A. Circulating monocyes are not the source of elevations in plasma IL-6 and TNF-alpha levels after prolonged running. Am. J. Physiol. Cell Physiol. 280, C769–C774 (2001).

    Article  CAS  Google Scholar 

  49. 49

    Febbraio, M. A. et al. Hepatosplanchnic clearance of interleukin-6 in humans during exercise. Am. J. Physiol. Endocrinol. Metab. 285, E397–E402 (2003).

    Article  CAS  Google Scholar 

  50. 50

    Keller, C. et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 15, 2748–2750 (2001).

    Article  CAS  Google Scholar 

  51. 51

    Steensberg, A. et al. IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 283, E1272–E1278 (2002).

    Article  CAS  Google Scholar 

  52. 52

    Hiscock, N., Chan, M. H., Bisucci, T., Darby, I. A. & Febbraio, M. A. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J. 18, 992–994 (2004).

    Article  CAS  Google Scholar 

  53. 53

    Rosendal, L. et al. Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise. J. Appl. Physiol. 98, 477–481 (2005).

    Article  CAS  Google Scholar 

  54. 54

    Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529, 237–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Keller, C. et al. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J. Appl. Physiol. 99, 2075–2079 (2005).

    Article  CAS  Google Scholar 

  56. 56

    Steensberg, A. et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 537, 633–639 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Pedersen, B. K. Muscular IL-6 and its role as an energy sensor. Med. Sci. Sports Exerc. 44, 392–396 (2012).

    Article  CAS  Google Scholar 

  58. 58

    Ruderman, N. B. et al. Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes 55 (Suppl. 2), S48–S54 (2006).

    Article  CAS  Google Scholar 

  59. 59

    Pedersen, B. K. et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc. Nutr. Soc. 63, 263–267 (2004).

    Article  CAS  Google Scholar 

  60. 60

    Hoene, M. & Weigert, C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes. Rev. 9, 20–29 (2008).

    CAS  PubMed  Google Scholar 

  61. 61

    Febbraio, M. A. et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J. Physiol. 549, 607–612 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Phillips, S. M. et al. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. 81, 2182–2191 (1996).

    Article  CAS  Google Scholar 

  63. 63

    Fischer, C. P. et al. Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 287, E1189–E1194 (2004).

    Article  CAS  Google Scholar 

  64. 64

    Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    Article  CAS  Google Scholar 

  65. 65

    Bruce, C. R. & Dyck, D. J. Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am. J. Physiol. Endocrinol. Metab. 287, E616–E621 (2004).

    Article  CAS  Google Scholar 

  66. 66

    Petersen, E. W. et al. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Physiol. 288, E155–E162 (2005).

    CAS  Google Scholar 

  67. 67

    van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    Article  CAS  Google Scholar 

  68. 68

    Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    Article  CAS  Google Scholar 

  69. 69

    Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343 (2002).

    Article  CAS  Google Scholar 

  70. 70

    Watt, M. J. et al. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat. Med. 12, 541–548 (2006).

    Article  CAS  Google Scholar 

  71. 71

    Steinberg, G. R., Rush, J. W. & Dyck, D. J. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am. J. Physiol. Endocrinol. Metab. 284, E648–E654 (2003).

    Article  CAS  Google Scholar 

  72. 72

    Steinberg, G. R., Watt, M. J. & Febbraio, M. A. Cytokine Regulation of AMPK signalling. Front. Biosci. 14, 1902–1916 (2009).

    Article  CAS  Google Scholar 

  73. 73

    Wallenius, V. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75–79 (2002).

    Article  CAS  Google Scholar 

  74. 74

    Febbraio, M. A., Hiscock, N., Sacchetti, M., Fischer, C. P. & Pedersen, B. K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53, 1643–1648 (2004).

    Article  CAS  Google Scholar 

  75. 75

    Steensberg, A. et al. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J. Physiol. 548, 631–638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Lyngsø, D., Simonsen, L. & Bülow, J. Interleukin-6 production in human subcutaneous abdominal adipose tissue: the effect of exercise. J. Physiol. 543, 373–378 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Wolsk, E., Mygind, H., Grøndahl, T. S., Pedersen, B. K. & van Hall, G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E832–E840 (2010).

    Article  CAS  Google Scholar 

  78. 78

    Nielsen, S. & Pedersen, B. K. Skeletal muscle as an immunogenic organ. Curr. Opin. Pharmacol. 8, 346–351 (2008).

    Article  CAS  Google Scholar 

  79. 79

    Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162 (2005).

    Article  CAS  Google Scholar 

  80. 80

    Schindler, R. et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 75, 40–47 (1990).

    CAS  PubMed  Google Scholar 

  81. 81

    Mizuhara, H. et al. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J. Exp. Med. 179, 1529–1537 (1994).

    Article  CAS  Google Scholar 

  82. 82

    Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M. & Pedersen, B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 17, 884–886 (2003).

    Article  CAS  Google Scholar 

  83. 83

    Steensberg, A., Fischer, C. P., Keller, C., Møller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    Article  CAS  Google Scholar 

  84. 84

    Rubio, N. & Sanz-Rodriguez, F. Induction of the CXCL1 (KC) chemokine in mouse astrocytes by infection with the murine encephalomyelitis virus of Theiler. Virology 358, 98–108 (2007).

    Article  CAS  Google Scholar 

  85. 85

    Lira, S. A. et al. Expression of the chemokine N51/KC in the thymus and epidermis of transgenic mice results in marked infiltration of a single class of inflammatory cells. J. Exp. Med. 180, 2039–2048 (1994).

    Article  CAS  Google Scholar 

  86. 86

    Keane, M. P. et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J. Immunol. 159, 1437–1443 (1997).

    CAS  PubMed  Google Scholar 

  87. 87

    Belperio, J. A. et al. CXC chemokines in angiogenesis. J. Leukoc. Biol. 68, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  88. 88

    Addison, C. L. et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J. Immunol. 165, 5269–5277 (2000).

    Article  CAS  Google Scholar 

  89. 89

    Tseng, Y. L., Wu, M. H., Yang, H. C., Wang, C. Y. & Lin, C. F. Autocrine IL-6 regulates GRO-alpha production in thymic epithelial cells. Cytokine 51, 195–201 (2010).

    Article  CAS  Google Scholar 

  90. 90

    Pedersen, L. et al. Exercise-induced liver CXCL-1 expression is linked to muscle derived interleukin-6 expression. J. Physiol. 589, 1409–1420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Nieman, D. C. et al. Muscle cytokine mRNA changes after 2.5 h of cycling: influence of carbohydrate. Med. Sci. Sports Exerc. 37, 1283–1290 (2005).

    Article  CAS  Google Scholar 

  92. 92

    Hilton, D. J., Nicola, N. A. & Metcalf, D. Purification of a murine leukemia inhibitory factor from Krebs ascites cells. Anal. Biochem. 173, 359–367 (1988).

    Article  CAS  Google Scholar 

  93. 93

    Heinrich, P. C., Behrmann, I., Müller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Metcalf, D. The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21, 5–14 (2003).

    Article  CAS  Google Scholar 

  95. 95

    Broholm, C. & Pedersen, B. K. Leukaemia inhibitory factor—an exercise-induced myokine. Exerc. Immunol. Rev. 16, 77–85 (2010).

    PubMed  Google Scholar 

  96. 96

    Broholm, C. et al. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J. Physiol. 586, 2195–2201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Nielsen, A. R. & Pedersen, B. K. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl. Physiol. Nutr. Metab. 32, 833–839 (2007).

    Article  CAS  Google Scholar 

  98. 98

    Carbó, N. et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim. Biophys. Acta 1526, 17–24 (2001).

    Article  Google Scholar 

  99. 99

    Quinn, L. S., Strait-Bodey, L., Anderson, B. G., Argilés, J. M. & Havel, P. J. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol. Int. 29, 449–457 (2005).

    Article  CAS  Google Scholar 

  100. 100

    Nielsen, A. R. et al. Association between IL-15 and obesity: IL-15 as a potential regulator of fat mass. J. Clin. Endocrinol. Metab. 93, 4486–4493 (2008).

    Article  CAS  Google Scholar 

  101. 101

    Izumiya, Y. et al. Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 7, 159–172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Ouchi, N. et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J. Biol. Chem. 283, 32802–32811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Oshima, Y. et al. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117, 3099–3108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Izumiya, Y. et al. FGF21 is an Akt-regulated myokine. FEBS Lett. 582, 3805–3810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Hojman, P. et al. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58, 2797–2801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Pedersen, B. K. et al. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 94, 1153–1160 (2009).

    Article  CAS  Google Scholar 

  107. 107

    Mortensen, O. H. et al. Calprotectin is released from human skeletal muscle tissue during exercise. J. Physiol. 586, 3551–3562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Hojman, P. et al. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles. PLoS ONE 4, e5894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494 (2003).

    Article  CAS  Google Scholar 

  110. 110

    Hamrick, M. W. A role for myokines in muscle-bone interactions. Exerc. Sport Sci. Rev. 39, 43–47 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Hamrick, M. W., McNeil, P. L. & Patterson, S. L. Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 10, 64–70 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Boström, P. et al. A PGC1-α dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Henningsen, J., Pedersen, B. K. & Kratchmarova, I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol. Biosyst. 7, 311–321 (2011).

    Article  CAS  Google Scholar 

  114. 114

    Norheim, F. et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301, E1013–E1021 (2011).

    Article  CAS  Google Scholar 

  115. 115

    Sadagurski, M. et al. Human IL6 enhances leptin action in mice. Diabetologia 53, 525–535 (2010).

    Article  CAS  Google Scholar 

  116. 116

    Wunderlich, F. T. et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 12, 237–249 (2010).

    Article  CAS  Google Scholar 

  117. 117

    Watt, M. J., Hevener, A., Lancaster, G. I. & Febbraio, M. A. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147, 2077–2085 (2006).

    Article  CAS  Google Scholar 

  118. 118

    Ettinger, M. P. et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 289, 1826–1832 (2003).

    Article  CAS  Google Scholar 

  119. 119

    Bouzakri, K. et al. Bimodal effect on pancreatic [beta]-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60, 1111–1121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Food, Nutrition, Physical Activity and the Prevention of Cancer. World Cancer Research Fund and American Institute of Cancer Research. Ref. Type: Report (2007).

  122. 122

    Hojman, P. et al. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am. J. Physiol. Endocrinol. Metab. 301, E504–E510 (2011).

    Article  CAS  Google Scholar 

Download references


B. K. Pedersen is supported by a grant from the Danish National Research Foundation (#02-512-55). M. A. Febbraio is supported by grants from the National Health and Medical Research Council (NHMRC), The Diabetes Australia Research Trust and the Victorian Government Operational Infrastructure Support Program.

Author information




Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bente K. Pedersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pedersen, B., Febbraio, M. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8, 457–465 (2012).

Download citation

Further reading


Quick links