Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Niacin: another look at an underutilized lipid-lowering medication

Abstract

Niacin, or water-soluble vitamin B3, when given at pharmacologic doses, is a powerful lipid-altering agent. This drug, which lowers the levels of atherogenic, apolipoprotein-B-containing lipoproteins, is one of few medications that can raise the levels of atheroprotective HDL cholesterol. Niacin also has beneficial effects on other cardiovascular risk factors, including lipoprotein(a), C-reactive protein, platelet-activating factor acetylhydrolase, plasminogen activator inhibitor 1 and fibrinogen. Many clinical trials have confirmed the lipid effects of niacin treatment; however, its effects on cardiovascular outcomes have been called into question owing to the AIM-HIGH trial, which showed no benefit of niacin therapy on cardiovascular endpoints. Furthermore, use of niacin has historically been limited by tolerability issues. In addition to flushing, worsened hyperglycaemia among patients with diabetes mellitus has also been a concern with niacin therapy. This article reviews the utility of niacin including its mechanism of action, clinical trial data regarding cardiovascular outcomes, adverse effect profile and strategies to address these effects and improve compliance.

Key Points

  • Niacin exerts several beneficial lipid-altering effects, including lowering the levels of all atherogenic particles that contain apolipoprotein B, such as LDL, VLDL, IDL and lipoprotein(a), and raising HDL cholesterol levels

  • Niacin should be used in the immediate-release or extended-release forms only, as the sustained-release preparations have been associated with hepatotoxicity

  • Compliance with niacin can be hindered by flushing, gastrointestinal and metabolic effects; of these, flushing is the most common reason for discontinuation of niacin therapy

  • Symptoms of flushing can be alleviated if the possibility of flushing is discussed in advance and advice is given to take a low-fat snack and a nonsteroidal anti-inflammatory drug and to avoid hot or spicy foods at the time of niacin ingestion

  • Use of niacin in patients with diabetes mellitus is often constrained by concern over provoking hyperglycaemia, but evidence would suggest that increases in plasma glucose levels are modest and transient

  • Despite the disappointing results of the AIM-HIGH trial, the relation between niacin therapy and cardiovascular disease endpoints remains yet to be fully defined by larger and more definitive clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of action of niacin on lipoprotein parameters.
Figure 2: Approach to initiating and monitoring niacin therapy.

Similar content being viewed by others

References

  1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  2. Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. & Dawber, T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 62, 707–714 (1977).

    CAS  PubMed  Google Scholar 

  3. Di Angelantonio, E. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    CAS  PubMed  Google Scholar 

  4. Sviridov, D. & Nestel, P. J. Genetic factors affecting HDL levels, structure, metabolism and function. Curr. Opin. Lipidol. 18, 157–163 (2007).

    CAS  PubMed  Google Scholar 

  5. Yoshikawa, M., Sakuma, N., Hibino, T., Sato, T. & Fujinami, T. HDL3 exerts more powerful anti-oxidative, protective effects against copper-catalyzed LDL oxidation than HDL2. Clin. Biochem. 30, 221–225 (1997).

    CAS  PubMed  Google Scholar 

  6. Asztalos, B. F. et al. High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler. Thromb. Vasc. Biol. 24, 2181–2187 (2004).

    CAS  PubMed  Google Scholar 

  7. Asztalos, B. F. et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler. Thromb. Vasc. Biol. 25, 2185–2191 (2005).

    CAS  PubMed  Google Scholar 

  8. Ballantyne, F. C., Clark, R. S., Simpson, H. S. & Ballantyne, D. High density and low density lipoprotein subfractions in survivors of myocardial infarction and in control subjects. Metabolism 31, 433–437 (1982).

    CAS  PubMed  Google Scholar 

  9. Jacobs, M. J. et al. Prevalence and control of dyslipidemia among persons with diabetes in the United States. Diabetes Res. Clin. Pract. 70, 263–269 (2005).

    PubMed  Google Scholar 

  10. Hoang, A. et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 50, 1770–1779 (2007).

    CAS  PubMed  Google Scholar 

  11. Nobécourt, E. et al. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 30, 766–772 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Kontush, A. & Chapman, M. J. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58, 342–374 (2006).

    CAS  PubMed  Google Scholar 

  13. Drew, B. G. et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119, 2103–2111 (2009).

    CAS  PubMed  Google Scholar 

  14. Kruit, J. K., Brunham, L. R., Verchere, C. B. & Hayden, M. R. HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Curr. Opin. Lipidol. 21, 178–185 (2010).

    CAS  PubMed  Google Scholar 

  15. Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30, 1642–1648 (2010).

    CAS  PubMed  Google Scholar 

  16. Farmer, J. A. Nicotinic acid: a new look at an old drug. Curr. Atheroscler. Rep. 11, 87–92 (2009).

    CAS  PubMed  Google Scholar 

  17. [No authors listed] Clofibrate and niacin in coronary heart disease. JAMA 231, 360–381 (1975).

  18. Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    CAS  PubMed  Google Scholar 

  19. Carlson, L. A. & Rosenhamer, G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med. Scand. 223, 405–418 (1988).

    CAS  PubMed  Google Scholar 

  20. Blankenhorn, D. H. et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257, 3233–3240 (1987).

    CAS  PubMed  Google Scholar 

  21. Brown, G. et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 323, 1289–1298 (1990).

    CAS  PubMed  Google Scholar 

  22. Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. & Grace, K. A. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110, 3512–3517 (2004).

    CAS  PubMed  Google Scholar 

  23. Taylor, A. J., Lee, H. J. & Sullenberger, L. E. The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3. Curr. Med. Res. Opin. 22, 2243–2250 (2006).

    CAS  PubMed  Google Scholar 

  24. Rosenson, R. S. Measure for measure—sugar or fats? Reconciling cardiovascular and diabetes risk with niacin therapy. Nat. Clin. Pract. Endocrinol. Metab. 3, 72–73 (2007).

    PubMed  Google Scholar 

  25. Ginsberg, H. N. Niacin in the metabolic syndrome: more risk than benefit? Nat. Clin. Pract. Endocrinol. Metab. 2, 300–301 (2006).

    CAS  PubMed  Google Scholar 

  26. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    PubMed  Google Scholar 

  27. Altschul, R., Hoffer, A. & Stephen, J. D. Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. Biophys. 54, 558–559 (1955).

    CAS  PubMed  Google Scholar 

  28. Piepho, R. W. The pharmacokinetics and pharmacodynamics of agents proven to raise high-density lipoprotein cholesterol. Am. J. Cardiol. 86, 35L–40L (2000).

    CAS  PubMed  Google Scholar 

  29. Gille, A., Bodor, E. T., Ahmed, K. & Offermanns, S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 48, 79–106 (2008).

    CAS  PubMed  Google Scholar 

  30. Dalton, T. A. & Berry, R. S. Hepatotoxicity associated with sustained-release niacin. Am. J. Med. 93, 102–104 (1992).

    CAS  PubMed  Google Scholar 

  31. Etchason, J. A. et al. Niacin-induced hepatitis: a potential side effect with low-dose time-release niacin. Mayo Clin. Proc. 66, 23–28 (1991).

    CAS  PubMed  Google Scholar 

  32. Fischer, D. J., Knight, L. L. & Vestal, R. E. Fulminant hepatic failure following low-dose sustained-release niacin therapy in hospital. West J. Med. 155, 410–412 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Alsheikh-Ali, A. A. & Karas, R. H. The safety of niacin in the US Food and Drug Administration adverse event reporting database. Am. J. Cardiol. 101, 9B–13B (2008).

    CAS  PubMed  Google Scholar 

  34. Knopp, R. H. et al. Equivalent efficacy of a time-release form of niacin (Niaspan) given once-a-night versus plain niacin in the management of hyperlipidemia. Metabolism 47, 1097–1104 (1998).

    CAS  PubMed  Google Scholar 

  35. Cefali, E. A., Simmons, P. D., Stanek, E. J. & Shamp, T. R. Improved control of niacin-induced flushing using an optimized once-daily, extended-release niacin formulation. Int. J. Clin. Pharmacol. Ther. 44, 633–640 (2006).

    CAS  PubMed  Google Scholar 

  36. Goldberg, A. et al. Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia. Am. J. Cardiol. 85, 1100–1105 (2000).

    CAS  PubMed  Google Scholar 

  37. Meyers, C. D., Carr, M. C., Park, S. & Brunzell, J. D. Varying cost and free nicotinic acid content in over-the-counter niacin preparations for dyslipidemia. Ann. Intern. Med. 139, 996–1002 (2003).

    PubMed  Google Scholar 

  38. Kruse, W. et al. Nocturnal inhibition of lipolysis in man by nicotinic acid and derivatives. Eur. J. Clin. Pharmacol. 16, 11–15 (1979).

    CAS  PubMed  Google Scholar 

  39. Ziliotto, G. R., Lamberti, G., Wagner, A., Cima, L. & Genco, G. Comparative studies of the response of normolipemic and dyslipemic aged subjects to 2 forms of delayed-action nicotinic acid polyesters. Pentaerythrotol tetranicotinate and inositol hexanicotinate. Results of a controlled cross-over trial [Italian]. Arch. Sci. Med. (Torino) 134, 359–394 (1977).

    CAS  Google Scholar 

  40. Soga, T. et al. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun. 303, 364–369 (2003).

    CAS  PubMed  Google Scholar 

  41. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9, 352–355 (2003).

    CAS  PubMed  Google Scholar 

  42. Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003).

    CAS  PubMed  Google Scholar 

  43. Digby, J. E., Lee, J. M. & Choudhury, R. P. Nicotinic acid and the prevention of coronary artery disease. Curr. Opin. Lipidol. 20, 321–326 (2009).

    CAS  PubMed  Google Scholar 

  44. Havel, R. J. Conversion of plasma free fatty acids into triglycerides of plasma lipoprotein fractions in man. Metabolism 10, 1031–1034 (1961).

    CAS  PubMed  Google Scholar 

  45. Ganji, S. H. et al. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res. 45, 1835–1845 (2004).

    CAS  PubMed  Google Scholar 

  46. Jin, F. Y., Kamanna, V. S. & Kashyap, M. L. Niacin accelerates intracellular ApoB degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (HepG2) cells. Arterioscler. Thromb. Vasc. Biol. 19, 1051–1059 (1999).

    CAS  PubMed  Google Scholar 

  47. Zhang, L. H., Kamanna, V. S., Zhang, M. C. & Kashyap, M. L. Niacin inhibits surface expression of ATP synthase b chain in HepG2 cells: implications for raising HDL. J. Lipid Res. 49, 1195–1201 (2008).

    CAS  PubMed  Google Scholar 

  48. Kamanna, V. S., Vo, A. & Kashyap, M. L. Nicotinic acid: recent developments. Curr. Opin. Cardiol. 23, 393–398 (2008).

    PubMed  Google Scholar 

  49. Airan-Javia, S. L. et al. Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low- and high-dose simvastatin monotherapy. Am. Heart J. 157, 687.e1–687.e8 (2009).

    Google Scholar 

  50. Blum, C. B. et al. High density lipoprotein metabolism in man. J. Clin. Invest. 60, 795–807 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shepherd, J., Packard, C. J., Patsch, J. R., Gotto, A. M. Jr & Taunton, O. D. Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism. J. Clin. Invest. 63, 858–867 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin, F. Y., Kamanna, V. S. & Kashyap, M. L. Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 17, 2020–2028 (1997).

    CAS  PubMed  Google Scholar 

  53. Lamon-Fava, S. et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28, 1672–1678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Hoorn, J. W. et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler. Thromb. Vasc. Biol. 28, 2016–2022 (2008).

    CAS  PubMed  Google Scholar 

  55. Rubic, T., Trottmann, M. & Lorenz, R. L. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin. Biochem. Pharmacol. 67, 411–419 (2004).

    CAS  PubMed  Google Scholar 

  56. Thoenes, M. et al. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int. J. Clin. Pract. 61, 1942–1948 (2007).

    CAS  PubMed  Google Scholar 

  57. Carlson, L. A., Hamsten, A. & Asplund, A. Pronounced lowering of serum levels of lipoprotein Lp(a) in hyperlipidaemic subjects treated with nicotinic acid. J. Intern. Med. 226, 271–276 (1989).

    CAS  PubMed  Google Scholar 

  58. Rosengren, A., Wilhelmsen, L., Eriksson, E., Risberg, B. & Wedel, H. Lipoprotein (a) and coronary heart disease: a prospective case–control study in a general population sample of middle aged men. BMJ 301, 1248–1251 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schaefer, E. J. et al. Lipoprotein(a) levels and risk of coronary heart disease in men. The Lipid Research Clinics Coronary Primary Prevention Trial. JAMA 271, 999–1003 (1994).

    CAS  PubMed  Google Scholar 

  60. Rosenson, R. S. Future role for selective phospholipase A2 inhibitors in the prevention of atherosclerotic cardiovascular disease. Cardiovasc. Drugs Ther. 23, 93–101 (2009).

    PubMed  Google Scholar 

  61. Kuvin, J. T. et al. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am. J. Cardiol. 98, 743–745 (2006).

    CAS  PubMed  Google Scholar 

  62. Heinrich, J., Balleisen, L., Schulte, H., Assmann, G. & van de Loo, J. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler. Thromb. 14, 54–59 (1994).

    CAS  PubMed  Google Scholar 

  63. Meade, T. W. et al. Haemostatic function and cardiovascular death: early results of a prospective study. Lancet 1, 1050–1054 (1980).

    CAS  PubMed  Google Scholar 

  64. Ernst, E. & Resch, K. L. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann. Intern. Med. 118, 956–963 (1993).

    CAS  PubMed  Google Scholar 

  65. Johansson, J. O., Egberg, N., Asplund-Carlson, A. & Carlson, L. A. Nicotinic acid treatment shifts the fibrinolytic balance favourably and decreases plasma fibrinogen in hypertriglyceridaemic men. J. Cardiovasc. Risk 4, 165–171 (1997).

    CAS  PubMed  Google Scholar 

  66. Tavintharan, S., Sivakumar, M., Lim, S. C. & Sum, C. F. Niacin affects cell adhesion molecules and plasminogen activator inhibitor-1 in HepG2 cells. Clin. Chim. Acta 376, 41–44 (2007).

    CAS  PubMed  Google Scholar 

  67. Rosenson, R. S. Antiatherothrombotic effects of nicotinic acid. Atherosclerosis 171, 87–96 (2003).

    CAS  PubMed  Google Scholar 

  68. Westphal, S., Borucki, K., Taneva, E., Makarova, R. & Luley, C. Extended-release niacin raises adiponectin and leptin. Atherosclerosis 193, 361–365 (2007).

    CAS  PubMed  Google Scholar 

  69. Ouchi, N. et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057–1063 (2001).

    CAS  PubMed  Google Scholar 

  70. Bodary, P. F. & Eitzman, D. T. Adiponectin: vascular protection from the fat? Arterioscler. Thromb. Vasc. Biol. 26, 235–236 (2006).

    CAS  PubMed  Google Scholar 

  71. Ganji, S. H., Qin, S., Zhang, L., Kamanna, V. S. & Kashyap, M. L. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 202, 68–75 (2009).

    CAS  PubMed  Google Scholar 

  72. Canner, P. L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    CAS  PubMed  Google Scholar 

  73. Cashin-Hemphill, L. et al. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA 264, 3013–3017 (1990).

    CAS  PubMed  Google Scholar 

  74. Kane, J. P. et al. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 264, 3007–3012 (1990).

    CAS  PubMed  Google Scholar 

  75. Whitney, E. J. et al. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann. Intern. Med. 142, 95–104 (2005).

    PubMed  Google Scholar 

  76. Taylor, A. J. et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N. Engl. J. Med. 361, 2113–2122 (2009).

    CAS  PubMed  Google Scholar 

  77. Bruckert, E., Labreuche, J. & Amarenco, P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis 210, 353–361 (2010).

    CAS  PubMed  Google Scholar 

  78. [No authors listed] NIH stops clinical trial on combination cholesterol treatment. National Institutes of Health [online], (2011).

  79. Ridker, P. M. et al. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet 376, 333–339 (2010).

    CAS  PubMed  Google Scholar 

  80. Datar, R., Kaesemeyer, W. H., Chandra, S., Fulton, D. J. & Caldwell, R. W. Acute activation of eNOS by statins involves scavenger receptor-B1, G protein subunit Gi, phospholipase C and calcium influx. Br. J. Pharmacol. 160, 1765–1772 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  82. Bruckert, E., Hayem, G., Dejager, S., Yau, C. & Bégaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc. Drugs Ther. 19, 403–414 (2005).

    CAS  PubMed  Google Scholar 

  83. Nichols, G. A. & Koro, C. E. Does statin therapy initiation increase the risk for myopathy? An observational study of 32,225 diabetic and nondiabetic patients. Clin. Ther. 29, 1761–1770 (2007).

    CAS  PubMed  Google Scholar 

  84. Reiner, Z. et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    PubMed  Google Scholar 

  85. Bodor, E. T. & Offermanns, S. Nicotinic acid: an old drug with a promising future. Br. J. Pharmacol. 153 (Suppl. 1), S68–S75 (2008).

    CAS  PubMed  Google Scholar 

  86. Chapman, M. J. et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J. 32, 1345–1361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Miller, M. et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 2292–2333 (2011).

    PubMed  Google Scholar 

  88. Erqou, S. et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302, 412–423 (2009).

    CAS  PubMed  Google Scholar 

  89. Greenland, P. et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 56, e50–e103 (2010).

    PubMed  Google Scholar 

  90. Genest, J. et al. 2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can. J. Cardiol. 25, 567–579 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nordestgaard, B. G. et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur. Heart J. 31, 2844–2853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Birjmohun, R. S. et al. Safety and tolerability of prolonged-release nicotinic acid in statin-treated patients. Curr. Med. Res. Opin. 23, 1707–1713 (2007).

    CAS  PubMed  Google Scholar 

  93. Guyton, J. R. & Bays, H. E. Safety considerations with niacin therapy. Am. J. Cardiol. 99, 22C–31C (2007).

    CAS  PubMed  Google Scholar 

  94. Carlson, L. A. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 258, 94–114 (2005).

    CAS  PubMed  Google Scholar 

  95. Stern, R. H., Spence, J. D., Freeman, D. J. & Parbtani, A. Tolerance to nicotinic acid flushing. Clin. Pharmacol. Ther. 50, 66–70 (1991).

    CAS  PubMed  Google Scholar 

  96. McKenney, J. New perspectives on the use of niacin in the treatment of lipid disorders. Arch. Intern. Med. 164, 697–705 (2004).

    CAS  PubMed  Google Scholar 

  97. Birjmohun, R. S., Hutten, B. A., Kastelein, J. J. & Stroes, E. S. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J. Am. Coll. Cardiol. 45, 185–197 (2005).

    CAS  PubMed  Google Scholar 

  98. Elam, M. B. et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284, 1263–1270 (2000).

    CAS  PubMed  Google Scholar 

  99. Benyó, Z., Gille, A., Bennett, C. L., Clausen, B. E. & Offermanns, S. Nicotinic acid-induced flushing is mediated by activation of epidermal Langerhans cells. Mol. Pharmacol. 70, 1844–1849 (2006).

    PubMed  Google Scholar 

  100. Guyton, J. R. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr. Opin. Lipidol. 18, 415–420 (2007).

    CAS  PubMed  Google Scholar 

  101. Cheng, K. et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA 103, 6682–6687 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dunn, R. T., Ford, M. A., Rindone, J. P. & Kwiecinski, F. A. Low-dose Aspirin and ibuprofen reduce the cutaneous reactions following niacin administration. Am. J. Ther. 2, 478–480 (1995).

    PubMed  Google Scholar 

  103. Thakkar, R. B. et al. Acetylsalicylic acid reduces niacin extended-release-induced flushing in patients with dyslipidemia. Am. J. Cardiovasc. Drugs 9, 69–79 (2009).

    CAS  PubMed  Google Scholar 

  104. Cefali, E. A., Simmons, P. D., Stanek, E. J., McGovern, M. E. & Kissling, C. J. Aspirin reduces cutaneous flushing after administration of an optimized extended-release niacin formulation. Int. J. Clin. Pharmacol. Ther. 45, 78–88 (2007).

    CAS  PubMed  Google Scholar 

  105. Whelan, A. M., Price, S. O., Fowler, S. F. & Hainer, B. L. The effect of aspirin on niacin-induced cutaneous reactions. J. Fam. Pract. 34, 165–168 (1992).

    CAS  PubMed  Google Scholar 

  106. Wilkin, J. K. et al. Aspirin blocks nicotinic acid-induced flushing. Clin. Pharmacol. Ther. 31, 478–482 (1982).

    CAS  PubMed  Google Scholar 

  107. Jungnickel, P. W., Maloley, P. A., Vander Tuin, E. L., Peddicord, T. E. & Campbell, J. R. Effect of two aspirin pretreatment regimens on niacin-induced cutaneous reactions. J. Gen. Intern. Med. 12, 591–596 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Oberwittler, H. & Baccara-Dinet, M. Clinical evidence for use of acetyl salicylic acid in control of flushing related to nicotinic acid treatment. Int. J. Clin. Pract. 60, 707–715 (2006).

    CAS  PubMed  Google Scholar 

  109. Maccubbin, D. et al. Flushing profile of extended-release niacin/laropiprant versus gradually titrated niacin extended-release in patients with dyslipidemia with and without ischemic cardiovascular disease. Am. J. Cardiol. 104, 74–81 (2009).

    CAS  PubMed  Google Scholar 

  110. Andersson, S., Carlson, L. A., Orö, L. & Richards, E. A. Effect of nicotinic acid on gastric secretion of acid in human subjects and in dogs. Scand. J. Gastroenterol. 6, 693–698 (1971).

    CAS  PubMed  Google Scholar 

  111. Garg, A. & Grundy, S. M. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 264, 723–726 (1990).

    CAS  PubMed  Google Scholar 

  112. Zhao, X. Q. et al. Safety and tolerability of simvastatin plus niacin in patients with coronary artery disease and low high-density lipoprotein cholesterol (The HDL Atherosclerosis Treatment Study). Am. J. Cardiol. 93, 307–312 (2004).

    CAS  PubMed  Google Scholar 

  113. Grundy, S. M. et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch. Intern. Med. 162, 1568–1576 (2002).

    CAS  PubMed  Google Scholar 

  114. Ambegaonkar, B. M., Wentworth, C., Allen, C. & Sazonov, V. Association between extended-release niacin treatment and glycemic control in patients with type 2 diabetes mellitus: analysis of an administrative-claims database. Metabolism 60, 1038–1044 (2011).

    CAS  PubMed  Google Scholar 

  115. Goldberg, R. B. & Jacobson, T. A. Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clin. Proc. 83, 470–478 (2008).

    CAS  PubMed  Google Scholar 

  116. Gershon, S. L. & Fox, I. H. Pharmacologic effects of nicotinic acid on human purine metabolism. J. Lab. Clin. Med. 84, 179–186 (1974).

    CAS  PubMed  Google Scholar 

  117. Cooper, K. J. et al. Lack of effect of ketoconazole on the pharmacokinetics of rosuvastatin in healthy subjects. Br. J. Clin. Pharmacol. 55, 94–99 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rätz Bravo, A. E. et al. Prevalence of potentially severe drug-drug interactions in ambulatory patients with dyslipidaemia receiving HMG-CoA reductase inhibitor therapy. Drug Saf. 28, 263–275 (2005).

    PubMed  Google Scholar 

  119. Gaudineau, C. & Auclair, K. Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem. Biophys. Res. Commun. 317, 950–956 (2004).

    CAS  PubMed  Google Scholar 

  120. Lee, J. M. et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 54, 1787–1794 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. C. Creider and T. R. Joy researched the data for the article. All authors provided a substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tisha R. Joy.

Ethics declarations

Competing interests

J. C. Creider declares no competing interests. R. A. Hegele declares associations with the following companies: Abbott (consultant; speakers bureau [honoraria]), AstraZeneca (consultant; speakers bureau [honoraria]; grant/research support), Merck (consultant; speakers bureau [honoraria]; grant/research support), Pfizer (grant/research support), Sepracor (consultant; speakers bureau [honoraria]). T. R. Joy declares associations with the following companies: Eli Lilly (speakers bureau [honoraria]), GlaxoSmithKline (speakers bureau [honoraria]), Merck (consultant; speakers bureau [honoraria]), Novo Nordisk (consultant; speakers bureau [honoraria]), Sanofi (consultant), Sepracor (consultant; speakers bureau [honoraria]).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creider, J., Hegele, R. & Joy, T. Niacin: another look at an underutilized lipid-lowering medication. Nat Rev Endocrinol 8, 517–528 (2012). https://doi.org/10.1038/nrendo.2012.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing