Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New perspectives on osteogenesis imperfecta

Abstract

A new paradigm has emerged for osteogenesis imperfecta as a collagen-related disorder. The more prevalent autosomal dominant forms of osteogenesis imperfecta are caused by primary defects in type I collagen, whereas autosomal recessive forms are caused by deficiency of proteins which interact with type I procollagen for post-translational modification and/or folding. Factors that contribute to the mechanism of dominant osteogenesis imperfecta include intracellular stress, disruption of interactions between collagen and noncollagenous proteins, compromised matrix structure, abnormal cell–cell and cell–matrix interactions and tissue mineralization. Recessive osteogenesis imperfecta is caused by deficiency of any of the three components of the collagen prolyl 3-hydroxylation complex. Absence of 3-hydroxylation is associated with increased modification of the collagen helix, consistent with delayed collagen folding. Other causes of recessive osteogenesis imperfecta include deficiency of the collagen chaperones FKBP10 or Serpin H1. Murine models are crucial to uncovering the common pathways in dominant and recessive osteogenesis imperfecta bone dysplasia. Clinical management of osteogenesis imperfecta is multidisciplinary, encompassing substantial progress in physical rehabilitation and surgical procedures, management of hearing, dental and pulmonary abnormalities, as well as drugs, such as bisphosphonates and recombinant human growth hormone. Novel treatments using cell therapy or new drug regimens hold promise for the future.

Key Points

  • Osteogenesis imperfecta is a collagen-related disorder characterized by low bone mass, decreased bone strength and increased bone fragility

  • Dominant osteogenesis imperfecta is caused by defects in the quantity or structure of type I procollagen, which affects bone at multiple levels, for example, matrix structure and mineralization

  • Recessive osteogenesis imperfecta is caused by deficiency of proteins that interact with collagen and affect its post-translational modification or folding, such as CRTAP, P3H1 and PPIB and Serpin H1 and FKBP10

  • Common features of dominant and recessive osteogenesis imperfecta, for example, delayed collagen folding, effects on bone and cartilage or increased endoplasmic reticulum stress, may be the key to understanding its pathogenesis

  • Clinical management of osteogenesis imperfecta should involve a multidisciplinary team that provides physical rehabilitation, genetic, hearing, dental, neurological, endocrine and surgical management

  • Bisphosphonates are widely administered to individuals with osteogenesis imperfecta, with positive effects on bone mass and vertebral geometry, but cause a decline in bone material quality

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mechanisms contributing to autosomal dominant osteogenesis imperfecta bone dysplasia: from mutant type I collagen gene to bone defect.
Figure 2: Distribution of lethal and nonlethal glycine substitutions that cause osteogenesis imperfecta along the type I collagen monomer and fibril.
Figure 3: Electrophoretic analysis of type I collagen synthesized by dermal fibroblasts with mutations in genes coding for collagen 3-hydroxylation complex components.
Figure 4: Relationship between dominant and recessive forms of osteogenesis imperfecta.

References

  1. 1

    Marini, J. C. in Nelson Textbook of Pediatrics (eds Behrman, R. E., Kliegman, R. M. & Jensen, R. M.) 2336–2338 (Saunders, Philadelphia, 2004).

    Google Scholar 

  2. 2

    Marini, J. C. et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28, 209–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    CAS  PubMed  Google Scholar 

  4. 4

    Myllyharju, J. & Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).

    CAS  PubMed  Google Scholar 

  5. 5

    Morello, R. et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).

    CAS  PubMed  Google Scholar 

  6. 6

    Barnes, A. M. et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N. Engl. J. Med. 355, 2757–2764 (2006).

    CAS  PubMed  Google Scholar 

  7. 7

    Cabral, W. A. et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat. Genet. 39, 359–365 (2007).

    CAS  PubMed  Google Scholar 

  8. 8

    Barnes, A. M. et al. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N. Engl. J. Med. 362, 521–528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    van Dijk, F. S. et al. PPIB mutations cause severe osteogenesis imperfecta. Am. J. Hum. Genet. 85, 521–527 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Baldridge, D. et al. CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum. Mutat. 29, 1435–1442 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Alanay, Y. et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86, 551–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Christiansen, H. E. et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86, 389–398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Sillence, D. O. & Rimoin, D. L. Classification of osteogenesis imperfecta. Lancet 1, 1041–1042 (1978).

    CAS  PubMed  Google Scholar 

  14. 14

    Sillence, D. O., Senn, A. & Danks, D. M. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16, 101–116 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bishop, N. Characterising and treating osteogenesis imperfecta. Early Hum. Dev. 86, 743–746 (2010).

    PubMed  Google Scholar 

  16. 16

    Van Dijk, F. S., Pals, G., Van Rijn, R. R., Nikkels, P. G. & Cobben, J. M. Classification of Osteogenesis Imperfecta revisited. Eur. J. Med. Genet. 53, 1–5 (2010).

    CAS  PubMed  Google Scholar 

  17. 17

    Glorieux, F. H. Osteogenesis imperfecta. Best. Pract. Res. Clin. Rheumatol. 22, 85–100 (2008).

    CAS  PubMed  Google Scholar 

  18. 18

    McAllion, S. J. & Paterson, C. R. Causes of death in osteogenesis imperfecta. J. Clin. Pathol. 49, 627–630 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Thibeault, D. W., Pettett, G., Mabry, S. M. & Rezaiekhaligh, M. M. Osteogenesis imperfecta Type IIA and pulmonary hypoplasia with normal alveolar development. Pediatr. Pulmonol. 20, 301–306 (1995).

    CAS  PubMed  Google Scholar 

  20. 20

    Obafemi, A. A., Bulas, D. I., Troendle, J. & Marini, J. C. Popcorn calcification in osteogenesis imperfecta: incidence, progression, and molecular correlation. Am. J. Med. Genet. A. 146A, 2725–2732 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Rauch, F. & Glorieux, F. H. Osteogenesis imperfecta. Lancet 363, 1377–1385 (2004).

    CAS  PubMed  Google Scholar 

  22. 22

    Rauch, F., Travers, R., Parfitt, A. M. & Glorieux, F. H. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26, 581–589 (2000).

    CAS  PubMed  Google Scholar 

  23. 23

    Lund, A. M., Mølgaard, C., Müller, J. & Skovby, F. Bone mineral content and collagen defects in osteogenesis imperfecta. Acta Paediatr. 88, 1083–1088 (1999).

    CAS  PubMed  Google Scholar 

  24. 24

    Rauch, F., Lalic, L., Roughley, P. & Glorieux, F. H. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J. Bone Miner. Res. 25, 1367–1374 (2010).

    CAS  PubMed  Google Scholar 

  25. 25

    Chavassieux, P., Seeman, E. & Delmas, P. D. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr. Rev. 28, 151–164 (2007).

    CAS  PubMed  Google Scholar 

  26. 26

    Uveges, T. E. et al. Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J. Bone Miner. Res. 23, 1983–1994 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Li, H. et al. Immature osteoblast lineage cells increase osteoclastogenesis in osteogenesis imperfecta murine. Am. J. Pathol. 176, 2405–2413 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Forlino, A. et al. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics 7, 1877–1891 (2007).

    CAS  PubMed  Google Scholar 

  29. 29

    Daley, E. et al. Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J. Bone Miner. Res. 25, 247–261 (2010).

    CAS  PubMed  Google Scholar 

  30. 30

    Carleton, S. M. et al. Role of genetic background in determining phenotypic severity throughout postnatal development and at peak bone mass in Col1a2 deficient mice (oim). Bone 42, 681–694 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Forlino, A., Kuznetsova, N. V., Marini, J. C. & Leikin, S. Selective retention and degradation of molecules with a single mutant alpha1(I) chain in the Brtl IV mouse model of OI. Matrix Biol. 26, 604–614 (2007).

    CAS  PubMed  Google Scholar 

  32. 32

    Lisse, T. S. et al. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. 4, e7 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Mehrotra, M., Rosol, M., Ogawa, M. & Larue, A. C. Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies. Exp. Hematol. 38, 593–602 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Panaroni, C. et al. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114, 459–468 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Wang, X., Li, F. & Niyibizi, C. Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem Cells 24, 1869–1878 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Schnieke, A., Harbers, K. & Jaenisch, R. Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha 1(I) collagen gene. Nature 304, 315–320 (1983).

    CAS  PubMed  Google Scholar 

  38. 38

    Malfait, F. et al. Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J. Med. Genet. 43, e36 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Nicholls, A. C. et al. The clinical features of homozygous alpha 2(I) collagen deficient osteogenesis imperfecta. J. Med. Genet. 21, 257–262 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Raghunath, M., Bruckner, P. & Steinmann, B. Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. J. Mol. Biol. 236, 940–949 (1994).

    CAS  PubMed  Google Scholar 

  41. 41

    Bodian, D. L. et al. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum. Mol. Genet. 18, 463–471 (2009).

    CAS  PubMed  Google Scholar 

  42. 42

    Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. & San Antonio, J. D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231 (2002).

    CAS  PubMed  Google Scholar 

  43. 43

    Sweeney, S. M. et al. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283, 21187–21197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Cabral, W. A. et al. Mutations near amino end of alpha(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J. Biol. Chem. 280, 19259–19269 (2005).

    CAS  PubMed  Google Scholar 

  45. 45

    Makareeva, E., Cabral, W. A., Marini, J. C. & Leikin, S. Molecular mechanism of alpha 1(I)-osteogenesis imperfecta/Ehlers-Danlos syndrome: unfolding of an N-anchor domain at the N-terminal end of the type I collagen triple helix. J. Biol. Chem. 281, 6463–6470 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Dombrowski, K. E., Vogel, B. E. & Prockop, D. J. Mutations that alter the primary structure of type I procollagen have long-range effects on its cleavage by procollagen N-proteinase. Biochemistry 28, 7107–7112 (1989).

    CAS  PubMed  Google Scholar 

  47. 47

    Sippola, M., Kaffe, S. & Prockop, D. J. A heterozygous defect for structurally altered pro-alpha 2 chain of type I procollagen in a mild variant of osteogenesis imperfecta. The altered structure decreases the thermal stability of procollagen and makes it resistant to procollagen N-proteinase. J. Biol. Chem. 259, 14094–14100 (1984).

    CAS  PubMed  Google Scholar 

  48. 48

    Feshchenko, S. et al. Identification of a new heterozygous point mutation in the COL1A2 gene leading to skipping of exon 9 in a patient with joint laxity, hyperextensibility of skin and blue sclerae. Mutations in brief no. 166. Online. Hum. Mutat. 12, 138 (1998).

    CAS  PubMed  Google Scholar 

  49. 49

    Nicholls, A. C., Oliver, J., Renouf, D. V., Heath, D. A. & Pope, F. M. The molecular defect in a family with mild atypical osteogenesis imperfecta and extreme joint hypermobility: exon skipping caused by an 11-bp deletion from an intron in one COL1A2 allele. Hum. Genet. 88, 627–633 (1992).

    CAS  PubMed  Google Scholar 

  50. 50

    Raff, M. L., Craigen, W. J., Smith, L. T., Keene, D. R. & Byers, P. H. Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII. Hum. Genet. 106, 19–28 (2000).

    CAS  PubMed  Google Scholar 

  51. 51

    Lindahl, K. et al. COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum. Mutat. doi:10.1002/humu.2 1475.

  52. 52

    Cole, W. G., Campbell, P. E., Rogers, J. G. & Bateman, J. F. The clinical features of osteogenesis imperfecta resulting from a non-functional carboxy terminal pro alpha 1(I) propeptide of type I procollagen and a severe deficiency of normal type I collagen in tissues. J. Med. Genet. 27, 545–551 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Chessler, S. D., Wallis, G. A. & Byers, P. H. Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J. Biol. Chem. 268, 18218–18225 (1993).

    CAS  PubMed  Google Scholar 

  54. 54

    Pace, J. M. et al. Defective C-propeptides of the proalpha2(I) chain of type I procollagen impede molecular assembly and result in osteogenesis imperfecta. J. Biol. Chem. 283, 16061–16067 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Willing, M. C., Cohn, D. H. & Byers, P. H. Frameshift mutation near the 3′ end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I. J. Clin. Invest. 85, 282–290 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Pace, J. M., Atkinson, M., Willing, M. C., Wallis, G. & Byers, P. H. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum. Mutat. 18, 319–326 (2001).

    CAS  PubMed  Google Scholar 

  57. 57

    Cabral, W. A. et al. Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix. J. Biol. Chem. 278, 10006–10012 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Cabral, W. A. et al. Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers–Danlos syndrome phenotype. Hum. Mutat. 28, 396–405 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    Malfait, F. et al. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers–Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 28, 387–395 (2007).

    CAS  PubMed  Google Scholar 

  60. 60

    Gensure, R. C. et al. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J. Clin. Invest. 115, 1250–1257 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Suphapeetiporn, K., Tongkobpetch, S., Mahayosnond, A. & Shotelersuk, V. Expanding the phenotypic spectrum of Caffey disease. Clin. Genet. 71, 280–284 (2007).

    CAS  PubMed  Google Scholar 

  62. 62

    Cho, T. J. et al. The c.3040C > T mutation in COL1A1 is recurrent in Korean patients with infantile cortical hyperostosis (Caffey disease). J. Hum. Genet. 53, 947–949 (2008).

    CAS  PubMed  Google Scholar 

  63. 63

    Boot-Handford, R. P. & Briggs, M. D. The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res. 339, 197–211 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Ishida, Y. et al. Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. Mol. Biol. Cell 20, 2744–2754 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Lamandé, S. R. et al. Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro alpha 1 (I) chain carboxyl-terminal propeptide which impair subunit assembly. J. Biol. Chem. 270, 8642–8649 (1995).

    PubMed  Google Scholar 

  66. 66

    Fitzgerald, J., Lamandé, S. R. & Bateman, J. F. Proteasomal degradation of unassembled mutant type I collagen pro-alpha1(I) chains. J. Biol. Chem. 274, 27392–27398 (1999).

    CAS  PubMed  Google Scholar 

  67. 67

    Forlino, A. et al. in 9th International Meeting on Osteogenesis Imperfecta (Annapolis, MD, USA, 2005).

    Google Scholar 

  68. 68

    Fedarko, N. S., Robey, P. G. & Vetter, U. K. Extracellular matrix stoichiometry in osteoblasts from patients with osteogenesis imperfecta. J. Bone Miner. Res. 10, 1122–1129 (1995).

    CAS  PubMed  Google Scholar 

  69. 69

    Fedarko, N. S., Sponseller, P. D. & Shapiro, J. R. Long-term extracellular matrix metabolism by cultured human osteogenesis imperfecta osteoblasts. J. Bone Miner. Res. 11, 800–805 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Wallace, J. M., Orr, B. G., Marini, J. C. & Holl, M. M. Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of osteogenesis imperfecta. J. Struct. Biol. 173, 146–152 (2011).

    CAS  PubMed  Google Scholar 

  71. 71

    Fratzl-Zelman, N. et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone 46, 820–826 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Roschger, P. et al. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif. Tissue Int. 82, 263–270 (2008).

    CAS  PubMed  Google Scholar 

  73. 73

    Vetter, U. et al. Osteogenesis imperfecta: changes in noncollagenous proteins in bone. J. Bone Miner. Res. 6, 501–505 (1991).

    CAS  PubMed  Google Scholar 

  74. 74

    Ganss, B., Kim, R. H. & Sodek, J. Bone sialoprotein. Crit. Rev. Oral Biol. Med. 10, 79–98 (1999).

    CAS  PubMed  Google Scholar 

  75. 75

    Camacho, N. P., Landis, W. J. & Boskey, A. L. Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect. Tissue Res. 35, 259–265 (1996).

    CAS  PubMed  Google Scholar 

  76. 76

    Renders, G. A., Mulder, L., Langenbach, G. E., van Ruijven, L. J. & van Eijden, T. M. Biomechanical effect of mineral heterogeneity in trabecular bone. J. Biomech. 41, 2793–2798 (2008).

    CAS  PubMed  Google Scholar 

  77. 77

    Gourion-Arsiquaud, S. et al. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46, 666–672 (2010).

    CAS  PubMed  Google Scholar 

  78. 78

    Nakahama, K. I. Cellular communications in bone homeostasis and repair. Cell. Mol. Life Sci. 67, 4001–4009 (2010).

    CAS  PubMed  Google Scholar 

  79. 79

    Poole, K. E. et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844 (2005).

    CAS  PubMed  Google Scholar 

  80. 80

    Sarathchandra, P., Pope, F. M., Kayser, M. V. & Ali, S. Y. A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J. Pathol. 192, 385–395 (2000).

    CAS  PubMed  Google Scholar 

  81. 81

    Fernandes, H. et al. The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng. Part A 15, 3857–3867 (2009).

    CAS  PubMed  Google Scholar 

  82. 82

    Bank, R. A. et al. Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing. J. Bone Miner. Res. 15, 1330–1336 (2000).

    CAS  PubMed  Google Scholar 

  83. 83

    Vranka, J. A., Sakai, L. Y. & Bächinger, H. P. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J. Biol. Chem. 279, 23615–23621 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Weis, M. A. et al. Location of 3-hydroxyproline residues in collagen types, I, II, III, and V/XI implies a role in fibril supramolecular assembly. J. Biol. Chem. 285, 2580–2590 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Ishikawa, Y., Wirz, J., Vranka, J. A., Nagata, K. & Bächinger, H. P. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex. J. Biol. Chem. 284, 17641–17647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Castagnola, P. et al. Cartilage associated protein (CASP) is a novel developmentally regulated chick embryo protein. J. Cell Sci. 110 (Pt 12), 1351–1359 (1997).

    CAS  PubMed  Google Scholar 

  87. 87

    Wassenhove-McCarthy, D. J. & McCarthy, K. J. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J. Biol. Chem. 274, 25004–25017 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    Labuda, M. et al. Osteogenesis imperfecta type VII maps to the short arm of chromosome 3. Bone 31, 19–25 (2002).

    CAS  PubMed  Google Scholar 

  89. 89

    Marini, J. C., Cabral, W. A., Barnes, A. M. & Chang, W. Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 6, 1675–1681 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Morello, R. et al. cDNA cloning, characterization and chromosome mapping of Crtap encoding the mouse cartilage associated protein. Matrix Biol. 18, 319–324 (1999).

    CAS  PubMed  Google Scholar 

  91. 91

    Marini, J. C., Cabral, W. A. & Barnes, A. M. Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res. 339, 59–70 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Baldridge, D. et al. Generalized connective tissue disease in Crtap−/− mouse. PLoS ONE 5, e10560 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Willaert, A. et al. Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation. J. Med. Genet. 46, 233–241 (2009).

    CAS  PubMed  Google Scholar 

  94. 94

    Vranka, J., Stadler, H. S. & Bächinger, H. P. Expression of prolyl 3-hydroxylase genes in embryonic and adult mouse tissues. Cell Struct. Funct. 34, 97–104 (2009).

    CAS  PubMed  Google Scholar 

  95. 95

    Cabral, W. A. et al. A founder mutation in LEPRE1 causes lethal recessive type VIII osteogenesis imperfecta and occurs in West Africans and African Americans. Presented at the European Society of Human Genetics Annual Conference (Gothenburg, Sweden, 2010).

    Google Scholar 

  96. 96

    Vranka, J. A. et al. Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J. Biol. Chem. 285, 17253–17262 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Bächinger, H. P. The influence of peptidyl-prolyl cis-trans isomerase on the in vitro folding of type III collagen. J. Biol. Chem. 262, 17144–17148 (1987).

    PubMed  Google Scholar 

  98. 98

    Steinmann, B., Bruckner, P. & Superti-Furga, A. Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J. Biol. Chem. 266, 1299–1303 (1991).

    CAS  PubMed  Google Scholar 

  99. 99

    Pyott, S. M. et al. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum. Mol. Genet. 20, 1595–1609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Van Dijk, F. S., Cobben, J. M. & Pals, G. Osteogenesis imperfecta, normal collagen folding, and lack of cyclophilin B. N. Engl. J. Med. 362, 1940–1941 (2010).

    CAS  PubMed  Google Scholar 

  101. 101

    Choi, J. W. et al. Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet. 5, e1000750 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Chang, W., Barnes, A. M., Cabral, W. A., Bodurtha, J. N. & Marini, J. C. Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the endoplasmic reticulum collagen prolyl 3-hydroxylation complex. Hum. Mol. Genet. 19, 223–234 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Mizuno, K., Peyton, D. H., Hayashi, T., Engel, J. & Bächinger, H. P. Effect of the -Gly-3(S.)-hydroxyprolyl-4(R.)-hydroxyprolyl-tripeptide unit on the stability of collagen model peptides. FEBS J. 275, 5830–5840 (2008).

    CAS  PubMed  Google Scholar 

  104. 104

    Glorieux, F. H. et al. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J. Bone Miner. Res. 17, 30–38 (2002).

    PubMed  Google Scholar 

  105. 105

    Becker, J. et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 88, 362–371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Doll, J. A. et al. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat. Med. 9, 774–780 (2003).

    CAS  PubMed  Google Scholar 

  107. 107

    Smith, T., Ferreira, L. R., Hebert, C., Norris, K. & Sauk, J. J. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum. J. Biol. Chem. 270, 18323–18328 (1995).

    CAS  PubMed  Google Scholar 

  108. 108

    Nagai, N. et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 150, 1499–1506 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Ishida, Y. et al. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell 17, 2346–2355 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Ishida, Y. & Nagata, K. Autophagy eliminates a specific species of misfolded procollagen and plays a protective role in cell survival against ER stress. Autophagy 5, 1217–1219 (2009).

    PubMed  Google Scholar 

  111. 111

    Drögemüller, C. et al. A missense mutation in the SERPINH1 gene in Dachshunds with osteogenesis imperfecta. PLoS Genet. 5, e1000579 (2009).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Ishikawa, Y., Vranka, J., Wirz, J., Nagata, K. & Bächinger, H. P. The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J. Biol. Chem. 283, 31584–31590 (2008).

    CAS  PubMed  Google Scholar 

  113. 113

    Breslau-Siderius, E. J., Engelbert, R. H., Pals, G. & van der Sluijs, J. A. Bruck syndrome: a rare combination of bone fragility and multiple congenital joint contractures. J. Pediatr. Orthop. B. 7, 35–38 (1998).

    CAS  PubMed  Google Scholar 

  114. 114

    Shaheen, R., Al-Owain, M., Sakati, N., Alzayed, Z. S. & Alkuraya, F. S. FKBP10 and bruck syndrome: Phenotypic heterogeneity or call for reclassification? Am. J. Hum. Genet. 87, 571 (2010).

    CAS  PubMed Central  Google Scholar 

  115. 115

    Kelley, B. P. et al. Mutations in FKBP10 cause recessive osteogenesis imperfecta and type 1 Bruck syndrome. J. Bone Miner. Res. 26, 666–672 (2010).

    PubMed Central  Google Scholar 

  116. 116

    Bank, R. A. et al. Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc. Natl Acad. Sci. USA 96, 1054–1058 (1999).

    CAS  PubMed  Google Scholar 

  117. 117

    van der Slot, A. J. et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J. Biol. Chem. 278, 40967–40972 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Szpirer, C. et al. Localization of the gene encoding a novel isoform of lysyl hydroxylase. Mamm. Genome 8, 707–708 (1997).

    CAS  PubMed  Google Scholar 

  119. 119

    Lapunzina, P. et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am. J. Hum. Genet. 87, 110–114 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Suske, G., Bruford, E. & Philipsen, S. Mammalian SP/KLF transcription factors: bring in the family. Genomics 85, 551–556 (2005).

    CAS  PubMed  Google Scholar 

  121. 121

    Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    CAS  Google Scholar 

  122. 122

    Pedersen, U. Hearing loss in patients with osteogenesis imperfecta. A clinical and audiological study of 201 patients. Scand. Audiol. 13, 67–74 (1984).

    CAS  PubMed  Google Scholar 

  123. 123

    Kuurila, K., Grénman, R., Johansson, R. & Kaitila, I. Hearing loss in children with osteogenesis imperfecta. Eur. J. Pediatr. 159, 515–519 (2000).

    CAS  PubMed  Google Scholar 

  124. 124

    Paterson, C. R., Monk, E. A. & McAllion, S. J. How common is hearing impairment in osteogenesis imperfecta? J. Laryngol. Otol. 115, 280–282 (2001).

    CAS  PubMed  Google Scholar 

  125. 125

    Kuurila, K., Kaitila, I., Johansson, R. & Grénman, R. Hearing loss in Finnish adults with osteogenesis imperfecta: a nationwide survey. Ann. Otol. Rhinol. Laryngol. 111, 939–946 (2002).

    PubMed  Google Scholar 

  126. 126

    Hartikka, H. et al. Lack of correlation between the type of COL1A1 or COL1A2 mutation and hearing loss in osteogenesis imperfecta patients. Hum. Mutat. 24, 147–154 (2004).

    CAS  PubMed  Google Scholar 

  127. 127

    Kuurila, K. et al. Vestibular dysfunction in adult patients with osteogenesis imperfecta. Am. J. Med. Genet. A. 120A, 350–358 (2003).

    CAS  PubMed  Google Scholar 

  128. 128

    Pedersen, U. & Elbrønd, O. Stapedectomy in osteogenesis imperfecta. ORL J. Otorhinolaryngol Relat. Spec. 45, 330–337 (1983).

    CAS  PubMed  Google Scholar 

  129. 129

    Garretsen, A. J., Cremers, C. W. & Huygén, P. L. Hearing loss (in nonoperated ears) in relation to age in osteogenesis imperfecta type, I. Ann. Otol. Rhinol. Laryngol. 106, 575–582 (1997).

    CAS  PubMed  Google Scholar 

  130. 130

    Shea, J. J. & Postma, D. S. Findings and long-term surgical results in the hearing loss of osteogenesis imperfecta. Arch. Otolaryngol. 108, 467–470 (1982).

    CAS  PubMed  Google Scholar 

  131. 131

    van der Rijt, A. J. & Cremers, C. W. Stapes surgery in osteogenesis imperfecta: results of a new series. Otol. Neurootol. 24, 717–722 (2003).

    Google Scholar 

  132. 132

    Kuurila, K., Pynnönen, S. & Grénman, R. Stapes surgery in osteogenesis imperfecta in Finland. Ann. Otol. Rhinol. Laryngol. 113, 187–193 (2004).

    PubMed  Google Scholar 

  133. 133

    Rotteveel, L. J. et al. Cochlear implantation in 3 patients with osteogenesis imperfecta: imaging, surgery and programming issues. Audiol. Neurootol. 13, 73–85 (2008).

    PubMed  Google Scholar 

  134. 134

    Levin, L. S., Salinas, C. F. & Jorgenson, R. J. Classification of osteogenesis imperfecta by dental characteristics. Lancet 1, 332–333 (1978).

    CAS  PubMed  Google Scholar 

  135. 135

    O'Connell, A. C. & Marini, J. C. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87, 189–196 (1999).

    CAS  PubMed  Google Scholar 

  136. 136

    Malmgren, B. & Norgren, S. Dental aberrations in children and adolescents with osteogenesis imperfecta. Acta Odontol. Scand. 60, 65–71 (2002).

    PubMed  Google Scholar 

  137. 137

    Majorana, A. et al. Dentinogenesis imperfecta in children with osteogenesis imperfecta: a clinical and ultrastructural study. Int. J. Paediatr. Dent. 20, 112–118 (2010).

    PubMed  Google Scholar 

  138. 138

    Waltimo, J., Ojanotko-Harri, A. & Lukinmaa, P. L. Mild forms of dentinogenesis imperfecta in association with osteogenesis imperfecta as characterized by light and transmission electron microscopy. J. Oral Pathol. Med. 25, 256–264 (1996).

    CAS  PubMed  Google Scholar 

  139. 139

    Lund, A. M., Jensen, B. L., Nielsen, L. A. & Skovby, F. Dental manifestations of osteogenesis imperfecta and abnormalities of collagen I metabolism. J. Craniofac. Genet. Dev. Biol. 18, 30–37 (1998).

    CAS  PubMed  Google Scholar 

  140. 140

    Rauch, F., Lalic, L., Roughley, P. & Glorieux, F. H. Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur. J. Hum. Genet. 18, 642–647 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Schwarz, M., Harbers, K. & Kratochwil, K. Transcription of a mutant collagen I gene is a cell type and stage-specific marker for odontoblast and osteoblast differentiation. Development 108, 717–726 (1990).

    CAS  PubMed  Google Scholar 

  142. 142

    Waltimo, J. Hyperfibers and vesicles in dentin matrix in dentinogenesis imperfecta (DI) associated with osteogenesis imperfecta (OI). J. Oral Pathol. Med. 23, 389–393 (1994).

    CAS  PubMed  Google Scholar 

  143. 143

    Lygidakis, N. A., Smith, R. & Oulis, C. J. Scanning electron microscopy of teeth in osteogenesis imperfecta type I. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 81, 567–572 (1996).

    CAS  PubMed  Google Scholar 

  144. 144

    Hall, R. K., Manière, M. C., Palamara, J. & Hemmerle, J. Odontoblast dysfunction in osteogenesis imperfecta: an, LM, SEM, and ultrastructural study. Connect. Tissue Res. 43, 401–405 (2002).

    CAS  PubMed  Google Scholar 

  145. 145

    Charnas, L. R. & Marini, J. C. Communicating hydrocephalus, basilar invagination, and other neurologic features in osteogenesis imperfecta. Neurology 43, 2603–2608 (1993).

    CAS  PubMed  Google Scholar 

  146. 146

    Sawin, P. D. & Menezes, A. H. Basilar invagination in osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management. J. Neurosurg. 86, 950–960 (1997).

    CAS  PubMed  Google Scholar 

  147. 147

    Menezes, A. H. Specific entities affecting the craniocervical region: osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management of basilar impression. Childs Nerv. Syst. 24, 1169–1172 (2008).

    PubMed  Google Scholar 

  148. 148

    Marini, J. C., Bordenick, S., Heavner, G., Rose, S. & Chrousos, G. P. Evaluation of growth hormone axis and responsiveness to growth stimulation of short children with osteogenesis imperfecta. Am. J. Med. Genet. 45, 261–264 (1993).

    CAS  PubMed  Google Scholar 

  149. 149

    Marini, J. C. et al. Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfecta: high predictive value of the carboxyterminal propeptide of type I procollagen. J. Bone Miner. Res. 18, 237–243 (2003).

    CAS  PubMed  Google Scholar 

  150. 150

    Singer, R. B., Ogston, S. A. & Paterson, C. R. Mortality in various types of osteogenesis imperfecta. J. Insur. Med. 33, 216–220 (2001).

    CAS  PubMed  Google Scholar 

  151. 151

    Widmann, R. F. et al. Spinal deformity, pulmonary compromise, and quality of life in osteogenesis imperfecta. Spine (Phila. Pa 1976) 24, 1673–1678 (1999).

    CAS  Google Scholar 

  152. 152

    Shapiro, J. R. et al. Pulmonary hypoplasia and osteogenesis imperfecta type II with defective synthesis of alpha I(1) procollagen. Bone 10, 165–171 (1989).

    CAS  PubMed  Google Scholar 

  153. 153

    Hortop, J., Tsipouras, P., Hanley, J. A., Maron, B. J. & Shapiro, J. R. Cardiovascular involvement in osteogenesis imperfecta. Circulation 73, 54–61 (1986).

    CAS  PubMed  Google Scholar 

  154. 154

    Bonita, R. E., Cohen, I. S. & Berko, B. A. Valvular heart disease in osteogenesis imperfecta: presentation of a case and review of the literature. Echocardiography 27, 69–73 (2010).

    PubMed  Google Scholar 

  155. 155

    Migliaccio, S. et al. Impairment of diastolic function in adult patients affected by osteogenesis imperfecta clinically asymptomatic for cardiac disease: casuality or causality? Int. J. Cardiol. 131, 200–203 (2009).

    PubMed  Google Scholar 

  156. 156

    Huang, R. P., Ambrose, C. G., Sullivan, E. & Haynes, R. J. Functional significance of bone density measurements in children with osteogenesis imperfecta. J. Bone Joint Surg. Am. 88, 1324–1330 (2006).

    PubMed  Google Scholar 

  157. 157

    Letocha, A. D. et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J. Bone Miner. Res. 20, 977–986 (2005).

    CAS  PubMed  Google Scholar 

  158. 158

    Sakkers, R. et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet 363, 1427–1431 (2004).

    CAS  PubMed  Google Scholar 

  159. 159

    Engelbert, R. H. et al. Scoliosis in children with osteogenesis imperfecta: influence of severity of disease and age of reaching motor milestones. Eur. Spine J. 12, 130–134 (2003).

    PubMed  Google Scholar 

  160. 160

    Cintas, H. L., Siegel, K. L., Furst, G. P. & Gerber, L. H. Brief assessment of motor function: reliability and concurrent validity of the Gross Motor Scale. Am. J. Phys. Med. Rehabil. 82, 33–41 (2003).

    PubMed  Google Scholar 

  161. 161

    Ruck-Gibis, J., Plotkin, H., Hanley, J. & Wood-Dauphinee, S. Reliability of the gross motor function measure for children with osteogenesis imperfecta. Pediatr. Phys. Ther. 13, 10–17 (2001).

    CAS  PubMed  Google Scholar 

  162. 162

    Bleck, E. E. Nonoperative treatment of osteogenesis imperfecta: orthotic and mobility management. Clin. Orthop. Relat. Res. 111–122 (1981).

  163. 163

    Engelbert, R. H. et al. Osteogenesis imperfecta in childhood: impairment and disability. A prospective study with 4-year follow-up. Arch. Phys. Med. Rehabil. 85, 772–778 (2004).

    PubMed  Google Scholar 

  164. 164

    Takken, T. et al. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I. J. Pediatr. 145, 813–818 (2004).

    PubMed  Google Scholar 

  165. 165

    Van Brussel, M. et al. Physical training in children with osteogenesis imperfecta. J. Pediatr. 152, 111–116 (2008).

    PubMed  Google Scholar 

  166. 166

    Semler, O., Fricke, O., Vezyroglou, K., Stark, C. & Schoenau, E. Preliminary results on the mobility after whole body vibration in immobilized children and adolescents. J. Musculoskelet. Neuronal Interact. 7, 77–81 (2007).

    CAS  PubMed  Google Scholar 

  167. 167

    Luhmann, S. J., Sheridan, J. J., Capelli, A. M. & Schoenecker, P. L. Management of lower-extremity deformities in osteogenesis imperfecta with extensible intramedullary rod technique: a 20-year experience. J. Pediatr. Orthop. 18, 88–94 (1998).

    CAS  PubMed  Google Scholar 

  168. 168

    Zionts, L. E., Ebramzadeh, E. & Stott, N. S. Complications in the use of the Bailey–Dubow extensible nail. Clin. Orthop. Relat. Res. 186–195 (1998).

  169. 169

    El-Adl, G., Khalil, M. A., Enan, A., Mostafa, M. F. & El-Lakkany, M. R. Telescoping versus non-telescoping rods in the treatment of osteogenesis imperfecta. Acta Orthop. Belg. 75, 200–208 (2009).

    PubMed  Google Scholar 

  170. 170

    Esposito, P. & Plotkin, H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr. Opin. Pediatr. 20, 52–57 (2008).

    PubMed  Google Scholar 

  171. 171

    Boutaud, B. & Laville, J. M. Elastic sliding central medullary nailing with osteogenesis imperfecta. Fourteen cases at eight years follow-up [French]. Rev. Chir. Orthop. Reparatrice Appar. Mot. 90, 304–311 (2004).

    CAS  PubMed  Google Scholar 

  172. 172

    Munns, C. F., Rauch, F., Zeitlin, L., Fassier, F. & Glorieux, F. H. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J. Bone Miner. Res. 19, 1779–1786 (2004).

    CAS  PubMed  Google Scholar 

  173. 173

    Hanscom, D. A. & Bloom, B. A. The spine in osteogenesis imperfecta. Orthop. Clin. North Am. 19, 449–458 (1988).

    CAS  PubMed  Google Scholar 

  174. 174

    Topouchian, V., Finidori, G., Glorion, C., Padovani, J. P. & Pouliquen, J. C. Posterior spinal fusion for kypho-scoliosis associated with osteogenesis imperfecta: long-term results [French]. Rev. Chir. Orthop. Reparatrice Appar. Mot. 90, 525–532 (2004).

    CAS  PubMed  Google Scholar 

  175. 175

    Janus, G. J., Finidori, G., Engelbert, R. H., Pouliquen, M. & Pruijs, J. E. Operative treatment of severe scoliosis in osteogenesis imperfecta: results of 20 patients after halo traction and posterior spondylodesis with instrumentation. Eur. Spine J. 9, 486–491 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Rauch, F. & Glorieux, F. H. Treatment of children with osteogenesis imperfecta. Curr. Osteoporos. Rep. 4, 159–164 (2006).

    PubMed  Google Scholar 

  177. 177

    Cheung, M. S. & Glorieux, F. H. Osteogenesis imperfecta: update on presentation and management. Rev. Endocr. Metab. Disord. 9, 153–160 (2008).

    PubMed  Google Scholar 

  178. 178

    Bachrach, L. K. & Ward, L. M. Clinical review 1: Bisphosphonate use in childhood osteoporosis. J. Clin. Endocrinol. Metab. 94, 400–409 (2009).

    CAS  PubMed  Google Scholar 

  179. 179

    Phillipi, C. A., Remmington, T. & Steiner, R. D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD005088. doi: 10.1002/14651858.CD005088.pub2 (2008).

  180. 180

    Rauch, F., Travers, R., Plotkin, H. & Glorieux, F. H. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J. Clin. Invest. 110, 1293–1299 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Marini, J. C. Should children with osteogenesis imperfecta be treated with bisphosphonates? Nat. Clin. Pract. Endocrinol. Metab. 2, 14–15 (2006).

    PubMed  Google Scholar 

  182. 182

    Land, C., Rauch, F., Munns, C. F., Sahebjam, S. & Glorieux, F. H. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone 39, 901–906 (2006).

    CAS  PubMed  Google Scholar 

  183. 183

    Castillo, H. & Samson-Fang, L. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev. Med. Child. Neurol. 51, 17–29 (2009).

    PubMed  Google Scholar 

  184. 184

    Ward, L. M. et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 355–364 (2011).

    CAS  PubMed  Google Scholar 

  185. 185

    Marini, J. C. Bone: Use of bisphosphonates in children-proceed with caution. Nat. Rev. Endocrinol. 5, 241–243 (2009).

    CAS  PubMed  Google Scholar 

  186. 186

    Uveges, T. E. et al. Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J. Bone Miner. Res. 24, 849–859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Malmgren, B., Aström, E. & Söderhäll, S. No osteonecrosis in jaws of young patients with osteogenesis imperfecta treated with bisphosphonates. J. Oral Pathol. Med. 37, 196–200 (2008).

    CAS  PubMed  Google Scholar 

  188. 188

    Ward, K. A., Adams, J. E., Freemont, T. J. & Mughal, M. Z. Can. bisphosphonate treatment be stopped in a growing child with skeletal fragility? Osteoporos. Int. 18, 1137–1140 (2007).

    CAS  PubMed  Google Scholar 

  189. 189

    Hussar, D. A. & Stevenson, T. New drugs: Denosumab, dienogest/estradiol valerate, and polidocanol. J. Am. Pharm. Assoc. 50, 658–662 (2003).

    Google Scholar 

  190. 190

    Bargman, R., Huang, A., Boskey, A. L., Raggio, C. & Pleshko, N. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect. Tissue Res. 51, 123–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Dunn, M. D., Park, C. H., Kostenuik, P. J., Kapila, S. & Giannobile, W. V. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41, 446–455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192

    Kamoun-Goldrat, A., Ginisty, D. & Le Merrer, M. Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta. Eur. J. Oral Sci. 116, 195–198 (2008).

    CAS  PubMed  Google Scholar 

  193. 193

    Paszty, C., Turner, C. H. & Robinson, M. K. Sclerostin: a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25, 1897–1904 (2010).

    CAS  PubMed  Google Scholar 

  194. 194

    Antoniazzi, F. et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J. Pediatr. 129, 432–439 (1996).

    CAS  PubMed  Google Scholar 

  195. 195

    Antoniazzi, F. et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur. J. Endocrinol. 163, 479–487 (2010).

    CAS  PubMed  Google Scholar 

  196. 196

    Cabral, W. A. & Marini, J. C. High proportion of mutant osteoblasts is compatible with normal skeletal function in mosaic carriers of osteogenesis imperfecta. Am. J. Hum. Genet. 74, 752–760 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Li, F., Wang, X. & Niyibizi, C. Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells 25, 3183–3193 (2007).

    CAS  PubMed  Google Scholar 

  198. 198

    Guillot, P. V. et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111, 1717–1725 (2008).

    CAS  PubMed  Google Scholar 

  199. 199

    Chamberlain, J. R. et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303, 1198–1201 (2004).

    CAS  Google Scholar 

  200. 200

    Chamberlain, J. R. et al. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol. Ther. 16, 187–193 (2008).

    CAS  PubMed  Google Scholar 

  201. 201

    Millington-Ward, S., McMahon, H. P. & Farrar, G. J. Emerging therapeutic approaches for osteogenesis imperfecta. Trends Mol. Med. 11, 299–305 (2005).

    CAS  PubMed  Google Scholar 

  202. 202

    Dawson, P. A. & Marini, J. C. Hammerhead ribozymes selectively suppress mutant type I collagen mRNA in osteogenesis imperfecta fibroblasts. Nucleic Acids Res. 28, 4013–4020 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Navon, A. & Ciechanover, A. The 26 S. proteasome: from basic mechanisms to drug targeting. J. Biol. Chem. 284, 33713–33718 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Sloan, L. A., Fillmore, M. C. & Churcher, I. Small-molecule modulation of cellular chaperones to treat protein misfolding disorders. Curr. Opin. Drug Discov. Devel. 12, 666–681 (2009).

    CAS  PubMed  Google Scholar 

  205. 205

    Rochet, J. C. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev. Mol. Med. 9, 1–34 (2007).

    PubMed  Google Scholar 

  206. 206

    Bonadio, J. et al. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J. Clin. Invest. 92, 1697–1705 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Stacey, A. et al. Perinatal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-alpha 1(I) collagen gene. Nature 332, 131–136 (1988).

    CAS  PubMed  Google Scholar 

  208. 208

    Khillan, J. S., Olsen, A. S., Kontusaari, S., Sokolov, B. & Prockop, D. J. Transgenic mice that express a mini-gene version of the human gene for type I procollagen (COL1A1) develop a phenotype resembling a lethal form of osteogenesis imperfecta. J. Biol. Chem. 266, 23373–23379 (1991).

    CAS  PubMed  Google Scholar 

  209. 209

    Forlino, A., Porter, F. D., Lee, E. J., Westphal, H. & Marini, J. C. Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an alpha1(I) G349C substitution. Variability in phenotype in BrtlIV mice. J. Biol. Chem. 274, 37923–37931 (1999).

    CAS  PubMed  Google Scholar 

  210. 210

    Harbers, K., Kuehn, M., Delius, H. & Jaenisch, R. Insertion of retrovirus into the first intron of alpha 1(I) collagen gene to embryonic lethal mutation in mice. Proc. Natl Acad. Sci. USA 81, 1504–1508 (1984).

    CAS  PubMed  Google Scholar 

  211. 211

    Chipman, S. D. et al. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl Acad. Sci. USA 90, 1701–1705 (1993).

    CAS  PubMed  Google Scholar 

  212. 212

    Baek, W. Y. et al. Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J. Bone Miner. Res. 24, 1055–1065 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213

    Khoshnoodi, J., Cartailler, J. P., Alvares, K., Veis, A. & Hudson, B. G. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J. Biol. Chem. 281, 38117–38121 (2006).

    CAS  PubMed  Google Scholar 

  214. 214

    Nishikawa, Y. et al. A structure-activity relationship study elucidating the mechanism of sequence-specific collagen recognition by the chaperone HSP47. Bioorg. Med. Chem. 18, 3767–3775 (2010).

    CAS  PubMed  Google Scholar 

  215. 215

    Chessler, S. D. & Byers, P. H. BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta. J. Biol. Chem. 268, 18226–18233 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joan C. Marini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forlino, A., Cabral, W., Barnes, A. et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7, 540–557 (2011). https://doi.org/10.1038/nrendo.2011.81

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing