Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GLP-1 and energy balance: an integrated model of short-term and long-term control

Abstract

Glucagon-like peptide 1 (GLP-1), a peptide secreted from the intestine in response to nutrient ingestion, is perhaps best known for its effect on glucose-stimulated insulin secretion. GLP-1 is also secreted from neurons in the caudal brainstem, and it is well-established that, in rodents, central administration of GLP-1 potently reduces food intake. Over the past decade, GLP-1 has emerged not only as an essential component of the system that regulates blood glucose levels but also as a viable therapeutic target for the treatment of type 2 diabetes mellitus. However, although GLP-1 receptor agonists are known to produce modest but statistically significant weight loss in patients with diabetes mellitus, our knowledge of how endogenous GLP-1 regulates food intake and body weight remains limited. The purpose of this Review is to discuss the evolution of our understanding of how endogenous GLP-1 modulates energy balance. Specifically, we consider contributions of both central and peripheral GLP-1 and propose an integrated model of short-term and long-term control of energy balance. Finally, we discuss this model with respect to current GLP-1-based therapies and suggest ongoing research in order to maximize the effectiveness of GLP-1-based treatment of obesity.

Key Points

  • Animal studies suggest that endogenous, central glucagon-like peptide 1 (GLP-1) regulates both short-term and long-term energy balance, potentially via activation of hindbrain and hypothalamic GLP-1 receptors (GLP1R), respectively

  • Endogenous peripheral GLP-1 may limit meal size by activation of GLP1R on local vagal afferent nerves and stimulation of a gut–brain feedback loop

  • Increasing GLP1R activity by administering GLP-1 receptor agonists reduces food intake and promotes weight loss in humans, but the extent to which endogenous GLP-1 regulates energy balance in humans remains unknown

  • Although diabetes mellitus and obesity appear to be associated with altered GLP-1 system activity, GLP1R agonists retain their efficacy in these contexts, making them a viable therapeutic tool

  • A better understanding of how endogenous central and peripheral GLP-1 regulate energy balance has the potential to maximize our application of GLP-1-based therapies for the treatment of obesity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of GLP-1 physiology.

Similar content being viewed by others

References

  1. Moran, T. H. & Kinzig, K. P. Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G183–G188 (2004).

    CAS  PubMed  Google Scholar 

  2. Benoit, S. C., Clegg, D. J., Seeley, R. J. & Woods, S. C. Insulin and leptin as adiposity signals. Recent Prog. Horm. Res. 59, 267–285 (2004).

    CAS  PubMed  Google Scholar 

  3. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    CAS  PubMed  Google Scholar 

  4. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    CAS  PubMed  Google Scholar 

  5. Parker, H. E., Reimann, F. & Gribble, F. M. Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Rev. Mol. Med. 12, e1 (2010).

    PubMed  Google Scholar 

  6. Peters, A. Incretin-based therapies: review of current clinical trial data. Am. J. Med. 123, S28–S37 (2010).

    CAS  PubMed  Google Scholar 

  7. Bose, M., Oliván, B., Teixeira, J., Pi-Sunyer, F. X. & Laferrère, B. Do Incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: What are the evidence? Obes. Surg. 19, 217–229 (2009).

    PubMed  Google Scholar 

  8. Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280 (1999).

    CAS  PubMed  Google Scholar 

  9. Göke, R., Larsen, P. J., Mikkelsen, J. D. & Sheikh, S. P. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur. J. Neurosci. 7, 2294–2300 (1995).

    PubMed  Google Scholar 

  10. Tang-Christensen, M. et al. Central administration of GLP-1-(7--36) amide inhibits food and water intake in rats. Am. J. Physiol. 271, R848–R856 (1996).

    CAS  PubMed  Google Scholar 

  11. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    CAS  PubMed  Google Scholar 

  12. Navarro, M. et al. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake. J. Neurochem. 67, 1982–1991 (1996).

    CAS  PubMed  Google Scholar 

  13. Rinaman, L. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am. J. Physiol. 277, R582–R590 (1999).

    CAS  PubMed  Google Scholar 

  14. Vrang, N., Phifer, C. B., Corkern, M. M. & Berthoud, H. R. Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R470–R478 (2003).

    CAS  PubMed  Google Scholar 

  15. Rinaman, L. & Comer, J. Antagonism of central glucagon-like peptide-1 receptors enhances lipopolysaccharide-induced fever. Auton. Neurosci. 85, 98–101 (2000).

    CAS  PubMed  Google Scholar 

  16. Seeley, R. J. et al. The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J. Neurosci. 20, 1616–1621 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grill, H. J., Carmody, J. S., Amanda Sadacca, L., Williams, D. L. & Kaplan, J. M. Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP-1-R. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1190–R1193 (2004).

    CAS  PubMed  Google Scholar 

  18. McMahon, L. R. & Wellman, P. J. PVN infusion of GLP-1-(7–36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am. J. Physiol. 274, R23–R29 (1998).

    CAS  PubMed  Google Scholar 

  19. McMahon, L. R. & Wellman, P. J. Decreased intake of a liquid diet in nonfood-deprived rats following intra-PVN injections of GLP-1 (7–36) amide. Pharmacol. Biochem. Behav. 58, 673–677 (1997).

    CAS  PubMed  Google Scholar 

  20. Schick, R. R., Zimmermann, J. P., vorm Walde, T. & Schusdziarra, V. Peptides that regulate food intake: glucagon-like peptide 1-(7–36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1427–R1435 (2003).

    CAS  PubMed  Google Scholar 

  21. Sandoval, D. A., Bagnol, D., Woods, S. C., D'Alessio, D. A. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayes, M. R., Skibicka, K. P. & Grill, H. J. Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 149, 4059–4068 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Larsen, P. J., Tang-Christensen, M. & Jessop, D. S. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138, 4445–4455 (1997).

    CAS  PubMed  Google Scholar 

  24. Kinzig, K. P. et al. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J. Neurosci. 23, 6163–6170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kinzig, K. P., D'Alessio, D. A. & Seeley, R. J. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J. Neurosci. 22, 10470–10476 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, R., Packard, B. A., Tauchi, M., D'Alessio, D. A. & Herman, J. P. Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc. Natl Acad. Sci. USA 106, 5913–5918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamamoto, H. et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J. Clin. Invest. 110, 43–52 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakade, Y., Tsukamoto, K., Pappas, T. N. & Takahashi, T. Central glucagon like peptide-1 delays solid gastric emptying via central CRF and peripheral sympathetic pathway in rats. Brain Res. 1111, 117–121 (2006).

    CAS  PubMed  Google Scholar 

  29. Nogueiras, R. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J. Neurosci. 29, 5916–5925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pérez-Tilve, D. et al. Exendin-4 increases blood glucose levels acutely in rats by activation of the sympathetic nervous system. Am. J. Physiol. Endocrinol. Metab. 298, E1088–E1096 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Nakade, Y., Tsukamoto, K., Iwa, M., Pappas, T. N. & Takahashi, T. Glucagon like peptide-1 accelerates colonic transit via central CRF and peripheral vagal pathways in conscious rats. Auton. Neurosci. 131, 50–56 (2007).

    CAS  PubMed  Google Scholar 

  32. Wan, S., Browning, K. N. & Travagli, R. A. Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28, 2184–2191 (2007).

    CAS  PubMed  Google Scholar 

  33. Wan, S., Coleman, F. H. & Travagli, R. A. Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007).

    CAS  PubMed  Google Scholar 

  34. Knauf, C. et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J. Clin. Invest. 115, 3554–3563 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sandoval, D. A., Bagnol, D., Woods, S. C., D'Alessio, D. A. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Knauf, C. et al. Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing. Diabetes 57, 2603–2612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cabou, C. et al. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes 57, 2577–2587 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Campos, R. V., Lee, Y. C. & Drucker, D. J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134, 2156–2164 (1994).

    CAS  PubMed  Google Scholar 

  39. Vrang, N., Hansen, M., Larsen, P. J. & Tang-Christensen, M. Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res. 1149, 118–126 (2007).

    CAS  PubMed  Google Scholar 

  40. Gaykema, R. P. et al. Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling. Brain Res. 1294, 61–79 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meeran, K. et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat. Endocrinology 140, 244–250 (1999).

    CAS  PubMed  Google Scholar 

  42. Scrocchi, L. A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996).

    CAS  PubMed  Google Scholar 

  43. Scrocchi, L. A. & Drucker, D. J. Effects of aging and a high fat diet on body weight and glucose tolerance in glucagon-like peptide-1 receptor −/− mice. Endocrinology 139, 3127–3132 (1998).

    CAS  PubMed  Google Scholar 

  44. Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117, 143–152 (2007).

    CAS  PubMed  Google Scholar 

  45. Knauf, C. et al. Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure. Endocrinology 149, 4768–4777 (2008).

    CAS  PubMed  Google Scholar 

  46. Lachey, J. L. et al. The role of central glucagon-like peptide-1 in mediating the effects of visceral illness: differential effects in rats and mice. Endocrinology 146, 458–462 (2005).

    CAS  PubMed  Google Scholar 

  47. Barrera, J. G. et al. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like Peptide-1 loss of function. J. Neurosci. 31, 3904–3913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shughrue, P. J., Lane, M. V. & Merchenthaler, I. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology 137, 5159–5162 (1996).

    CAS  PubMed  Google Scholar 

  49. Shimizu, I., Hirota, M., Ohboshi, C. & Shima, K. Identification and localization of glucagon-like peptide-1 and its receptor in the brain. Endocrinology 121, 1076–1082 (1987).

    CAS  PubMed  Google Scholar 

  50. Mentlein, R., Gallwitz, B. & Schmidt, W. E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36) amide, petide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835 (1993).

    CAS  PubMed  Google Scholar 

  51. Rodriquez de Fonseca, F. et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 49, 709–717 (2000).

    CAS  PubMed  Google Scholar 

  52. Szayna, M. et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 141, 1936–1941 (2000).

    CAS  PubMed  Google Scholar 

  53. Thum, A. et al. Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and -4. Exp. Clin. Endocrinol. Diabetes 110, 113–118 (2002).

    CAS  PubMed  Google Scholar 

  54. Kastin, A. J. & Akerstrom, V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int. J. Obes. Relat. Metab. Disord. 27, 313–318 (2003).

    CAS  PubMed  Google Scholar 

  55. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    CAS  PubMed  Google Scholar 

  56. Baggio, L. L., Huang, Q., Cao, X. & Drucker, D. J. An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. Gastroenterology 134, 1137–1147 (2008).

    CAS  PubMed  Google Scholar 

  57. Baraboi, E. D., Smith, P., Ferguson, A. V. & Richard, D. Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1098–R1110 (2010).

    CAS  PubMed  Google Scholar 

  58. Williams, D. L., Baskin, D. G. & Schwartz, M. W. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 150, 1680–1687 (2009).

    CAS  PubMed  Google Scholar 

  59. Scott, K. A. & Moran, T. H. The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R983–R987 (2007).

    CAS  PubMed  Google Scholar 

  60. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Serre, V. et al. Exendin-(9–39) is an inverse agonist of the murine glucagon-like peptide-1 receptor: implications for basal intracellular cyclic adenosine 3′, 5′-monophosphate levels and β-cell glucose competence. Endocrinology 139, 4448–4454 (1998).

    CAS  PubMed  Google Scholar 

  62. Vahl, T. P., Drazen, D. L., Seeley, R. J., D'Alessio, D. A. & Woods, S. C. Meal-anticipatory glucagon-like peptide-1 secretion in rats. Endocrinology 151, 569–575 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Nakagawa, A. et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton. Neurosci. 110, 36–43 (2004).

    CAS  PubMed  Google Scholar 

  64. Vahl, T. P. et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148, 4965–4973 (2007).

    CAS  PubMed  Google Scholar 

  65. Bucinskaite, V. et al. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol. Motil. 21, 978–e78 (2009).

    CAS  PubMed  Google Scholar 

  66. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    CAS  PubMed  Google Scholar 

  67. Talsania, T., Anini, Y., Siu, S., Drucker, D. J. & Brubaker, P. L. Peripheral exendin-4 and peptide YY(3–36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 146, 3748–3756 (2005).

    CAS  PubMed  Google Scholar 

  68. Rüttimann, E. B., Arnold, M., Hillebrand, J. J., Geary, N. & Langhans, W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150, 1174–1181 (2009).

    PubMed  Google Scholar 

  69. Kim, D. H., D'Alessio, D. A., Woods, S. C. & Seeley, R. J. The effects of GLP-1 infusion in the hepatic portal region on food intake. Regul. Pept. 155, 110–114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rüttimann, E. B., Arnold, M., Geary, N. & Langhans, W. GLP-1 antagonism with exendin (9–39) fails to increase spontaneous meal size in rats. Physiol. Behav. 100, 291–296 (2009).

    Google Scholar 

  71. Washington, M. C., Raboin, S. J., Thompson, W., Larsen, C. J. & Sayegh, A. I. Exenatide reduces food intake and activates the enteric nervous system of the gastrointestinal tract and the dorsal vagal complex of the hindbrain in the rat by a GLP-1 receptor. Brain Res. 1344, 124–133 (2010).

    CAS  PubMed  Google Scholar 

  72. Hayes, M. R., Bradley, L. & Grill, H. J. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150, 2654–2659 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamamoto, H. et al. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J. Neurosci. 23, 2939–2946 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hisadome, K., Reimann, F., Gribble, F. M. & Trapp, S. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like peptide 1 neurons. Diabetes 59, 1890–1898 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Barrachina, M. D., Martínez, V., Wang, L., Wei, J. Y. & Taché, Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc. Natl Acad. Sci. USA 94, 10455–10460 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Emond, M., Schwartz, G. J., Ladenheim, E. E. & Moran, T. H. Central leptin modulates behavioral and neural responsivity to CCK. Am. J. Physiol. 276 (Pt 2), R1545–R1549 (1999).

    CAS  PubMed  Google Scholar 

  77. Morton, G. J. et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J. Clin. Invest. 115, 703–710 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Williams, D. L., Baskin, D. G. & Schwartz, M. W. Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1238–R1246 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. McMinn, J. E., Sindelar, D. K., Havel, P. J. & Schwartz, M. W. Leptin deficiency induced by fasting impairs the satiety response to cholecystokinin. Endocrinology 141, 4442–4448 (2000).

    CAS  PubMed  Google Scholar 

  80. Williams, D. L., Baskin, D. G. & Schwartz, M. W. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes 55, 3387–3393 (2006).

    CAS  PubMed  Google Scholar 

  81. Goldstone, A. P. et al. Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Lett. 415, 134–138 (1997).

    CAS  PubMed  Google Scholar 

  82. Goldstone, A. P. et al. Effect of leptin on hypothalamic GLP-1 peptide and brain-stem pre-proglucagon mRNA. Biochem. Biophys. Res. Commun. 269, 331–335 (2000).

    CAS  PubMed  Google Scholar 

  83. Elias, C. F. et al. Chemical characterization of leptin-activated neurons in the rat brain. J. Comp. Neurol. 423, 261–281 (2000).

    CAS  PubMed  Google Scholar 

  84. Nowak, A. & Bojanowska, E. Effects of peripheral or central GLP-1 receptor blockade on leptin-induced suppression of appetite. J. Physiol. Pharmacol. 59, 501–510 (2008).

    CAS  PubMed  Google Scholar 

  85. Scrocchi, L. A., Brown, T. J. & Drucker, D. J. Leptin sensitivity in nonobese glucagon-like peptide I receptor −/− mice. Diabetes 46, 2029–2034 (1997).

    CAS  PubMed  Google Scholar 

  86. Huo, L., Gamber, K. M., Grill, H. J. & Bjørbaek, C. Divergent leptin signaling in proglucagon neurons of the nucleus of the solitary tract in mice and rats. Endocrinology 149, 492–497 (2008).

    CAS  PubMed  Google Scholar 

  87. Vrang, N. et al. Upregulation of the brainstem preproglucagon system in the obese Zucker rat. Brain Res. 1187, 116–124 (2008).

    CAS  PubMed  Google Scholar 

  88. Primeaux, S. D., Barnes, M. J., Braymer, H. D. & Bray, G. A. Sensitivity to the satiating effects of exendin 4 is decreased in obesity-prone Osborne-Mendel rats compared to obesity-resistant S5B/Pl rats. Int. J. Obes. (Lond.) 34, 1427–1433 (2010).

    CAS  Google Scholar 

  89. Al-Barazanji, K. A., Arch, J. R., Buckingham, R. E. & Tadayyon, M. Central exendin-4 infusion reduces body weight without altering plasma leptin in (fa/fa) Zucker rats. Obes. Res. 8, 317–323 (2000).

    CAS  PubMed  Google Scholar 

  90. Ranganath, L. R. et al. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38, 916–919 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vilsbøll, T., Krarup, T., Deacon, C. F., Madsbad, S. & Holst, J. J. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50, 609–613 (2001).

    PubMed  Google Scholar 

  92. Vilsbøll, T. et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 88, 2706–2713 (2003).

    PubMed  Google Scholar 

  93. Anini, Y. & Brubaker, P. L. Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes 52, 252–259 (2003).

    CAS  PubMed  Google Scholar 

  94. Muscelli, E. et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 57, 1340–1348 (2008).

    CAS  PubMed  Google Scholar 

  95. Carr, R. D. et al. Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J. Clin. Endocrinol. Metab. 95, 872–878 (2010).

    CAS  PubMed  Google Scholar 

  96. Donahey, J. C., van Dijk, G., Woods, S. C. & Seeley, R. J. Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. 779, 75–83 (1998).

    CAS  PubMed  Google Scholar 

  97. Mack, C. M. et al. Antiobesity action of peripheral exenatide (exendin-4) in rodents: effects on food intake, body weight, metabolic status and side-effect measures. Int. J. Obes. (Lond.) 30, 1332–1340 (2006).

    CAS  Google Scholar 

  98. Lamont, B. J. & Drucker, D. J. Differential antidiabetic efficacy of incretin agonists versus DPP-4 inhibition in high fat fed mice. Diabetes 57, 190–198 (2008).

    CAS  PubMed  Google Scholar 

  99. Raun, K. et al. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 56, 8–15 (2007).

    CAS  PubMed  Google Scholar 

  100. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Näslund, E., Gutniak, M., Skogar, S., Rössner, S. & Hellström, P. M. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am. J. Clin. Nutr. 68, 525–530 (1998).

    PubMed  Google Scholar 

  102. Näslund, E. et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int. J. Obes. Relat. Metab. Disord. 23, 304–311 (1999).

    PubMed  Google Scholar 

  103. Long, S. J. et al. No effect of glucagon-like peptide-1 on short-term satiety and energy intake in man. Br. J. Nutr. 81, 273–279 (1999).

    CAS  PubMed  Google Scholar 

  104. Gutzwiller, J. P. et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 44, 81–86 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gutzwiller, J. P. et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. 276 (Pt 2), R1541–R1544 (1999).

    CAS  PubMed  Google Scholar 

  106. Flint, A., Raben, A., Ersbøll, A. K., Holst, J. J. & Astrup, A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. Relat. Metab. Disord. 25, 781–792 (2001).

    CAS  PubMed  Google Scholar 

  107. Verdich, C. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001).

    CAS  PubMed  Google Scholar 

  108. Buse, J. B. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27, 2628–2635 (2004).

    CAS  PubMed  Google Scholar 

  109. Kendall, D. M. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28, 1083–1091 (2005).

    CAS  PubMed  Google Scholar 

  110. DeFronzo, R. A. et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1092–1100 (2005).

    CAS  PubMed  Google Scholar 

  111. Vilsboll, T. et al. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 30, 1608–1610 (2007).

    PubMed  Google Scholar 

  112. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    CAS  PubMed  Google Scholar 

  113. Raz, I. et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49, 2564–2571 (2006).

    CAS  PubMed  Google Scholar 

  114. Pratley, R. E., Jauffret-Kamel, S., Galbreath, E. & Holmes, D. Twelve-week monotherapy with the DPP-4 inhibitor vildagliptin improves glycemic control in subjects with type 2 diabetes. Horm. Metab. Res. 38, 423–428 (2006).

    CAS  PubMed  Google Scholar 

  115. Rosenstock, J., Sankoh, S. & List, J. F. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes. Metab. 10, 376–386 (2008).

    CAS  PubMed  Google Scholar 

  116. DeFronzo, R. A., Fleck, P. R., Wilson, C. A. & Mekki, Q. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 31, 2315–2317 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Taskinen, M. R. et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes. Metab. 13, 65–74 (2011).

    CAS  PubMed  Google Scholar 

  118. Aaboe, K. et al. Twelve weeks treatment with the DPP-4 inhibitor, sitagliptin, prevents degradation of peptide YY and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 12, 323–333 (2010).

    CAS  PubMed  Google Scholar 

  119. Buse, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374, 39–47 (2009).

    CAS  PubMed  Google Scholar 

  120. Barrera, J. G., D'Alessio, D. A., Drucker, D. J., Woods, S. C. & Seeley, R. J. Differences in the central anorectic effects of glucagon-like peptide-1 and exendin-4 in rats. Diabetes 58, 2820–2827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Randy J. Seeley.

Ethics declarations

Competing interests

D. A. Sandoval declares an association with the following company: Ethicon (research support). D. A. D'Alessio declares an association with the following companies: Amylin (research support, consulting), Johnson and Johnson (research support, scientific advisory boards, consulting), MannKind (research support), Merck (consulting), Novo Nordisk (scientific advisory board), Sanofi-Aventis (research support), Takeda (consulting). R. J. Seeley declares an association with the following companies: Alkermes (consulting), Amylin (consulting, research support, speakers bureau), Eli Lilly (scientific advisory board, speakers bureau), Johnson and Johnson (research support, scientific advisory board, consulting), MannKind (research support), Merck (scientific advisory board, speakers bureau), Novo Nordisk (speakers bureau, scientific advisory board), Roche (consulting, research support), Zafgen (scientific advisory board, equity stake (<1%), research support. J. G. Barrera declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera, J., Sandoval, D., D'Alessio, D. et al. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat Rev Endocrinol 7, 507–516 (2011). https://doi.org/10.1038/nrendo.2011.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing