Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonpharmacological interventions for the prevention of type 2 diabetes mellitus

Abstract

During the past decade, improved understanding of the pathophysiological mechanisms of diabetes development has resulted in advances in therapeutic concepts, but has also supported the potential for diabetes prevention through nonpharmacological means. At the beginning of the century, we experienced a shift in paradigm, as landmark studies have shown that diabetes mellitus is preventable with lifestyle intervention; moderate changes in diet and physical activity produce a substantial and sustained reduction in the incidence of type 2 diabetes mellitus (T2DM) for individuals with impaired glucose tolerance. This evidence must now be translated into clinical and public-health practice, but translational studies have varied in their ability to replicate the results of clinical trials. This variation reflects a number of challenging barriers for diabetes prevention in real-world clinical practice, which makes it necessary to focus on identifying efficient intervention methods and delivery mechanisms. Research is now focusing on these mechanisms, as well as on developing efficient screening and risk-identification strategies and realistic scenarios for public-health policy to implement diabetes prevention programs. In this Review, we will discuss these mechanisms and will consider the implications of diabetes prevention for public-health strategy and policy.

Key Points

  • Type 2 diabetes mellitus (T2DM) is a highly preventable disease; however, prevention programs need to systematically identify people at high risk and address the pathophysiological, behavioural and public-health determinants of diabetes development

  • Evidence-based recommendations for clinical practice are available and provide a solid basis for the development and implemention of T2DM prevention programs

  • Increased physical activity and a healthy diet (high fibre, low saturated fat, appropriate energy intake), ideally resulting in weight loss, are important and effective interventions that can prevent the development of T2DM

  • To identify individuals at increased risk of T2DM, a multi-stage approach is recommended, starting with a noninvasive risk score, followed by a diagnostic test to confirm glycaemic status if necessary

  • Implementing evidence-based strategies to initiate and support behaviour change should help to achieve sustained lifestyle changes in preventive intervention programs

  • Population-based implementation of primary diabetes prevention programs requires active partnerships across all different levels of public health, including local and national government and community-level organisations and services

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dose-response effects of lifestyle behaviour change on diabetes incidence (at a median 7 years) in people with impaired glucose tolerance.
Figure 2: Four-level public-health model for the implementation of effective diabetes prevention programs.

References

  1. 1

    International Diabetes Federation. Diabetes Atlas 4th Edition [online], (2009).

  2. 2

    Tuomilehto, J., Schwarz, P. & Lindström, J. Long-term benefits from lifestyle interventions for type 2 diabetes prevention: time to expand the efforts. Diabetes Care 34 (Suppl. 2), S210–S214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Meisinger, C. et al. Prevalence of undiagnosed diabetes and impaired glucose regulation in 35–59-year-old individuals in Southern Germany: the KORA F4 Study. Diabet. Med. 27, 360–362 (2011).

    Article  Google Scholar 

  4. 4

    Zimmet, P., Alberti, K. G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).

    Article  CAS  Google Scholar 

  5. 5

    Schwarz, P. E. Public health implications: translation into diabetes prevention initiatives—four-level public health concept. Med. Clin. North Am. 95, 397–407, ix (2011).

    Article  Google Scholar 

  6. 6

    National Institute for Health and Clinical Excellence. NICE public health guidance 35: Preventing type 2 diabetes: population and community-level interventions in high-risk groups and the general population [online], (2011).

  7. 7

    Gillies, C. L. et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334, 299 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hanefeld, M., Ceriello, A., Schwarz, P. E. & Bornstein, S. R. The metabolic syndrome—a postprandial disease? Horm. Metab. Res. 38, 435–436 (2006).

    Article  CAS  Google Scholar 

  9. 9

    Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  Google Scholar 

  11. 11

    Ramachandran, A. et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49, 289–297 (2006).

    Article  CAS  Google Scholar 

  12. 12

    Kosaka, K., Noda, M. & Kuzuya, T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res. Clin. Pract. 67, 152–162 (2005).

    Article  Google Scholar 

  13. 13

    Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537–544 (1997).

    Article  CAS  Google Scholar 

  14. 14

    Chiasson, J. L. et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359, 2072–2077 (2002).

    Article  CAS  Google Scholar 

  15. 15

    DeFronzo, R. A. et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N. Engl. J. Med. 364, 1104–1115 (2011).

    Article  CAS  Google Scholar 

  16. 16

    Lindström, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368, 1673–1679 (2006).

    Article  Google Scholar 

  17. 17

    Li, G. et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 371, 1783–1789 (2008).

    Article  PubMed  Google Scholar 

  18. 18

    Tuomilehto, J. Counterpoint: Evidence-based prevention of type 2 diabetes: the power of lifestyle management. Diabetes Care 30, 435–438 (2007).

    Article  Google Scholar 

  19. 19

    Yates, T., Davies, M. & Khunti, K. Preventing type 2 diabetes: can we make the evidence work? Postgrad. Med. J. 85, 475–480 (2009).

    Article  CAS  Google Scholar 

  20. 20

    Gillies, C. L. et al. Different strategies for screening and prevention of type 2 diabetes in adults: cost effectiveness analysis. BMJ 336, 1180–1185 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Schwarz, P. E. et al. The Finnish Diabetes Risk Score is associated with insulin resistance and progression towards type 2 diabetes. J. Clin. Endocrinol. Metab. 94, 920–926 (2009).

    Article  CAS  Google Scholar 

  22. 22

    Harris, M. I., Klein, R., Welborn, T. A. & Knuiman, M. W. Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care 15, 815–819 (1992).

    Article  CAS  Google Scholar 

  23. 23

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33 (Suppl. 1), S62–S69 (2010).

  24. 24

    Ceriello, A. & Colagiuri, S. International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet. Med. 25, 1151–1156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Paulweber, B. et al. A European evidence-based guideline for the prevention of type 2 diabetes. Horm. Metab. Res. 42, S3–S36 (2010).

    Article  CAS  Google Scholar 

  26. 26

    Spijkerman, A. M. et al. Microvascular complications at time of diagnosis of type 2 diabetes are similar among diabetic patients detected by targeted screening and patients newly diagnosed in general practice: the hoorn screening study. Diabetes Care 26, 2604–2608 (2003).

    Article  Google Scholar 

  27. 27

    Griffin, S. J. et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet 378, 156–167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Schwarz, P. E. & Lindström, J. From evidence to practice—the IMAGE project—new standards in the prevention of type 2 diabetes. Diabetes Res. Clin. Pract. 91, 138–140 (2011).

    Article  Google Scholar 

  29. 29

    Lindström, J. et al. Take action to prevent diabetes—the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm. Metab. Res. 42 (Suppl. 1), S37–S55 (2010).

    Article  CAS  Google Scholar 

  30. 30

    Schwarz, P. E., Li, J., Lindström, J. & Tuomilehto, J. Tools for predicting the risk of type 2 diabetes in daily practice. Horm. Metab. Res. 41, 86–97 (2009).

    Article  CAS  Google Scholar 

  31. 31

    Khunti, K. et al. A comparison of screening strategies for type 2 diabetes and impaired glucose tolerance in a UK community setting: a cost per case analysis [abstract SD2]. Diabet. Med. 27 (Suppl. 1), 28 (2010).

    Google Scholar 

  32. 32

    Li, J., Bergmann, A., Reimann, M., Bornstein, S. R. & Schwarz, P. E. A more simplified Finnish diabetes risk score for opportunistic screening of undiagnosed type 2 diabetes in a German population with a family history of the metabolic syndrome. Horm. Metab. Res. 41, 98–103 (2009).

    Article  CAS  Google Scholar 

  33. 33

    Chen, L. et al. AUSDRISK: an Australian type 2 diabetes risk assessment tool based on demographic, lifestyle and simple anthropometric measures. Med. J. Aust. 192, 197–202 (2010).

    PubMed  Google Scholar 

  34. 34

    Gray, L. J. et al. The Leicester Risk Assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabet. Med. 27, 887–895 (2011).

    Article  Google Scholar 

  35. 35

    Franciosi, M. et al. Use of the diabetes risk score for opportunistic screening of undiagnosed diabetes and impaired glucose tolerance: the IGLOO (Impaired Glucose Tolerance and Long-Term Outcomes Observational) study. Diabetes Care 28, 1187–1194 (2005).

    Article  Google Scholar 

  36. 36

    Rathmann, W. et al. Performance of screening questionnaires and risk scores for undiagnosed diabetes: the KORA Survey 2000. Arch. Intern. Med. 165, 436–441 (2005).

    Article  Google Scholar 

  37. 37

    Glümer, C., Borch-Johnsen, K. & Colagiuri, S. Can. a screening programme for diabetes be applied to another population? Diabet. Med. 22, 1234–1238 (2005).

    Article  Google Scholar 

  38. 38

    Park, P. J., Griffin, S. J., Sargeant, L. & Wareham, N. J. The performance of a risk score in predicting undiagnosed hyperglycemia. Diabetes Care 25, 984–988 (2002).

    Article  CAS  Google Scholar 

  39. 39

    Mohan, V. et al. A diabetes risk score helps identify metabolic syndrome and cardiovascular risk in Indians - the Chennai Urban Rural Epidemiology Study (CURES-38). Diabetes Obes. Metab. 9, 337–343 (2007).

    Article  CAS  Google Scholar 

  40. 40

    Davies, M. et al. The handbook for vascular risk assessment, risk reduction and risk management. UK National Screening Committee [online], (2008).

    Google Scholar 

  41. 41

    Lindström, J. & Tuomilehto, J. The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care 26, 725–731 (2003).

    Article  Google Scholar 

  42. 42

    Gray, L. J. et al. The Leicester Risk Assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabet. Med. 27, 887–895 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A. & Brindle, P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ 338, b880 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Schwarz, P. E., Li, J. & Bornstein, S. R. Screening for type 2 diabetes in primary care. BMJ 338, b973 (2009).

    Article  Google Scholar 

  45. 45

    Griffin, S. J., Little, P. S., Hales, C. N., Kinmonth, A. L. & Wareham, N. J. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab. Res. Rev. 16, 164–171 (2000).

    Article  CAS  Google Scholar 

  46. 46

    International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).

  47. 47

    Abdul-Ghani, M. A. et al. Role of glycated hemoglobin in the prediction of future risk of T2DM. J. Clin. Endocrinol. Metab. 96, 2596–2600 (2011).

    Article  CAS  Google Scholar 

  48. 48

    Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378, 31–40 (2011).

    Article  CAS  Google Scholar 

  49. 49

    Kershaw, E. E., Chua, S. C., Williams, J. A., Murphy, E. M. & Leibel, R. L. Molecular mapping of SSRs for Pgm1 and C8b in the vicinity of the rat fatty locus. Genomics 27, 149–154 (1995).

    Article  CAS  Google Scholar 

  50. 50

    Cornier, M. A. et al. Insulin sensitivity determines the effectiveness of dietary macronutrient composition on weight loss in obese women. Obes. Res. 13, 703–709 (2005).

    Article  CAS  Google Scholar 

  51. 51

    Hamman, R. F. et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 29, 2102–2107 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Kulzer, B., Hermanns, N., Gorges, D., Schwarz, P. & Haak, T. Prevention of diabetes self-management program (PREDIAS): effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care 32, 1143–1146 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Karolina, D. S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS ONE 6, e22839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Saaristo, T. et al. Lifestyle intervention for prevention of type 2 diabetes in primary health care: one-year follow-up of the Finnish National Diabetes Prevention Program (FIN-D2D). Diabetes Care 33, 2146–2151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    World Health Organization. Screening for type 2 diabetes. Report of a WHO and IDF meeting [online], (2003).

  56. 56

    van Dam, R. M., Rimm, E. B., Willett, W. C., Stampfer, M. J. & Hu, F. B. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann. Intern. Med. 136, 201–209 (2002).

    Article  Google Scholar 

  57. 57

    Aune, D., Ursin, G. & Veierød, M. B. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 52, 2277–2287 (2009).

    Article  CAS  Google Scholar 

  58. 58

    Meyer, K. A. et al. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 71, 921–930 (2000).

    Article  CAS  Google Scholar 

  59. 59

    Pereira, M. A. et al. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am. J. Clin. Nutr. 75, 848–855 (2002).

    Article  CAS  Google Scholar 

  60. 60

    Montonen, J., Knekt, P., Järvinen, R., Aromaa, A. & Reunanen, A. Whole-grain and fiber intake and the incidence of type 2 diabetes. Am. J. Clin. Nutr. 77, 622–629 (2003).

    Article  CAS  Google Scholar 

  61. 61

    Fung, T. T. et al. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am. J. Clin. Nutr. 76, 535–540 (2002).

    Article  CAS  Google Scholar 

  62. 62

    Liu, S. et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am. J. Public Health 90, 1409–1415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Sargeant, L. A. et al. Fruit and vegetable intake and population glycosylated haemoglobin levels: the EPIC-Norfolk Study. Eur. J. Clin. Nutr. 55, 342–348 (2001).

    Article  CAS  Google Scholar 

  64. 64

    Villegas, R. et al. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. J. Nutr. 138, 574–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Choi, H. K., Willett, W. C., Stampfer, M. J., Rimm, E. & Hu, F. B. Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch. Intern. Med. 165, 997–1003 (2005).

    Article  Google Scholar 

  66. 66

    Pereira, M. A. et al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 287, 2081–2089 (2002).

    Article  Google Scholar 

  67. 67

    Hodge, A. M., English, D. R., O'Dea, K. & Giles, G. G. Alcohol intake, consumption pattern and beverage type, and the risk of type 2 diabetes. Diabet. Med. 23, 690–697 (2006).

    Article  CAS  Google Scholar 

  68. 68

    Salazar-Martinez, E. et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann. Intern. Med. 140, 1–8 (2004).

    Article  Google Scholar 

  69. 69

    Tuomilehto, J., Hu, G., Bidel, S., Lindström, J. & Jousilahti, P. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 291, 1213–1219 (2004).

    Article  CAS  Google Scholar 

  70. 70

    van Dam, R. M., Willett, W. C., Manson, J. E. & Hu, F. B. Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U. S. women. Diabetes Care 29, 398–403 (2006).

    Article  Google Scholar 

  71. 71

    Kaline, K., Bornstein, S. R., Bergmann, A., Hauner, H. & Schwarz, P. E. The importance and effect of dietary fiber in diabetes prevention with particular consideration of whole grain products. Horm. Metab. Res. 39, 687–693 (2007).

    Article  CAS  Google Scholar 

  72. 72

    Lopez-Garcia, E. et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J. Nutr. 134, 1806–1811 (2004).

    Article  CAS  Google Scholar 

  73. 73

    Lopez-Garcia, E. et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J. Nutr. 135, 562–566 (2005).

    Article  CAS  Google Scholar 

  74. 74

    Rojo-Martínez, G. et al. Dietary fatty acids and insulin secretion: a population-based study. Eur. J. Clin. Nutr. 60, 1195–1200 (2006).

    Article  CAS  Google Scholar 

  75. 75

    Jenkins, D. J. et al. Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br. Med. J. 1, 1392–1394 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Burcelin, R. The incretins: a link between nutrients and well-being. Br. J. Nutr. 93 (Suppl. 1), S147–S156 (2005).

    Article  CAS  Google Scholar 

  77. 77

    Weickert, M. O. et al. Impact of cereal fibre on glucose-regulating factors. Diabetologia 48, 2343–2353 (2005).

    Article  CAS  Google Scholar 

  78. 78

    Lindström, J. et al. Prevention of diabetes mellitus in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study: results from a randomized clinical trial. J. Am. Soc. Nephrol. 14, S108–113 (2003).

    Article  Google Scholar 

  79. 79

    Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 25, 2165–2171 (2002).

  80. 80

    Salas-Salvadó, J. et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34, 14–19 (2011).

    Article  Google Scholar 

  81. 81

    Dansinger, M. L., Tatsioni, A., Wong, J. B., Chung, M. & Balk, E. M. Meta-analysis: the effect of dietary counseling for weight loss. Ann. Intern. Med. 147, 41–50 (2007).

    Article  Google Scholar 

  82. 82

    World Health Organization. Global health risks. Health statistics and health information systems [online], (2009).

  83. 83

    Oldridge, N. B. Economic burden of physical inactivity: healthcare costs associated with cardiovascular disease. Eur. J. Cardiovasc. Prev. Rehabil. 15, 130–139 (2008).

    Article  Google Scholar 

  84. 84

    Blair, S. N. Physical inactivity: the biggest public health problem of the 21st century. Br. J. Sports Med. 43, 1–2 (2009).

    PubMed  Google Scholar 

  85. 85

    Sisson, S. B. & Katzmarzyk, P. T. International prevalence of physical activity in youth and adults. Obes. Rev. 9, 606–614 (2008).

    Article  CAS  Google Scholar 

  86. 86

    Carlson, S. A., Fulton, J. E., Schoenborn, C. A. & Loustalot, F. Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am. J. Prev. Med. 39, 305–313 (2010).

    Article  Google Scholar 

  87. 87

    The NHS Information Centre. Health survey for England—2008: Physical activity and fitness. The Health and Social Care Information Centre [online], (2008).

  88. 88

    Troiano, R. P. et al. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40, 181–188 (2008).

    Article  Google Scholar 

  89. 89

    Bassuk, S. S. & Manson, J. E. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J. Appl. Physiol. 99, 1193–1204 (2005).

    Article  Google Scholar 

  90. 90

    Hawley, J. A. & Lessard, S. J. Exercise training-induced improvements in insulin action. Acta Physiol. (Oxf.) 192, 127–135 (2008).

    Article  CAS  Google Scholar 

  91. 91

    Ivy, J. L., Zderic, T. W. & Fogt, D. L. Prevention and treatment of non-insulin-dependent diabetes mellitus. Exerc. Sport Sci. Rev. 27, 1–35 (1999).

    Article  CAS  Google Scholar 

  92. 92

    Hawley, J. A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev. 20, 383–393 (2004).

    Article  CAS  Google Scholar 

  93. 93

    Yates, T., Davies, M., Gorely, T., Bull., F. & Khunti, K. Effectiveness of a pragmatic education program designed to promote walking activity in individuals with impaired glucose tolerance: a randomized controlled trial. Diabetes Care 32, 1404–1410 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Laaksonen, D. E. et al. Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes 54, 158–165 (2005).

    Article  CAS  Google Scholar 

  95. 95

    Telford, R. D. Low physical activity and obesity: causes of chronic disease or simply predictors? Med. Sci. Sports Exerc. 39, 1233–1240 (2007).

    Article  Google Scholar 

  96. 96

    Chief Medical Officers of England, Scotland, Wales, and Northern Ireland. Start active, stay active: a report on physical activity from the four home countries' Chief Medical Officers. Department of Health [online], (2011).

  97. 97

    World Health Organization. Global recommendations on physical activity for health (WHO Press, Geneva, 2010).

  98. 98

    US Department of Health and Human Services. 2008 physical activity guidelines for Americans (USDHHS, Washington, 2008).

  99. 99

    Johnson, M. R. Perceptions of barriers to healthy physical activity among Asian communities. Sport Educ. Soc. 5, 51–70 (2000).

    Article  Google Scholar 

  100. 100

    Bravata, D. M. et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298, 2296–2304 (2007).

    Article  CAS  Google Scholar 

  101. 101

    Tudor-Locke, C. & Bassett, D. R. Jr . How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 34, 1–8 (2004).

    Article  Google Scholar 

  102. 102

    Katzmarzyk, P. T. Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes 59, 2717–2725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Yates, T. et al. Stand up for your health: Is it time to rethink the physical activity paradigm? Diabetes Res. Clin. Pract. 93, 292–294 (2011).

    Article  Google Scholar 

  104. 104

    Thorp, A. A. et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004–2005. Diabetes Care 33, 327–34 (2010).

    Article  Google Scholar 

  105. 105

    Dunstan, D. W. et al. Physical activity and television viewing in relation to risk of undiagnosed abnormal glucose metabolism in adults. Diabetes Care 27, 2603–2609 (2004).

    Article  Google Scholar 

  106. 106

    Thorp, A. A., Owen, N., Neuhaus, M. & Dunstan, D. W. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am. J. Prev. Med. 41, 207–215 (2011).

    Article  Google Scholar 

  107. 107

    Avenell, A. et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol. Assess. 8, iii–iv, 1–182 (2004).

    Article  CAS  Google Scholar 

  108. 108

    Greaves, C. J. et al. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health 11, 119 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Foster, C., Hillsdon, M. & Thorogood, M. Interventions for promoting physical activity. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD003180. doi:10.1002/14651858.CD003180.pub2 (2005).

  110. 110

    Artinian, N. T. et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122, 406–441 (2010).

    Article  Google Scholar 

  111. 111

    American Association of Diabetes Educators. Guidelines for the practice of diabetes education. American Association of Diabetes Educators [online], (2009).

  112. 112

    National Collaborating Centre for Primary Care and the Centre for Public Health Excellence at NICE. Obesity: guidance on the prevention, identification, assessment and management of overweight and obesity in adults and children. NICE clinical guideline 43. National Institute for Health and Clinical Excellence [online], (2006).

  113. 113

    Knowler, W. C. et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

    Article  Google Scholar 

  114. 114

    Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Free, C. et al. Smoking cessation support delivered via mobile phone text messaging (txt2stop): a single-blind, randomised trial. Lancet 378, 49–55 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Kaltenthaler, E. et al. Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation. Health Technol. Assess. 10, iii, xi–xiv, 1–168 (2006).

    Article  CAS  Google Scholar 

  117. 117

    Vandelanotte, C., Spathonis, K. M., Eakin, E. G. & Owen, N. Website-delivered physical activity interventions a review of the literature. Am. J. Prev. Med. 33, 54–64 (2007).

    Article  Google Scholar 

  118. 118

    Neve, M., Morgan, P. J., Jones, P. R. & Collins, C. E. Effectiveness of web-based interventions in achieving weight loss and weight loss maintenance in overweight and obese adults: a systematic review with meta-analysis. Obes. Rev. 11, 306–321 (2010).

    Article  CAS  Google Scholar 

  119. 119

    Ackermann, R. T. et al. An evaluation of cost sharing to finance a diet and physical activity intervention to prevent diabetes. Diabetes Care 29, 1237–1241 (2006).

    Article  Google Scholar 

  120. 120

    Kronsbein, P. et al. IMAGE: Development of a European curriculum for the training of prevention managers. Br. J. Diabetes Vasc. Dis. 11, 163–167 (2011).

    Article  Google Scholar 

  121. 121

    Bartholomew, L. K. et al. Planning health promotion programs: an intervention mapping approach (John Wiley & Sons, San Francisco, 2011).

    Google Scholar 

  122. 122

    World Health Organization. United Nations high-level meeting on noncommunicable disease prevention and control. Noncommunicable diseases and mental health [online], (2011).

  123. 123

    Pajunen, P. et al. Quality indicators for the prevention of type 2 diabetes in Europe—IMAGE. Horm. Metab. Res. 42 (Suppl. 1), S56–S63 (2010).

    Article  CAS  Google Scholar 

  124. 124

    Technische Universität Dresden. Network Active in diabetes prevention [online], (2011).

  125. 125

    Schwarz, P. E., Muylle, F., Valensi, P. & Hall, M. The European perspective of diabetes prevention. Horm. Metab. Res. 40, 511–514 (2008).

    Article  CAS  Google Scholar 

  126. 126

    Hu, F. B. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34, 1249–1257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Magnusson, R. S. Global health governance and the challenge of chronic, non-communicable disease. J. Law Med. Ethics 38, 490–507 (2010).

    Article  Google Scholar 

  128. 128

    Schwarz, P. E. H., Reddy, P., Greaves, C., Dunbar, J. & Schwarz, J. (Eds) Diabetes Prevention in Practice (TUMAINI, Dresden, 2010).

  129. 129

    Brownell, K. D. et al. The public health and economic benefits of taxing sugar-sweetened beverages. N. Engl. J. Med. 361, 1599–1605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Schwarz, P. E. et al. Prevention in occupational health care--a societal challenge [German]. Med. Klin. (Munich) 103, 210–216 (2008).

    Article  Google Scholar 

  131. 131

    Candeias, V., Armstrong, T. P. & Xuereb, G. C. Diet and physical activity in schools: perspectives from the implementation of the WHO global strategy on diet, physical activity and health [English, French]. Can. J. Public Health 101 (Suppl. 2), S28–S30 (2010).

    PubMed  Google Scholar 

  132. 132

    Lee, J. & Smith, J. P. The effect of health promotion on diagnosis and management of diabetes. J. Epidemiol. Community Health http://dx.doi.org/10.1136/jech.2009.087304.

  133. 133

    Schwarz, P. E. et al. The European perspective of type 2 diabetes prevention: diabetes in Europe--prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. Exp. Clin. Endocrinol. Diabetes 116, 167–172 (2008).

    Article  CAS  Google Scholar 

  134. 134

    Centers for Disease Control and Prevention. National Diabetes Prevention Program. Diabetes Public Health Resource [online], (2011).

  135. 135

    Lindström, J., Absetz, P., Hemiö, K., Peltomäki, P. & Peltonen, M. Reducing the risk of type 2 diabetes with nutrition and physical activity—efficacy and implementation of lifestyle interventions in Finland. Public Health Nutr. 13, 993–999 (2010).

    Article  Google Scholar 

  136. 136

    Schwarz, P. E., Schwarz, J., Schuppenies, A., Bornstein, S. R. & Schulze, J. Development of a diabetes prevention management program for clinical practice. Public Health Rep. 122, 258–263 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Ruch, C., Schwarz, P., Köhler, D., Hoffmann, R. & Landgraf, R. Quality management in diabetes prevention. Br. J. Diabetes Vasc. Dis. 11, 217–222 (2011).

    Article  Google Scholar 

  138. 138

    Rothe, U. et al. Evaluation of a diabetes management system based on practice guidelines, integrated care, and continuous quality management in a Federal State of Germany: a population-based approach to health care research. Diabetes Care 31, 863–868 (2008).

    Article  Google Scholar 

  139. 139

    Schwarz, P. E. & Peltonen, M. Prevention of type 2 diabetes—lessons we have learnt for implementation. Horm. Metab. Res. 39, 636–641 (2007).

    Article  CAS  Google Scholar 

  140. 140

    Ho, L. S., Gittelsohn, J., Harris, S. B. & Ford, E. Development of an integrated diabetes prevention program with First Nations in Canada. Health Promot. Int. 21, 88–97 (2006).

    Article  CAS  Google Scholar 

  141. 141

    Ackermann, R. T., Finch, E. A., Brizendine, E., Zhou, H. & Marrero, D. G. Translating the Diabetes Prevention Program into the community. The DEPLOY Pilot Study. Am. J. Prev. Med. 35, 357–363 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Laatikainen, T. et al. Prevention of type 2 diabetes by lifestyle intervention in an Australian primary health care setting: Greater Green Triangle (GGT) Diabetes Prevention Project. BMC Public Health 7, 249 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143

    Absetz, P. et al. Type 2 diabetes prevention in the “real world”: One-year results of the GOAL implementation trial. Diabetes Care 30, 2465–2470 (2007).

    Article  Google Scholar 

  144. 144

    Kramer, M. K. et al. Translating the Diabetes Prevention Program: a comprehensive model for prevention training and program delivery. Am. J. Prev. Med. 37, 505–511 (2009).

    Article  Google Scholar 

  145. 145

    McTigue, K. M., Conroy, M. B., Bigi, L., Murphy, C. & McNeil, M. Weight loss through living well: translating an effective lifestyle intervention into clinical practice. Diabetes Educ. 35, 199–204, 208 (2009).

    Article  Google Scholar 

  146. 146

    Abraham, C. & Michie, S. A taxonomy of behavior change techniques used in interventions. Health Psychol. 27, 379–387 (2008).

    Article  Google Scholar 

  147. 147

    Green, L. & Kreuter, M. Health program planning: an educational and ecological approach (McGraw-Hill, New York, 2005).

Download references

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Peter E. Schwarz.

Ethics declarations

Competing interests

P. E. Schwarz declares associations with the following companies: AstraZeneca (speaker); Bayer (speaker, consultant, grant/research support); Bristol-Myers Squibb (speaker); GlaxoSmithKline (speaker); Eli Lilly (speaker, consultant); Merck (speaker); MSD (speaker); Novartis (speaker, consultant); Novo Nordisk (speaker, grant/research support); Sanofi (speaker). Moreover, P. E. Schwarz was the main partner of the European funded project IMAGE (Development and Implementation of a European Guideline and Training Standards for Diabetes Prevention), a multi-professional initiative to develop practice recommendations for diabetes prevention practice. C. J. Greaves declares associations with the following companies: Eli Lilly (consultant); GlaxoSmithKline (grant/research support); Novartis (speaker). M J. Davies declares associations with the following companies: Eli Lilly (consultant, speaker, grant/research support); GlaxoSmithKline (consultant, speaker, grant/research support); Novartis (consultant, speaker, grant/research support); Novo Nordisk (consultant, speaker, grant/research support); MSD (consultant, speaker, grant/research support); Pfizer (grant/research support); Roche (consultant, speaker); Sanofi-Aventis (consultant, speaker, grant/research support); Servier (speaker, grant/research support). The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwarz, P., Greaves, C., Lindström, J. et al. Nonpharmacological interventions for the prevention of type 2 diabetes mellitus. Nat Rev Endocrinol 8, 363–373 (2012). https://doi.org/10.1038/nrendo.2011.232

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing