Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting gut microbiota in obesity: effects of prebiotics and probiotics

Abstract

At birth, the human colon is rapidly colonized by gut microbes. Owing to their vast number and their capacity to ferment nutrients and secrete bioactive compounds, these gastrointestinal microbes act as an environmental factor that affects the host's physiology and metabolism, particularly in the context of obesity and its related metabolic disorders. Experiments that compared germ-free and colonized mice or analyzed the influence of nutrients that qualitatively change the composition of the gut microbiota (namely prebiotics) showed that gut microbes induce a wide variety of host responses within the intestinal mucosa and thereby control the gut's barrier and endocrine functions. Gut microbes also influence the metabolism of cells in tissues outside of the intestines (in the liver and adipose tissue) and thereby modulate lipid and glucose homeostasis, as well as systemic inflammation, in the host. A number of studies describe characteristic differences between the composition and/or activity of the gut microbiota of lean individuals and those with obesity. Although these data are controversial, they suggest that specific phyla, classes or species of bacteria, or bacterial metabolic activities could be beneficial or detrimental to patients with obesity. The gut microbiota is, therefore, a potential nutritional and pharmacological target in the management of obesity and obesity-related disorders.

Key Points

  • The host's intrinsic characteristics, such as genetic factors, the state of the immune system and nutrition are important factors for selecting and shaping the gut microbiota

  • Gut microbiota might modulate adiposity by changing the expression of host genes that are involved in fat storage and oxidation, gastrointestinal hormone production and barrier function and in the inflammatory response

  • Although all individuals are born with a specific microbiome, the diet can change both the composition and the activity of the microbiota

  • Certain fermentable carbohydrates with prebiotic properties can counteract the overexpression of several host targets that are involved in the development of adiposity, metabolic disorders and inflammation

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gut microbiota is a central component of the host's phenotype.
Figure 2: The host's metabolic responses to changes affecting its gut microbiota, including colonization of the gut in germ-free mice, obesity and high-fat diet, and administration of prebiotics.

Similar content being viewed by others

References

  1. Reinhardt, C., Reigstad, C. S. & Bäckhed, F. Intestinal microbiota during infancy and its implications for obesity. J. Pediatr. Gastroenterol. Nutr. 48, 249–256 (2009).

    Article  Google Scholar 

  2. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  Google Scholar 

  3. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    Article  CAS  Google Scholar 

  4. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  Google Scholar 

  5. Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    Article  CAS  Google Scholar 

  6. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  Google Scholar 

  7. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Google Scholar 

  8. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  Google Scholar 

  9. Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    Article  CAS  Google Scholar 

  10. Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.) 32, 1720–1724 (2008).

    Article  CAS  Google Scholar 

  11. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18, 190–195 (2010).

    Article  Google Scholar 

  12. Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).

    Article  Google Scholar 

  13. Greiner, T. & Bäckhed, F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol. Metab. 22, 117–123 (2011).

    Article  CAS  Google Scholar 

  14. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    Article  CAS  Google Scholar 

  15. Kovacs, A. et al. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb. Ecol. 61, 423–428 (2011).

    Article  Google Scholar 

  16. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  Google Scholar 

  17. Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  Google Scholar 

  18. Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724 (2009).

    Article  CAS  Google Scholar 

  19. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  Google Scholar 

  20. Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    Article  CAS  Google Scholar 

  21. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    Article  CAS  Google Scholar 

  22. Macfarlane, G. T. & Macfarlane, L. E. Acquisition, evolution and maintenance of the normal gut microbiota. Dig. Dis. 27 (Suppl. 1), 90–98 (2009).

    Article  Google Scholar 

  23. Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268 (2010).

    Article  Google Scholar 

  24. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  Google Scholar 

  25. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  Google Scholar 

  26. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  Google Scholar 

  27. Wostmann, B. S., Larkin, C., Moriarty, A. & Bruckner-Kardoss, E. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab. Anim. Sci. 33, 46–50 (1983).

    CAS  Google Scholar 

  28. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G. protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  CAS  Google Scholar 

  29. Dewulf, E. M. et al. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J. Nutr. Biochem. 22, 712–722 (2011).

    Article  CAS  Google Scholar 

  30. Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011).

    Article  CAS  Google Scholar 

  31. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  Google Scholar 

  32. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    Article  CAS  Google Scholar 

  33. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  Google Scholar 

  34. Yoshida, K., Shimizugawa, T., Ono, M. & Furukawa, H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J. Lipid Res. 43, 1770–1772 (2002).

    Article  CAS  Google Scholar 

  35. Mandard, S. et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 281, 934–944 (2006).

    Article  CAS  Google Scholar 

  36. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  Google Scholar 

  37. Claus, S. P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio. 2, pii: e00271-10 (2011).

    Article  Google Scholar 

  38. Cani, P. D. & Delzenne, N. M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 15, 1546–1558 (2009).

    Article  CAS  Google Scholar 

  39. Cani, P. D. & Delzenne, N. M. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr. Opin. Pharmacol. 9, 737–743 (2009).

    Article  CAS  Google Scholar 

  40. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  Google Scholar 

  41. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    Article  CAS  Google Scholar 

  42. Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    Article  CAS  Google Scholar 

  43. Amar, J. et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008).

    Article  CAS  Google Scholar 

  44. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    Article  CAS  Google Scholar 

  45. Al-Attas, O. S. et al. Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc. Diabetol. 8, 20 (2009).

    Article  Google Scholar 

  46. Deopurkar, R. et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care 33, 991–997 (2010).

    Article  CAS  Google Scholar 

  47. Ghanim, H. et al. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care 32, 2281–2287 (2009).

    Article  CAS  Google Scholar 

  48. Basu, S. et al. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity (Silver Spring) 19, 476–482 (2011).

    Article  CAS  Google Scholar 

  49. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos ONE 5, e9085 (2010).

    Article  Google Scholar 

  50. Ghoshal, S., Witta, J., Zhong, J., de, V. W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    Article  CAS  Google Scholar 

  51. Laugerette, F. et al. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J. Nutr. Biochem. 22, 53–59 (2011).

    Article  CAS  Google Scholar 

  52. Dixon, A. N. et al. Effect of the orlistat on serum endotoxin lipopolysaccharide and adipocytokines in South Asian individuals with impaired glucose tolerance. Int. J. Clin. Pract. 62, 1124–1129 (2008).

    Article  CAS  Google Scholar 

  53. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  Google Scholar 

  54. Muccioli, G. G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010).

    Article  Google Scholar 

  55. Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G518–G525 (2007).

    Article  CAS  Google Scholar 

  56. De La Serre, C. B. et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G440–G448 (2010).

    Article  CAS  Google Scholar 

  57. Maccarrone, M. et al. The endocannabinoid system and its relevance for nutrition. Annu. Rev. Nutr. 30, 423–440 (2010).

    Article  CAS  Google Scholar 

  58. Brignardello, J. et al. Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Aliment. Pharmacol. Ther. 32, 1307–1314 (2010).

    Article  CAS  Google Scholar 

  59. Reigstad, C. S., Lunden, G. O., Felin, J. & Bäckhed, F. Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. Plos ONE 4, e5842 (2009).

    Article  Google Scholar 

  60. Scheja, L. et al. Acute-phase serum amyloid A as a marker of insulin resistance in mice. Exp. Diabetes Res. 2008, 230837 (2008).

    Article  Google Scholar 

  61. Kalliomaki, M., Collado, M. C., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008).

    Article  CAS  Google Scholar 

  62. Collado, M. C., Isolauri, E., Laitinen, K. & Salminen, S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92, 1023–1030 (2010).

    Article  CAS  Google Scholar 

  63. Wu, X. et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 61, 69–78 (2010).

    Article  CAS  Google Scholar 

  64. Cani, P. D., Dewever, C. & Delzenne, N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 92, 521–526 (2004).

    Article  CAS  Google Scholar 

  65. Cani, P. D., Neyrinck, A. M., Maton, N. & Delzenne, N. M. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes. Res. 13, 1000–1007 (2005).

    Article  CAS  Google Scholar 

  66. Cani, P. D., Hoste, S., Guiot, Y. & Delzenne, N. M. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br. J. Nutr. 98, 32–37 (2007).

    Article  CAS  Google Scholar 

  67. Cani, P. D. et al. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55, 1484–1490 (2006).

    Article  CAS  Google Scholar 

  68. Cani, P. D. et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90, 1236–1243 (2009).

    Article  CAS  Google Scholar 

  69. Cani, P. D., Joly, E., Horsmans, Y. & Delzenne, N. M. Oligofructose promotes satiety in healthy human: a pilot study. Eur. J. Clin. Nutr. 60, 567–572 (2006).

    Article  CAS  Google Scholar 

  70. Aronsson, L. et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). Plos ONE 5, (2010).

  71. Ehrlich, S. D. Probiotics—little evidence for a link to obesity. Nat. Rev. Microbiol. 7, 901 (2009).

    Article  CAS  Google Scholar 

  72. Delzenne, N. & Reid, G. No causal link between obesity and probiotics. Nat. Rev. Microbiol. 7, 901 (2009).

    Article  CAS  Google Scholar 

  73. Raoult, D. Human microbiome: take-home lesson on growth promoters? Nature 454, 690–691 (2008).

    Article  CAS  Google Scholar 

  74. Stsepetova, J. et al. Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly. Br. J. Nutr. 105, 1235–1244 (2011).

    Article  Google Scholar 

  75. Andreasen, A. S. et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br. J. Nutr. 104, 1831–1838 (2010).

    Article  CAS  Google Scholar 

  76. Kadooka, Y. et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64, 636–643 (2010).

    Article  CAS  Google Scholar 

  77. Lu, Z. X., Walker, K. Z., Muir, J. G. & O'Dea, K. Arabinoxylan fibre improves metabolic control in people with type II diabetes. Eur. J. Clin. Nutr. 58, 621–628 (2004).

    Article  CAS  Google Scholar 

  78. Garcia, A. L. et al. Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance. Horm. Metab. Res. 38, 761–766 (2006).

    Article  CAS  Google Scholar 

  79. Garcia, A. L. et al. Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur. J. Clin. Nutr. 61, 334–341 (2007).

    Article  CAS  Google Scholar 

  80. Parnell, J. A. & Reimer, R. A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 89, 1751–1759 (2009).

    Article  CAS  Google Scholar 

  81. Luo, J. et al. Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. J. Nutr. 130, 1572–1577 (2000).

    Article  CAS  Google Scholar 

  82. Daubioul, C. A., Horsmans, Y., Lambert, P., Danse, E. & Delzenne, N. M. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur. J. Clin. Nutr. 59, 723–726 (2005).

    Article  CAS  Google Scholar 

  83. Neyrinck, A. M. & Delzenne, N. M. Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders. Curr. Opin. Clin. Nutr. Metab. Care 13, 722–728 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Nathalie M. Delzenne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delzenne, N., Neyrinck, A., Bäckhed, F. et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7, 639–646 (2011). https://doi.org/10.1038/nrendo.2011.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing