Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PPARα: an emerging therapeutic target in diabetic microvascular damage

A Correction to this article was published on 01 September 2010

Abstract

The global pandemic of diabetes mellitus portends an alarming rise in the prevalence of microvascular complications, despite advanced therapies for hyperglycemia, hypertension and dyslipidemia. Peroxisome proliferator-activated receptor α (PPARα) is expressed in organs affected by diabetic microvascular disease (retina, kidney and nerves), and its expression is regulated specifically in these tissues. Experimental evidence suggests that PPARα activation attenuates or inhibits several mediators of vascular damage, including lipotoxicity, inflammation, reactive oxygen species generation, endothelial dysfunction, angiogenesis and thrombosis, and thus might influence intracellular signaling pathways that lead to microvascular complications. PPARα has emerged as a novel target to prevent microvascular disease, via both its lipid-related and lipid-unrelated actions. Despite strong experimental evidence of the potential benefits of PPARα agonists in the prevention of vascular damage, the evidence from clinical studies in patients with diabetes mellitus remains limited. Promising findings from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study on microvascular outcomes are countered by elevations in participants' homocysteine and creatinine levels that might potentially attenuate the benefits of PPARα activation. This Review focuses on the role of PPARα activation in diabetic microvascular disease and highlights the available experimental and clinical evidence from studies of PPARα agonists.

Key Points

  • Activation of peroxisome proliferator-activated receptor α (PPARα) alleviates dyslipidemia and might slow the progression of diabetic microvascular complications through both lipid-related and lipid-unrelated mechanisms

  • Substantial experimental evidence shows that PPARα activation decreases reactive oxygen species generation and inflammatory cytokine expression through both lipid-related and lipid-unrelated effects

  • The influence of PPARα activation on endothelial function remains unresolved, probably owing to species-related differences in PPARα activity and the diversity of regulators of endothelial function

  • Although fenofibrate reduced the need for amputations and laser treatment (albeit without preserving visual acuity) in patients with retinopathy, fibrates cannot yet be recommended for prevention of diabetic microvascular complications

  • Increased serum levels of creatinine, cystatin C and homocysteine during fibrate therapy might reflect a transient impairment of renal function, potentially related to effects of fibrates on renal hemodynamics

  • Large-scale, prospective, randomized trials to evaluate the efficacy of fibrates on microvascular outcomes as primary end points in patients with diabetes mellitus are urgently needed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diabetes-induced microvascular damage and potential protective actions of PPARα agonists.

Similar content being viewed by others

References

  1. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kilpatrick, E. S., Rigby, A. S. & Atkin, S. L. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care 32, 1901–1903 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. [No authors listed] Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group. Kidney Int. 47, 1703–1720 (1995).

  5. Bilous, R. Microvascular disease: what does the UKPDS tell us about diabetic nephropathy? Diabet. Med. 25 (Suppl. 2), 25–29 (2008).

    Article  PubMed  Google Scholar 

  6. Kohner, E. M. Microvascular disease: what does the UKPDS tell us about diabetic retinopathy? Diabet. Med. 25 (Suppl. 2), 20–24 (2008).

    Article  PubMed  Google Scholar 

  7. Patel, A. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Monti, M. C. et al. Familial risk factors for microvascular complications and differential male–female risk in a large cohort of American families with type 1 diabetes. J. Clin. Endocrinol. Metab. 92, 4650–4655 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Freedman, B. I., Bostrom, M., Daeihagh, P. & Bowden, D. W. Genetic factors in diabetic nephropathy. Clin. J. Am. Soc. Nephrol. 2, 1306–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Fioretto, P., Dodson, P. M., Ziegler, D. & Rosenson, R. S. Residual microvascular risk in diabetes: unmet needs and future directions. Nat. Rev. Endocrinol. 6, 19–25 (2010).

    Article  PubMed  Google Scholar 

  11. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lefebvre, P., Chinetti, G., Fruchart, J. C. & Staels, B. Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biscetti, F. et al. Peroxisome proliferator-activated receptors and angiogenesis. Nutr. Metab. Cardiovasc. Dis. 19, 751–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa, T., Kosugi, T., Haneda, M., Rivard, C. J. & Long, D. A. Abnormal angiogenesis in diabetic nephropathy. Diabetes 58, 1471–1478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruan, X. Z., Varghese, Z. & Moorhead, J. F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 5, 713–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg, R. B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab. 94, 3171–3182 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sourris, K. C. & Forbes, J. M. Interactions between advanced glycation end-products (AGE) and their receptors in the development and progression of diabetic nephropathy—are these receptors valid therapeutic targets. Curr. Drug Targets 10, 42–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Williams, M. D. & Nadler, J. L. Inflammatory mechanisms of diabetic complications. Curr. Diab. Rep. 7, 242–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Navarro-González, J. F. & Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 19, 433–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Tuttle, K. R. Linking metabolism and immunology: diabetic nephropathy is an inflammatory disease. J. Am. Soc. Nephrol. 16, 1537–1538 (2005).

    Article  PubMed  Google Scholar 

  21. Gurley, S. B. & Coffman, T. M. The renin–angiotensin system and diabetic nephropathy. Semin. Nephrol. 27, 144–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kang, Y. S. et al. Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrol. Dial. Transplant. 24, 73–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Quattrini, C., Jeziorska, M., Boulton, A. J. & Malik, R. A. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care 31, 140–145 (2008).

    Article  PubMed  Google Scholar 

  24. Mount, P. F. & Power, D. A. Nitric oxide in the kidney: functions and regulation of synthesis. Acta Physiol. (Oxf.) 187, 433–446 (2006).

    Article  CAS  Google Scholar 

  25. Toda, N. & Nakanishi-Toda, M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog. Retin. Eye Res. 26, 205–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Johnstone, M. T. et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88, 2510–2516 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Williams, S. B., Cusco, J. A., Roddy, M. A., Johnstone, M. T. & Creager, M. A. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol. 27, 567–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Levy, D. & Zochodne, D. W. NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract. 4, 11–18 (2004).

    Article  PubMed  Google Scholar 

  29. Dogra, G., Rich, L., Stanton, K. & Watts, G. F. Endothelium-dependent and independent vasodilation studies at normoglycemia in type I diabetes mellitus with and without microalbuminuria. Diabetologia 44, 593–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen, T. T. et al. Inflammatory, hemostatic, and other novel biomarkers for diabetic retinopathy: the multi-ethnic study of atherosclerosis. Diabetes Care 32, 1704–1709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Astrup, A. S. et al. Markers of endothelial dysfunction and inflammation in type 1 diabetic patients with or without diabetic nephropathy followed for 10 years: association with mortality and decline of glomerular filtration rate. Diabetes Care 31, 1170–1176 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Lopes-Virella, M. F. et al. Risk factors related to inflammation and endothelial dysfunction in the DCCT/EDIC cohort and their relationship with nephropathy and macrovascular complications. Diabetes Care 31, 2006–2012 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garbarino, J. & Sturley, S. L. Saturated with fat: new perspectives on lipotoxicity. Curr. Opin. Clin. Nutr. Metab. Care 12, 110–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Tikhonenko, M. et al. Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 59, 219–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Lyons, T. J., Li, W., Wells-Knecht, M. C. & Jokl, R. Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes 43, 1090–1095 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Fredrikson, G. N. et al. Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia 52, 1426–1433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sapieha, P. et al. Proliferative retinopathies: angiogenesis that blinds. Int. J. Biochem. Cell Biol. 42, 5–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Chowdhury, T. A., Hopkins, D., Dodson, P. M. & Vafidis, G. C. The role of serum lipids in exudative diabetic maculopathy: is there a place for lipid lowering therapy? Eye (Lond.) 16, 689–693 (2002).

    Article  CAS  Google Scholar 

  39. Simó, R. & Hernández, C. Advances in the medical treatment of diabetic retinopathy. Diabetes Care 32, 1556–1562 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kasiske, B. L., O'Donnell, M. P., Cleary, M. P. & Keane, W. F. Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int. 33, 667–672 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Wiggin, T. D. et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes 58, 1634–1640 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vincent, A. M. et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58, 2376–2385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klein, B. E., Moss, S. E., Klein, R. & Surawicz, T. S. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology 98, 1261–1265 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. van Leiden, H. A. et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch. Ophthalmol. 121, 245–251 (2003).

    Article  PubMed  Google Scholar 

  45. Chew, E. Y. et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch. Ophthalmol. 114, 1079–1084 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Colhoun, H. M. et al. Risk factors for renal failure: the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44 (Suppl. 2), S46–S53 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Cusick, M. et al. Risk factors for renal replacement therapy in the Early Treatment Diabetic Retinopathy Study (ETDRS), Early Treatment Diabetic Retinopathy Study Report No. 26. Kidney Int. 66, 1173–1179 (2004).

    Article  PubMed  Google Scholar 

  48. Mulec, H., Johnsen, S. A., Wiklund, O. & Björck, S. Cholesterol: a renal risk factor in diabetic nephropathy? Am. J. Kidney Dis. 22, 196–201 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Thomas, M. C. et al. Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care 29, 317–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Tolonen, N. et al. Lipid abnormalities predict progression of renal disease in patients with type 1 diabetes. Diabetologia 52, 2522–2530 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Maser, R. E. et al. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes 38, 1456–1461 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Kempler, P. et al. Autonomic neuropathy is associated with increased cardiovascular risk factors: the EURODIAB IDDM Complications Study. Diabet. Med. 19, 900–909 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Tesfaye, S. et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, F. et al. Tissue-specific expression of PPAR mRNAs in diabetic rats and divergent effects of cilostazol. Can. J. Physiol. Pharmacol. 86, 465–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Guan, Y. Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J. Am. Soc. Nephrol. 15, 2801–2815 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Portilla, D. Energy metabolism and cytotoxicity. Semin. Nephrol. 23, 432–438 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Cullingford, T. E. et al. Distribution of mRNAs encoding the peroxisome proliferator-activated receptor α, β, and γ and the retinoid X receptor α, β, and γ in rat central nervous system. J. Neurochem. 70, 1366–1375 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Deplanque, D. et al. Peroxisome proliferator-activated receptor-α activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J. Neurosci. 23, 6264–6271 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bento-Abreu, A., Tabernero, A. & Medina, J. M. Peroxisome proliferator-activated receptor-α is required for the neurotrophic effect of oleic acid in neurons. J. Neurochem. 103, 871–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, J., Racke, M. K. & Drew, P. D. Peroxisome proliferator-activated receptor-α agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J. Neurochem. 103, 1801–1810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leisewitz, A. V., Urrutia, C. R., Martinez, G. R., Loyola, G. & Bronfman, M. A PPARs cross-talk concertedly commits C6 glioma cells to oligodendrocytes and induces enzymes involved in myelin synthesis. J. Cell. Physiol. 217, 367–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Feng, D., Zhang, Y. & Chen, G. Cortical expression of peroxisome proliferator-activated receptor-α after human brain contusion. J. Int. Med. Res. 36, 783–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Poynter, M. E. & Daynes, R. A. Peroxisome proliferator-activated receptor α activation modulates cellular redox status, represses nuclear factor κB signaling, and reduces inflammatory cytokine production in aging. J. Biol. Chem. 273, 32833–32841 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Delerive, P. et al. Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Meissner, M. et al. PPARα activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation. Circ. Res. 94, 324–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Fisslthaler, B. & Fleming, I. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ. Res. 105, 114–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, J. et al. Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp. Eye Res. 84, 886–893 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Goya, K. et al. Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 658–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Marx, N., Sukhova, G. K., Collins, T., Libby, P. & Plutzky, J. PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99, 3125–3131 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Okayasu, T., Tomizawa, A., Suzuki, K., Manaka, K. & Hattori, Y. PPARα activators upregulate eNOS activity and inhibit cytokine-induced NF-κB activation through AMP-activated protein kinase activation. Life Sci. 82, 884–891 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Blanco-Rivero, J. et al. Long-term fenofibrate treatment impairs endothelium-dependent dilation to acetylcholine by altering the cyclooxygenase pathway. Cardiovasc. Res. 75, 398–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Hostetler, H. A., Petrescu, A. D., Kier, A. B. & Schroeder, F. Peroxisome proliferator-activated receptor α interacts with high affinity and is conformationally responsive to endogenous ligands. J. Biol. Chem. 280, 18667–18682 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Rojas, C. V. et al. Long-term n-3 FA deficiency modifies peroxisome proliferator-activated receptor β mRNA abundance in rat ocular tissues. Lipids 37, 367–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Puskás, L. G. et al. Cholesterol and cholesterol plus DHA diet-induced gene expression and fatty acid changes in mouse eye and brain. Biochimie 86, 817–824 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. San Giovanni, J. P. & Chew, E. Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 24, 87–138 (2005).

    Article  CAS  Google Scholar 

  76. Balakumar, P., Chakkarwar, V. A. & Singh, M. Ameliorative effect of combination of benfotiamine and fenofibrate in diabetes-induced vascular endothelial dysfunction and nephropathy in the rat. Mol. Cell. Biochem. 320, 149–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Park, C. W. et al. PPARα agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 69, 1511–1517 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Park, C. W. et al. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor α. Diabetes 55, 885–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Kamijo, Y. et al. Identification of functions of peroxisome proliferator-activated receptor α in proximal tubules. J. Am. Soc. Nephrol. 13, 1691–1702 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Xu, J., Chavis, J. A., Racke, M. K. & Drew, P. D. Peroxisome proliferator-activated receptor-α and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. J. Neuroimmunol. 176, 95–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Mishra, R., Emancipator, S. N., Miller, C., Kern, T. & Simonson, M. S. Adipose differentiation-related protein and regulators of lipid homeostasis identified by gene expression profiling in the murine db/db diabetic kidney. Am. J. Physiol. Renal Physiol. 286, F913–F921 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Ledwith, B. J. et al. Induction of cyclooxygenase-2 expression by peroxisome proliferators and non-tetradecanoylphorbol 12,13-myristate-type tumor promoters in immortalized mouse liver cells. J. Biol. Chem. 272, 3707–3714 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Wilson, M. W. et al. Altered hepatic eicosanoid concentrations in rats treated with the peroxisome proliferators ciprofibrate and perfluorodecanoic acid. Arch. Toxicol. 69, 491–497 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Yoshinari, M. et al. Effect of gemfibrozil on serum levels of prostacyclin and precursor fatty acids in hyperlipidemic patients with type 2 diabetes. Diabetes Res. Clin. Pract. 42, 149–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Hao, C. M. & Breyer, M. D. Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 70, 357–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, Y. J. & Quilley, J. Fenofibrate treatment of diabetic rats reduces nitrosative stress, renal cyclooxygenase-2 expression, and enhanced renal prostaglandin release. J. Pharmacol. Exp. Ther. 324, 658–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Ansquer, J. C. et al. Effect of fenofibrate on kidney function: a 6-week randomized crossover trial in healthy people. Am. J. Kidney Dis. 51, 904–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Forsblom, C. et al. Effects of long-term fenofibrate treatment on markers of renal function in type 2 diabetes: the FIELD Helsinki substudy. Diabetes Care 33, 215–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Hottelart, C., El Esper, N., Rose, F., Achard, J. M. & Fournier, A. Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron 92, 536–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Yi, F. & Li, P. L. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am. J. Nephrol. 28, 254–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Maron, B. A. & Loscalzo, J. The treatment of hyperhomocysteinemia. Annu. Rev. Med. 60, 39–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dierkes, J., Westphal, S. & Luley, C. Serum homocysteine increases after therapy with fenofibrate or bezafibrate. Lancet 354, 219–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Taskinen, M. R. et al. Relationships of HDL cholesterol, ApoA-I, and ApoA-II with homocysteine and creatinine in patients with type 2 diabetes treated with fenofibrate. Arterioscler. Thromb. Vasc. Biol. 29, 950–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Dayal, S. et al. Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. Am. J. Physiol. Heart Circ. Physiol. 295, H816–H825 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Loscalzo, J. Homocysteine-mediated thrombosis and angiostasis in vascular pathobiology. J. Clin. Invest. 119, 3203–3205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dayal, S. & Lentz, S. R. Role of redox reactions in the vascular phenotype of hyperhomocysteinemic animals. Antioxid. Redox Signal. 9, 1899–1909 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Legendre, C. et al. Fenofibrate induces a selective increase of protein-bound homocysteine in rodents: a PPARα-mediated effect. Biochem. Biophys. Res. Commun. 295, 1052–1056 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Yideng, J. et al. Homocysteine-mediated PPARα, γ DNA methylation and its potential pathogenic mechanism in monocytes. DNA Cell Biol. 27, 143–150 (2008).

    Article  PubMed  CAS  Google Scholar 

  99. Mikael, L. G., Genest, J. Jr & Rozen, R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ. Res. 98, 564–571 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Michalik, L., Desvergne, B. & Wahli, W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer 4, 61–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Peters, J. M., Cheung, C. & Gonzalez, F. J. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J. Mol. Med. 83, 774–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Panigrahy, D. et al. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl Acad. Sci. USA 105, 985–990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hiukka, A. et al. Long-term effects of fenofibrate on carotid intima–media thickness and augmentation index in subjects with type 2 diabetes mellitus. J. Am. Coll. Cardiol. 52, 2190–2197 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Hogue, J. C. et al. Differential effect of atorvastatin and fenofibrate on plasma oxidized low-density lipoprotein, inflammation markers, and cell adhesion molecules in patients with type 2 diabetes mellitus. Metabolism 57, 380–386 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Rosenson, R. S., Wolff, D. A., Huskin, A. L., Helenowski, I. B. & Rademaker, A. W. Fenofibrate therapy ameliorates fasting and postprandial lipoproteinemia, oxidative stress, and the inflammatory response in subjects with hypertriglyceridemia and the metabolic syndrome. Diabetes Care 30, 1945–1951 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Desideri, G. et al. Effects of bezafibrate and simvastatin on endothelial activation and lipid peroxidation in hypercholesterolemia: evidence of different vascular protection by different lipid-lowering treatments. J. Clin. Endocrinol. Metab. 88, 5341–5347 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Playford, D. A., Watts, G. F., Best, J. D. & Burke, V. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am. J. Cardiol. 90, 1254–1257 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Playford, D. A., Watts, G. F., Croft, K. D. & Burke, V. Combined effect of coenzyme Q10 and fenofibrate on forearm microcirculatory function in type 2 diabetes. Atherosclerosis 168, 169–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Evans, M. et al. Ciprofibrate therapy improves endothelial function and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus. Circulation 101, 1773–1779 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Avogaro, A. et al. Gemfibrozil improves insulin sensitivity and flow-mediated vasodilatation in type 2 diabetic patients. Eur. J. Clin. Invest. 31, 603–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Scott, R. et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 32, 493–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kohner, E. M. & Oakley, N. W. Diabetic retinopathy. Metabolism 24, 1085–1102 (1975).

    Article  CAS  PubMed  Google Scholar 

  113. Keech, A. C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 370, 1687–1697 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Ansquer, J. C., Foucher, C., Aubonnet, P. & Le Malicot, K. Fibrates and microvascular complications in diabetes—insight from the FIELD study. Curr. Pharm. Des. 15, 537–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Ansquer, J. C. et al. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am. J. Kidney Dis. 45, 485–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Smulders, Y. M. et al. Can reduction in hypertriglyceridaemia slow progression of microalbuminuria in patients with non-insulin-dependent diabetes mellitus? Eur. J. Clin. Invest. 27, 997–1002 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Nagai, T., Tomizawa, T., Nakajima, K. & Mori, M. Effect of bezafibrate or pravastatin on serum lipid levels and albuminuria in NIDDM patients. J. Atheroscler. Thromb. 7, 91–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Rajamani, K. et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet 373, 1780–1788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tanne, D. et al. C-reactive protein as a predictor of incident ischemic stroke among patients with preexisting cardiovascular disease. Stroke 37, 1720–1724 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Buse, J. B. et al. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am. J. Cardiol. 99, 21i–33i (2007).

    Article  PubMed  Google Scholar 

  121. Lalloyer, F. & Staels, B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler. Thromb. Vasc. Biol. 30, 894–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M. Maranghi holds a fellowship from Sapienza University, Rome, Italy. We thank Laura Impivaara for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja-Riitta Taskinen.

Ethics declarations

Competing interests

N. Matikainen declares that she has acted as a consultant for Novartis and Orion. M.-R.Taskinen declares that she has acted as a consultant for Kowa, Merck Sharpe & Dohme, and Novartis, received grant or research support from Eli Lilly, Merck Sharpe & Dohme, Sanofi-Aventis and Takeda, and is a member of the speakers' bureau or has received honoraria from Merck Sharpe & Dohme and Merck Schering-Plough. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiukka, A., Maranghi, M., Matikainen, N. et al. PPARα: an emerging therapeutic target in diabetic microvascular damage. Nat Rev Endocrinol 6, 454–463 (2010). https://doi.org/10.1038/nrendo.2010.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing