Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antibacterial effects of vitamin D

A Correction to this article was published on 25 July 2011

This article has been updated


Interaction between vitamin D and the immune system has been recognized for many years, but its relevance to normal human physiology has only become evident in the past 5 years. Studies of innate immune responses to pathogens such as Mycobacterium tuberculosis have shown that pathogen-recognition receptor-mediated activation of localized vitamin D metabolism and signaling is a key event associated with infection. Vitamin D, acting in an intracrine fashion, is able to induce expression of antibacterial proteins and enhance the environment in which they function. The net effect of these actions is to support increased bacterial killing in a variety of cell types. The efficacy of such a response is highly dependent on vitamin D status; in other words, the availability of circulating 25-hydroxyvitamin D for intracrine conversion to active 1,25-dihydroxyvitamin D by the enzyme 25-hydroxyvitamin D-1α-hydroxylase. The potential importance of this mechanism as a determinant of human disease is underlined by increasing awareness of vitamin D insufficiency across the globe. This Review will explore the molecular and cellular systems associated with antibacterial responses to vitamin D in different tissues and possible consequences of such a response for the prevention and treatment of human immune disorders.

Key Points

  • Nonclassical effects of vitamin D have been recognized for many years, but only in the past 5 years have these effects been accepted as an important component of vitamin D physiology

  • Immune cells, such as monocytes and macrophages, contain all the machinery required to synthesize and respond to active vitamin D, 1,25-dihydroxyvitamin D, and this machinery is enhanced by challenge to the immune system

  • 1,25-dihydroxyvitamin D stimulates innate immune antibacterial activity in a variety of cell types by increasing production of antimicrobial factors and by enhancing mechanisms associated with autophagy

  • Vitamin D insufficiency is now a global health issue, even in developed countries

  • Vitamin D insufficiency may compromise antibacterial activity and increase the risk of infectious diseases; vitamin D may also regulate innate immune responses in noninfectious settings

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Vitamin-D-induced cathelicidin expression and monocyte bacterial killing.
Figure 2: Cooperative nuclear factor κB signaling enhances vitamin-D-induced β-defensin 4A and monocyte bacterial killing.

Change history

  • 25 May 2011

    In the online and print versions of this article initially published, the published online date was 25 January 2010. The published online date should have been 25 January 2011. The error has been corrected for the HTML and PDF versions of the article.


  1. 1

    Chapuy, M. C. et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos. Int. 7, 439–443 (1997).

    CAS  PubMed  Google Scholar 

  2. 2

    Heaney, R. P., Dowell, M. S., Hale, C. A. & Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr. 22, 142–146 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Adams, J. S. & Hewison, M. Update in vitamin D. J. Clin. Endocrinol. Metab. 95, 471–478 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Souberbielle, J. C. et al. Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmun. Rev. 9, 709–715 (2010).

    CAS  PubMed  Google Scholar 

  5. 5

    Holick, M. F. Vitamin D status: measurement, interpretation, and clinical application. Ann. Epidemiol. 19, 73–78 (2009).

    PubMed  Google Scholar 

  6. 6

    Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Holick, M. F. Vitamin D: its role in cancer prevention and treatment. Prog. Biophys. Mol. Biol. 92, 49–59 (2006).

    CAS  PubMed  Google Scholar 

  8. 8

    Adams, J. S. & Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab. 4, 80–90 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Gombart, A. F., Luong, Q. T. & Koeffler, H. P. Vitamin D compounds: activity against microbes and cancer. Anticancer Res. 26, 2531–2542 (2006).

    CAS  PubMed  Google Scholar 

  10. 10

    Zehnder, D. et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J. Clin. Endocrinol. Metab. 86, 888–894 (2001).

    CAS  PubMed  Google Scholar 

  11. 11

    Rook, G. A. et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 57, 159–163 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Bunce, C. M., Brown, G. & Hewison, M. Vitamin D and haematopoiesis. Trends Endocrinol. Metab. 8, 245–251 (1997).

    CAS  PubMed  Google Scholar 

  13. 13

    Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Risso, A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J. Leukoc. Biol. 68, 785–792 (2000).

    CAS  PubMed  Google Scholar 

  17. 17

    Adams, J. S. et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol. 182, 4289–4295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Wang, T. T. et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173, 2909–2912 (2004).

    CAS  Google Scholar 

  19. 19

    Gombart, A. F., Borregaard, N. & Koeffler, H. P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 19, 1067–1077 (2005).

    CAS  Google Scholar 

  20. 20

    Gombart, A. F., Saito, T. & Koeffler, H. P. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 10, 321 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Liu, P. T. et al. Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS ONE 4, e5810 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Kao, C. Y., Kim, C., Huang, F. & Wu, R. Requirements for two proximal NF-kappaB binding sites and IkappaB-zeta in IL-17A-induced human beta-defensin 2 expression by conducting airway epithelium. J. Biol. Chem. 283, 15309–15318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Wang, T. T. et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn's disease. J. Biol. Chem. 285, 2227–2231 (2010).

    CAS  PubMed  Google Scholar 

  24. 24

    Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6, 9–20 (2006).

    CAS  PubMed  Google Scholar 

  25. 25

    Krishnan, A. V. & Feldman, D. Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment. Endocr. Relat. Cancer 17, R19–R38 (2010).

    CAS  PubMed  Google Scholar 

  26. 26

    Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  27. 27

    Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  28. 28

    Krutzik, S. R. et al. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J. Immunol. 181, 7115–7120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Sly, L. M., Lopez, M., Nauseef, W. M. & Reiner, N. E. 1Alpha,25-dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J. Biol. Chem. 276, 35482–35493 (2001).

    CAS  PubMed  Google Scholar 

  30. 30

    Kohchi, C., Inagawa, H., Nishizawa, T. & Soma, G. ROS and innate immunity. Anticancer Res. 29, 817–821 (2009).

    CAS  PubMed  Google Scholar 

  31. 31

    Chan, J., Xing, Y., Magliozzo, R. S. & Bloom, B. R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175, 1111–1122 (1992).

    CAS  PubMed  Google Scholar 

  32. 32

    Rockett, K. A. et al. 1,25-dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect. Immun. 66, 5314–5321 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yang, C. S. et al. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J. Immunol. 182, 3696–3705 (2009).

    CAS  PubMed  Google Scholar 

  34. 34

    Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    CAS  Google Scholar 

  35. 35

    Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  Google Scholar 

  37. 37

    Deretic, V. & Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Høyer-Hansen, M., Bastholm, L., Mathiasen, I. S., Elling, F. & Jäättelä, M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ. 12, 1297–1309 (2005).

    PubMed  Google Scholar 

  39. 39

    Wang, J., Lian, H., Zhao, Y., Kauss, M. A. & Spindel, S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J. Biol. Chem. 283, 25596–25605 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Yuk, J. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6, 231–243 (2009).

    CAS  PubMed  Google Scholar 

  41. 41

    Shin, D. M. et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signaling. Cell. Microbiol. 12, 1648–1665 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    O'Kelly, J., Uskokovic, M., Lemp, N., Vadgama, J. & Koeffler, H. P. Novel Gemini-vitamin D3 analog inhibits tumor cell growth and modulates the Akt/mTOR signaling pathway. J. Steroid Biochem. Mol. Biol. 100, 107–116 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Sanjuan, M. A., Milasta, S. & Green, D. R. Toll-like receptor signaling in the lysosomal pathways. Immunol. Rev. 227, 203–220 (2009).

    CAS  PubMed  Google Scholar 

  44. 44

    Takahashi, K. et al. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1alpha,25-dihydroxyvitamin D3. Immunopharmacol. Immunotoxicol. 24, 335–347 (2002).

    CAS  PubMed  Google Scholar 

  45. 45

    Sørensen, O., Cowland, J. B., Askaa, J. & Borregaard, N. An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J. Immunol. Methods 206, 53–59 (1997).

    PubMed  Google Scholar 

  46. 46

    Schauber, J. et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Invest. 117, 803–811 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Nijnik, A., Pistolic, J., Wyatt, A., Tam, S. & Hancock, R. E. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J. Immunol. 183, 5788–5798 (2009).

    CAS  PubMed  Google Scholar 

  48. 48

    Carretero, M. et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J. Invest. Dermatol. 128, 223–236 (2008).

    CAS  PubMed  Google Scholar 

  49. 49

    Schauber, J. & Gallo, R. L. Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J. Invest. Dermatol. 127, 510–512 (2007).

    CAS  PubMed  Google Scholar 

  50. 50

    Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

    CAS  PubMed  Google Scholar 

  51. 51

    Evans, K. N. et al. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol. Reprod. 75, 816–822 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Liu, N. et al. Vitamin D induces innate antibacterial responses in human trophoblasts via an intracrine pathway. Biol. Reprod. 80, 398–406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Zehnder, D. et al. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am. J. Pathol. 161, 105–114 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Evans, K. N., Bulmer, J. N., Kilby, M. D. & Hewison, M. Vitamin D and placental-decidual function. J. Soc. Gynecol. Investig. 11, 263–271 (2004).

    CAS  PubMed  Google Scholar 

  55. 55

    King, A. E. et al. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28, 161–169 (2007).

    CAS  PubMed  Google Scholar 

  56. 56

    Romero, R. et al. The role of inflammation and infection in preterm birth. Semin. Reprod. Med. 25, 21–39 (2007).

    CAS  PubMed  Google Scholar 

  57. 57

    Gombart, A. F., O'Kelly, J., Saito, T. & Koeffler, H. P. Regulation of the CAMP gene by 1,25(OH)2D3 in various tissues. J. Steroid Biochem. Mol. Biol. 103, 552–557 (2007).

    CAS  PubMed  Google Scholar 

  58. 58

    Yim, S., Dhawan, P., Ragunath, C., Christakos, S. & Diamond, G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J. Cyst. Fibros. 6, 403–410 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Hansdottir, S. et al. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol. 181, 7090–7099 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Schauber, J., Dorschner, R. A., Yamasaki, K., Brouha, B. & Gallo, R. L. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118, 509–519 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Lagishetty, V. et al. 1alpha-hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines. J. Steroid Biochem. Mol. Biol. 121, 228–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Bell, N. H., Stern, P. H., Pantzer, E., Sinha, T. K. & DeLuca, H. F. Evidence that increased circulating 1 alpha, 25-dihydroxyvitamin D is the probable cause for abnormal calcium metabolism in sarcoidosis. J. Clin. Invest. 64, 218–225 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Papapoulos, S. E. et al. 1, 25-dihydroxycholecalciferol in the pathogenesis of the hypercalcaemia of sarcoidosis. Lancet 1, 627–630 (1979).

    CAS  PubMed  Google Scholar 

  64. 64

    Barbour, G. L., Coburn, J. W., Slatopolsky, E., Norman, A. W. & Horst, R. L. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N. Engl. J. Med. 305, 440–443 (1981).

    CAS  PubMed  Google Scholar 

  65. 65

    Adams, J. S., Sharma, O. P., Gacad, M. A. & Singer, F. R. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J. Clin. Invest. 72, 1856–1860 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Adams, J. S. & Gacad, M. A. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med. 161, 755–765 (1985).

    CAS  PubMed  Google Scholar 

  67. 67

    Bosch, X. Hypercalcemia due to endogenous overproduction of 1,25-dihydroxyvitamin D in Crohn's disease. Gastroenterology 114, 1061–1065 (1998).

    CAS  PubMed  Google Scholar 

  68. 68

    Karakelides, H. et al. Vitamin D-mediated hypercalcemia in slack skin disease: evidence for involvement of extrarenal 25-hydroxyvitamin D 1alpha-hydroxylase. J. Bone Miner. Res. 21, 1496–1499 (2006).

    PubMed  Google Scholar 

  69. 69

    Hewison, M. et al. Vitamin D-mediated hypercalcemia in lymphoma: evidence for hormone production by tumor-adjacent macrophages. J. Bone Miner. Res. 18, 579–582 (2003).

    PubMed  Google Scholar 

  70. 70

    Abreu, M. T. et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut 53, 1129–1136 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Kallas, M., Green, F., Hewison, M., White, C. & Kline, G. Rare causes of calcitriol-mediated hypercalcemia: a case report and literature review. J. Clin. Endocrinol. Metab. 95, 3111–3117 (2010).

    CAS  PubMed  Google Scholar 

  72. 72

    Evans, K. N. et al. Increased expression of 25-hydroxyvitamin D-1alpha-hydroxylase in dysgerminomas: a novel form of humoral hypercalcemia of malignancy. Am. J. Pathol. 165, 807–813 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Chan, T. Y. Vitamin D deficiency and susceptibility to tuberculosis. Calcif. Tissue Int. 66, 476–478 (2000).

    CAS  PubMed  Google Scholar 

  74. 74

    Wejse, C. et al. Serum 25-hydroxyvitamin D in a West African population of tuberculosis patients and unmatched healthy controls. Am. J. Clin. Nutr. 86, 1376–1383 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Williams, B., Williams, A. J. & Anderson, S. T. Vitamin D deficiency and insufficiency in children with tuberculosis. Pediatr. Infect. Dis. J. 27, 941–942 (2008).

    PubMed  Google Scholar 

  76. 76

    Ustianowski, A., Shaffer, R., Collin, S., Wilkinson, R. J. & Davidson, R. N. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J. Infect. 50, 432–437 (2005).

    CAS  PubMed  Google Scholar 

  77. 77

    Chocano-Bedoya, P. & Ronnenberg, A. G. Vitamin D and tuberculosis. Nutr. Rev. 67, 289–293 (2009).

    PubMed  Google Scholar 

  78. 78

    Kamboh, M. I. & Ferrell, R. E. Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations. Hum. Genet. 72, 281–293 (1986).

    CAS  PubMed  Google Scholar 

  79. 79

    Martineau, A. R. et al. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur. Respir. J. 35, 1106–1112 (2010).

    CAS  PubMed  Google Scholar 

  80. 80

    Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Chun, R. F. et al. Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J. Clin. Endocrinol. Metab. 95, 3368–3376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Martineau, A. R., Honecker, F. U., Wilkinson, R. J. & Griffiths, C. J. Vitamin D in the treatment of pulmonary tuberculosis. J. Steroid Biochem. Mol. Biol. 103, 793–798 (2007).

    CAS  PubMed  Google Scholar 

  83. 83

    Martineau, A. R. et al. A single dose of vitamin D enhances immunity to mycobacteria. Am. J. Respir. Crit. Care Med. 176, 208–213 (2007).

    CAS  PubMed  Google Scholar 

  84. 84

    Nursyam, E. W., Amin, Z. & Rumende, C. M. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones. 38, 3–5 (2006).

    PubMed  Google Scholar 

  85. 85

    Wejse, C. et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 179, 843–850 (2009).

    CAS  PubMed  Google Scholar 

  86. 86

    Janssens, W. et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax 65, 215–220 (2010).

    PubMed  Google Scholar 

  87. 87

    Cannell, J. J. et al. Epidemic influenza and vitamin D. Epidemiol. Infect. 134, 1129–1140 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Aloia, J. F. & Li-Ng, M. Re: epidemic influenza and vitamin D. Epidemiol. Infect. 135, 1095–1096 (2007).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Bergman, P., Walter-Jallow, L., Broliden, K., Agerberth, B. & Söderlund, J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res. 5, 410–415 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Gombart, A. F. et al. Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin. Infect. Dis. 48, 418–424 (2009).

    CAS  Google Scholar 

  91. 91

    Jeng, L. et al. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med. 7, 28 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Vagianos, K., Bector, S., McConnell, J. & Bernstein, C. N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enteral. Nutr. 31, 311–319 (2007).

    CAS  PubMed  Google Scholar 

  93. 93

    Pappa, H. M. et al. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics 118, 1950–1961 (2006).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Pappa, H. M., Grand, R. J. & Gordon, C. M. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm. Bowel Dis. 12, 1162–1174 (2006).

    PubMed  Google Scholar 

  95. 95

    Kong, J. et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G208–G216 (2008).

    CAS  PubMed  Google Scholar 

  96. 96

    Froicu, M. & Cantorna, M. T. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. 8, 5 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Froicu, M. et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol. Endocrinol. 17, 2386–2392 (2003).

    CAS  PubMed  Google Scholar 

  98. 98

    Liu, N. et al. Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology 149, 4799–4808 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Lagishetty, V. et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 151, 2423–2432 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Cantorna, M. T. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog. Biophys. Mol. Biol. 92, 60–64 (2006).

    CAS  PubMed  Google Scholar 

  101. 101

    Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4, 269–273 (2003).

    CAS  PubMed  Google Scholar 

  102. 102

    Packey, C. D. & Sartor, R. B. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr. Opin. Infect. Dis. 22, 292–301 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Gersemann, M., Wehkamp, J., Fellermann, K. & Stange, E. F. Crohn's disease—defect in innate defence. World J. Gastroenterol. 14, 5499–5503 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hewison, M. Antibacterial effects of vitamin D. Nat Rev Endocrinol 7, 337–345 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing