Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipodystrophy: pathophysiology and advances in treatment

Abstract

Lipodystrophy is a medical condition characterized by complete or partial loss of adipose tissue. Not infrequently, lipodystrophy occurs in combination with pathological accumulation of adipose tissue at distinct anatomical sites. Patients with lipodystrophy exhibit numerous metabolic complications, which indicate the importance of adipose tissue as an active endocrine organ. Not only the total amount but also the appropriate distribution of adipose tissue depots contribute to the metabolic state. Genetic and molecular research has improved our understanding of the mechanisms underlying lipodystrophy. Circulating levels of hormones secreted by the adipose tissue, such as leptin and adiponectin, are greatly reduced in distinct subpopulations of patients with lipodystrophy. This finding rationalizes the use of these adipokines or of agents that increase their circulating levels, such as peroxisome proliferator-activated receptor γ (PPARγ) agonists, for therapeutic purposes. Other novel therapeutic approaches, including the use of growth hormone and growth-hormone-releasing factors, are also being studied as potential additions to the therapeutic armamentarium. New insights gained from research and clinical trials could potentially revolutionize the management of this difficult-to-treat condition.

Key Points

  • Lipodystrophy is characterized by complete or partial loss of adipose tissue (lipoatrophy) that can occur in conjunction with pathological accumulation of adipose tissue (lipohypertrophy) in other regions of the body

  • Patients with lipodystrophy suffer from numerous metabolic complications, which shows the importance of adipose tissue as an active endocrine organ

  • Not only the total amount but also the distribution of adipose tissue depots contribute to the metabolic state

  • Lipodystrophy can be inherited or acquired, although inherited lipodystrophy syndromes are exceedingly rare

  • Currently, the most prevalent type of lipodystrophy is an acquired form that occurs among HIV-infected individuals treated with highly active antiretroviral therapy

  • Circulating levels of adipokines are greatly reduced in distinct subpopulations of patients with lipodystrophy, rationalizing the use of these hormones or of agents that increase their concentrations for therapeutical purposes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adipose tissue redistribution in HIV-infected patients on highly active antiretroviral therapy.

Similar content being viewed by others

References

  1. Garg, A. & Agarwal, A. K. Lipodystrophies: disorders of adipose tissue biology. Biochim. Biophys. Acta 1791, 507–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mallewa, J. E. et al. HIV-associated lipodystrophy: a review of underlying mechanisms and therapeutic options. J. Antimicrob. Chemother. 62, 648–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Nagy, G. S. et al. Human immunodeficiency virus type 1-related lipoatrophy and lipohypertrophy are associated with serum concentrations of leptin. Clin. Infect. Dis. 36, 795–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Goodpaster, B. H. Measuring body fat distribution and content in humans. Curr. Opin. Clin. Nutr. Metab. Care 5, 481–487 (2002).

    Article  PubMed  Google Scholar 

  5. Viskovic, K. et al. Assessment of ultrasound for use in detecting lipoatrophy in HIV-infected patients taking combination antiretroviral therapy. AIDS Patient Care STDS 23, 79–84 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garg, A. & Misra, A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol. Metab. Clin. North Am. 33, 305–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gomes, K. B. et al. Mutations in the seipin and AGPAT2 genes clustering in consanguineous families with Berardinelli–Seip congenital lipodystrophy from two separate geographical regions of Brazil. J. Clin. Endocrinol. Metab. 89, 357–361 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Gomes, K. B., Pardini, V. C., Ferreira, A. C., Fonseca, C. G. & Fernandes, A. P. Founder effect of the 669insA mutation in BSCL2 gene causing Berardinelli–Seip congenital lipodystrophy in a cluster from Brazil. Ann. Hum. Genet. 71, 729–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Simha, V., Agarwal, A. K., Aronin, P. A., Iannaccone, S. T. & Garg, A. Novel subtype of congenital generalized lipodystrophy associated with muscular weakness and cervical spine instability. Am. J. Med. Genet. A 146A, 2318–2326 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haque, W. A., Shimomura, I., Matsuzawa, Y. & Garg, A. Serum adiponectin and leptin levels in patients with lipodystrophies. J. Clin. Endocrinol. Metab. 87, 2395 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal, A. K. et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 31, 21–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Simha, V. & Garg, A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J. Clin. Endocrinol. Metab. 88, 5433–5437 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Magré, J. et al. Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28, 365–370 (2001).

    Article  PubMed  Google Scholar 

  14. Payne, V. A. et al. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57, 2055–2060 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boutet, E. et al. Seipin deficiency alters fatty acid Delta 9 desaturation and lipid droplet formation in Berardinelli–Seip congenital lipodystrophy. Biochimie 91, 796–803 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Mercier, I. et al. Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Lab. Invest. 89, 614–623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, C. A. et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli–Seip congenital lipodystrophy. J. Clin. Endocrinol. Metab. 93, 1129–1134 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi, Y. K. et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 119, 2623–2633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Misra, A. & Garg, A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore) 82, 129–146 (2003).

    Article  Google Scholar 

  20. Pope, E., Janson, A., Khambalia, A. & Feldman, B. Childhood acquired lipodystrophy: a retrospective study. J. Am. Acad. Dermatol. 55, 947–950 (2006).

    Article  PubMed  Google Scholar 

  21. Cao, H. & Hegele, R. A. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9, 109–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal, A. K. & Garg, A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J. Clin. Endocrinol. Metab. 87, 408–411 (2002).

    CAS  PubMed  Google Scholar 

  23. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan, K. et al. Analysis of genetic variation in Akt2/PKB-beta in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes 56, 714–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Rubio-Cabezas, O. et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol. Med. 1, 280–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Novelli, G. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71, 426–431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Garg, A. Medical progress: acquired and inherited lipodystrophies. N. Engl. J. Med. 350, 1220–1234 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Garg, A. Gender differences in the prevalence of metabolic complications in familial partial lipodystrophy (Dunnigan variety). J. Clin. Endocrinol. Metab. 85, 1776–1782 (2000).

    CAS  PubMed  Google Scholar 

  30. Vantyghem, M. C. et al. Fertility and obstetrical complications in women with LMNA-related familial partial lipodystrophy. J. Clin. Endocrinol. Metab. 93, 2223–2229 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Spuler, S. et al. Muscle and nerve pathology in Dunnigan familial partial lipodystrophy. Neurology 68, 677–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Boguslavsky, R. L., Stewart, C. L. & Worman, H. J. Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 15, 653–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Misra, A., Peethambaram, A. & Garg, A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore) 83, 18–34 (2004).

    Article  CAS  Google Scholar 

  34. Oswiecimska, J., Ziora, K., Geisler, G. & Dyduch, A. Acquired partial lipodystrophy in an 11-year-old girl. Pediatr. Int. 50, 714–716 (2008).

    Article  PubMed  Google Scholar 

  35. Hegele, R. A. et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet. 79, 383–389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shlay, J. C. et al. The effect of individual antiretroviral drugs on body composition in HIV-infected persons initiating highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 51, 298–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Villarroya, F., Domingo, P. & Giralt, M. Drug-induced lipotoxicity: lipodystrophy associated with HIV-1 infection and antiretroviral treatment. Biochim. Biophys. Acta 1801, 392–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kotler, D. P. Hepatitis C, human immunodeficiency virus and metabolic syndrome: interactions. Liver Int. 29 (Suppl. 2), 38–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. McDermott, A. Y. et al. CD4+ cell count, viral load, and highly active antiretroviral therapy use are independent predictors of body composition alterations in HIV-infected adults: a longitudinal study. Clin. Infect. Dis. 41, 1662–1670 (2005).

    Article  PubMed  Google Scholar 

  40. Blümer, R. M. et al. Zidovudine/lamivudine contributes to insulin resistance within 3 months of starting combination antiretroviral therapy. AIDS 22, 227–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Divi, R. L. et al. Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to Zidovudine. Environ. Mol. Mutagen. 48, 179–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Maagaard, A. & Kvale, D. Long term adverse effects related to nucleoside reverse transcriptase inhibitors: clinical impact of mitochondrial toxicity. Scand. J. Infect. Dis. 41, 808–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Pacenti, M. et al. Microarray analysis during adipogenesis identifies new genes altered by antiretroviral drugs. AIDS 20, 1691–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Lagathu, C. et al. Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir. Ther. 12, 489–500 (2007).

    CAS  PubMed  Google Scholar 

  45. Chandra, S., Mondal, D. & Agrawal, K. C. HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone. Exp. Biol. Med. (Maywood) 234, 442–453 (2009).

    Article  CAS  Google Scholar 

  46. Dubé, M. P. et al. Long-term body fat outcomes in antiretroviral-naive participants randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005s, a substudy of Adult Clinical Trials Group 384. J. Aquir. Immune Defic. Syndr. 45, 508–514 (2007).

    Article  Google Scholar 

  47. Lee, B. et al. Low prevalence of insulin resistance among HIV-infected children receiving nonnucleoside reverse transcriptase inhibitor-based highly active antiretroviral therapy in Thailand. HIV Med. 10, 72–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Haubrich, R. H. et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 23, 1109–1118 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. El Hadri, K. et al. In vitro suppression of the lipogenic pathway by the nonnucleoside reverse transcriptase inhibitor efavirenz in 3T3 and human preadipocytes or adipocytes. J. Biol. Chem. 279, 15130–15141 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Blas-García, A. et al. Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology 52, 115–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Ranade, K. et al. Genetic analysis implicates resistin in HIV lipodystrophy. AIDS 22, 1561–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Nolan, D. et al. Tumour necrosis factor-alpha gene-238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS 17, 121–123 (2003).

    Article  PubMed  Google Scholar 

  53. Shrivastav, S. et al. Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor {gamma} and inhibits adipocyte differentiation: implications for HIV-associated lipodystrophy. Mol. Endocrinol. 22, 234–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Hadigan, C., Borgonha, S., Rabe, J., Young, V. & Grinspoon, S. Increased rates of lipolysis among human immunodeficiency virus-infected men receiving highly active antiretroviral therapy. Metabolism 51, 1143–1147 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sevastianova, K. et al. Adipose tissue inflammation and liver fat in patients with highly active antiretroviral therapy-associated lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 295, E85–E91 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Sievers, M. et al. Gene expression and immunohistochemistry in adipose tissue of HIV type 1-infected patients with nucleoside analogue reverse-transcriptase inhibitor-associated lipoatrophy. J. Infect. Dis. 200, 252–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Johnson, J. A. et al. Increased systemic and adipose tissue cytokines in patients with HIV-associated lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286, E261–E271 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Rydén, M. & Arner, P. Tumour necrosis factor-alpha in human adipose tissue—from signalling mechanisms to clinical implications. J. Intern. Med. 262, 431–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Shoelson, S. E., Herrero, L. & Naaz, A. Obesity, inflammation, and insulin resistance. Gastroenterology 132, 2169–2180 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Addy, C. L. et al. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J. Clin. Endocrinol. Metab. 88, 627–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Krauss, R. M. et al. AHA Dietary Guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 102, 2284–2299 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. [No authors listed] American Diabetes Association position statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. J. Am. Diet. Assoc. 102, 109–118 (2002).

  63. Turcinov, D., Stanley, C., Rutherford, G. W., Novotny, T. E. & Begovac, J. Adherence to the Mediterranean diet is associated with a lower risk of body-shape changes in Croatian patients treated with combination antiretroviral therapy. Eur. J. Epidemiol. 24, 267–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsiodras, S. et al. Adherence to Mediterranean diet is favorably associated with metabolic parameters in HIV-positive patients with the highly active antiretroviral therapy-induced metabolic syndrome and lipodystrophy. Metabolism 58, 854–859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shah, M. et al. The role of diet, exercise and smoking in dyslipidaemia in HIV-infected patients with lipodystrophy. HIV Med. 6, 291–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Hendricks, K. M. et al. High-fiber diet in HIV-positive men is associated with lower risk of developing fat deposition. Am. J. Clin. Nutr. 78, 790–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dong, K. R. & Hendricks, K. M. The role of nutrition in fat deposition and fat atrophy in patients with HIV. Nutr. Clin. Care. 8, 31–36 (2005).

    PubMed  Google Scholar 

  68. Gavrila, A. et al. Exercise and vitamin E intake are independently associated with metabolic abnormalities in human immunodeficiency virus-positive subjects: a cross-sectional study. Clin. Infect. Dis. 36, 1593–1601 (2003).

    Article  PubMed  Google Scholar 

  69. Wilson, D. E., Chan, I. F., Stevenson, K. B., Horton, S. C. & Schipke, C. Eucaloric substitution of medium chain triglycerides for dietary long-chain fatty-acids in acquired total lipodystrophy: effects on hyperlipoproteinemia and endogenous insulin resistance. J. Clin. Endocrinol. Metab. 57, 517–523 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. Jones, S. P., Doran, D. A., Leatt, P. B., Maher, B. & Pirmohamed, M. Short-term exercise training improves body composition and hyperlipidaemia in HIV-positive individuals with lipodystrophy. AIDS 15, 2049–2051 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Terry, L. et al. Exercise training in HIV-1-infected individuals with dyslipidemia and lipodystrophy. Med. Sci. Sports Exerc. 38, 411–417 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lindegaard, B. et al. The effect of strength and endurance training on insulin sensitivity and fat distribution in human immunodeficiency virus-infected patients with lipodystrophy. J. Clin. Endocrinol. Metab. 93, 3860–3869 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Yarasheski, K. E. et al. Resistance exercise training reduces hypertriglyceridemia in HIV-infected men treated with antiviral therapy. J. Appl. Physiol. 90, 133–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Florindo, A. A., de Oliveira Latorre Mdo, R., Jaime, P. C. & Segurado, A. A. Leisure time physical activity prevents accumulation of central fat in HIV/AIDS subjects on highly active antiretroviral therapy. Int. J. STD AIDS 18, 692–696 (2007).

    Article  PubMed  Google Scholar 

  75. Domingo, P. et al. Fat distribution and metabolic abnormalities in HIV-infected patients on first combination antiretroviral therapy including stavudine or zidovudine: role of physical activity as a protective factor. Antivir. Ther. 8, 223–231 (2003).

    CAS  PubMed  Google Scholar 

  76. Driscoll, S. D. et al. Effects of exercise training and metformin on body composition and cardiovascular indices in HIV-infected patients. AIDS 18, 465–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Leyes, P., Martínez, E. & Forga Mde,T. Use of diet, nutritional supplements and exercise in HIV-infected patients receiving combination antiretroviral therapies: a systematic review. Antivir. Ther. 13, 149–159 (2008).

    PubMed  Google Scholar 

  78. Hadigan, C. et al. Metformin in the treatment of HIV lipodystrophy syndrome: A randomized controlled trial. JAMA 284, 472–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Hadigan, C., Rabe, J. & Grinspoon, S. Sustained benefits of metformin therapy on markers of cardiovascular risk in human immunodeficiency virus-infected patients with fat redistribution and insulin resistance. J. Clin. Endocrinol. Metab. 87, 4611–4615 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. van Wijk, J. P. et al. Comparison of rosiglitazone and metformin for treating HIV lipodystrophy: a randomized trial. Ann. Intern. Med. 143, 337–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Martínez, E. et al. Effects of metformin or gemfibrozil on the lipodystrophy of HIV-infected patients receiving protease inhibitors. Antivir. Ther. 8, 403–410 (2003).

    PubMed  Google Scholar 

  82. Diehl, L. A. et al. Metformin increases HDL3-cholesterol and decreases subcutaneous truncal fat in nondiabetic patients with HIV-associated lipodystrophy. AIDS Patient Care and STDS 22, 779–786 (2008).

    Article  PubMed  Google Scholar 

  83. Kohli, R., Shevitz, A., Gorbach, S. & Wanke, C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 8, 420–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Anghel, S. I. et al. Adipose tissue integrity as a prerequisite for systemic energy balance: a critical role for peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 282, 29946–29957 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Moreau, F. et al. Efficacy of pioglitazone in familial partial lipodystrophy of the Dunnigan type: a case report. Diabetes Metab. 33, 385–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Iwanishi, M. et al. Clinical characteristics and efficacy of pioglitazone in a Japanese diabetic patient with an unusual type of familial partial lipodystrophy. Metabolism 58, 1681–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Gambineri, A. et al. Monogenic polycystic ovary syndrome due to a mutation in the lamin A/C gene is sensitive to thiazolidinediones but not to metformin. Eur. J. Endocrinol. 159, 347–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Collet-Gaudillat, C., Billon-Bancel, A. & Beressi, J. P. Long-term improvement of metabolic control with pioglitazone in a woman with diabetes mellitus related to Dunnigan syndrome: a case report. Diabetes Metab. 35, 151–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Schindler, K. et al. The effect of rosiglitazone on insulin sensitivity, beta cell function, bone mineral density, and body composition in HIV-positive patients on highly-active antiretroviral therapy (HAART). Horm. Metab. Res. 41, 573–579 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Lüdtke, A. et al. Long-term treatment experience in a subject with Dunnigan-type familial partial lipodystrophy: efficacy of rosiglitazone. Diabetic Med. 22, 1611–1613 (2005).

    Article  PubMed  Google Scholar 

  91. Owen, K. R., Donohoe, M., Ellard, S. & Hattersley, A. T. Response to treatment with rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene. Diabet. Med. 20, 823–827 (2003).

    Article  PubMed  Google Scholar 

  92. Simha, V., Rao, S. & Garg, A. Prolonged thiazolidinedione therapy does not reverse fat loss in patients with familial partial lipodystrophy, Dunnigan variety. Diabetes Obes. Metab. 10, 1275–1276 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Raboud, J. M. et al. A meta-analysis of six placebo-controlled trials of thiazolidinedione therapy for HIV lipoatrophy. HIV Clin. Trials 11, 39–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gelato, M. C. et al. Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. J. Acquir. Immune Defic. Syndr. 31, 163–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Cavalcanti, R. B. et al. A randomized, placebo-controlled trial of rosiglitazone for HIV-related lipoatrophy. J. Infect. Dis. 195, 1754–1761 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Sutinen, J. et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy—a randomized double-blind placebo-controlled study. Antivir. Ther. 8, 199–207 (2003).

    CAS  PubMed  Google Scholar 

  97. Hadigan, C. et al. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann. Intern. Med. 140, 786–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Feldt, T. et al. Evaluation of safety and efficacy of rosiglitazone in the treatment of HIV-associated lipodystrophy syndrome. Infection 34, 55–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Carr, A. et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet 363, 429–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Hadigan, C., Mazza, S., Crum, D. & Grinspoon, S. Rosiglitazone increases small dense low-density lipoprotein concentration and decreases high-density lipoprotein particle size in HIV-infected patients. AIDS 21, 2543–2546 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Oette, M. et al. Impact of rosiglitazone treatment on the bioavailability of antiretroviral compounds in HIV-positive patients. J. Antimicrob. Chemother. 56, 416–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Gavrila, A. et al. Improvement in highly active antiretroviral therapy-induced metabolic syndrome by treatment with pioglitazone but not with fenofibrate: a 2 × 2 factorial, randomized, double-blinded, placebo-controlled trial. Clin. Infect. Dis. 40, 745–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Slama, L. et al. Effect of pioglitazone on HIV-1-related lipodystrophy: a randomized double-blind placebo-controlled trial (ANRS 113). Antivir. Ther. 13, 67–76 (2008).

    CAS  PubMed  Google Scholar 

  105. Lago, R. M., Singh, P. P. & Nesto, R. W. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370, 1129–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Yaturu, S., Bryant, B. & Jain, S. K. Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30, 1574–1576 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Dunn, F. L., Higgins, L. S., Fredrickson, J. & Depaoli, A. M. ; for the INT131-004 study group. Selective modulation of PPARgamma activity can lower plasma glucose without typical thiazolidinedione side-effects in patients with type 2 diabetes. J. Diabetes Complications doi:10.1016/j.jdiacomp.2010.06.006.

  108. Sax, P. E. Strategies for management and treatment of dyslipidemia in HIV/AIDS. AIDS Care 18, 149–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Macallan, D. C. et al. Treatment of altered body composition in HIV-associated lipodystrophy: comparison of rosiglitazone, pravastatin, and recombinant human growth hormone. HIV Clin. Trials 9, 254–268 (2008).

    Article  PubMed  Google Scholar 

  110. Johns, K. W., Bennett, M. T. & Bondy, G. P. Are HIV positive patients resistant to statin therapy? Lipids Health Dis. 6, 27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mallon, P. W. et al. Effect of pravastatin on body composition and markers of cardiovascular disease in HIV-infected men—a randomized, placebo-controlled study. AIDS 20, 1003–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Stein, J. H. et al. Effects of pravastatin on lipoproteins and endothelial function in patients receiving human immunodeficiency virus protease inhibitors. Am. Heart J. 147, E18 (2004).

    PubMed  Google Scholar 

  113. Hürlimann, D. et al. Effects of statins on endothelial function and lipid profile in HIV infected persons receiving protease inhibitor-containing anti-retroviral combination therapy: a randomised double blind crossover trial. Heart 92, 110–112 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nolan, D. et al. Endothelial function in HIV-infected patients receiving protease inhibitor therapy: does immune competence affect cardiovascular risk? QJM 96, 825–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. de Gaetano Donati, K., Rabagliati, R., Iacoviello, L. & Cauda, R. HIV infection, HAART, and endothelial adhesion molecules: current perspectives. Lancet Infect. Dis. 4, 213–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Fichtenbaum, C. J. et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 16, 569–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Aberg, J. A. et al. Pharmacokinetic interaction between nelfinavir and pravastatin in HIV-seronegative volunteers: ACTG study A5108. AIDS 20, 725–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Gerber, J. G. et al. Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS Clinical Trials Group 5108 Study. J. Acquir. Immune Defic. Syndr. 39, 307–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Rao, A., D'Amico, S., Balasubramanyam, A. & Maldonado, M. Fenofibrate is effective in treating hypertriglyceridemia associated with HIV lipodystrophy. Am. J. Med. Sci. 327, 315–318 (2004).

    Article  PubMed  Google Scholar 

  120. Miller, J. et al. A randomized, double-blind study of gemfibrozil for the treatment of protease inhibitor-associated hypertriglyceridaemia. AIDS 16, 2195–2200 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Packard, K. A. et al. Comparison of gemfibrozil and fenofibrate in patients with dyslipidemic coronary heart disease. Pharmacotherapy 22, 1527–1532 (2002).

    Article  PubMed  Google Scholar 

  122. Wu, J., Song, Y., Li, H. & Chen, J. Rhabdomyolysis associated with fibrate therapy: review of 76 published cases and a new case report. Eur. J. Clin. Pharmacol. 65, 1169–1174 (2009).

    Article  PubMed  Google Scholar 

  123. Gerber, M. T. et al. Niacin in HIV-infected individuals with hyperlipidemia receiving potent antiretroviral therapy. Clin. Infect. Dis. 39, 419–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Dubé, M. P. et al. Safety and efficacy of extended-release niacin for the treatment of dyslipidaemia in patients with HIV infection: AIDS Clinical Trials Group Study A5148. Antivir. Ther. 11, 1081–1089 (2006).

    PubMed  PubMed Central  Google Scholar 

  125. Hadigan, C., Liebau, J., Torriani, M., Andersen, R. & Grinspoon, S. Improved triglycerides and insulin sensitivity with 3 months of acipimox in human immunodeficiency virus-infected patients with hypertriglyceridemia. J. Clin. Endocrinol. Metab. 91, 4438–4444 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Coll, B., Aragonés, G., Parra, S., Alonso-Villaverde, C. & Masana, L. Ezetimibe effectively decreases LDL-cholesterol in HIV-infected patients. AIDS 20, 1675–1677 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Dubé, M. P . et al. Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medicine Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin. Infect. Dis. 37, 613–627 (2003).

    Article  PubMed  Google Scholar 

  128. Lundgren, J. D. et al. European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 9, 72–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Sutinen, J. et al. Uridine supplementation for the treatment of antiretroviral therapy-associated lipoatrophy: a randomized, double-blind, placebo-controlled trial. Antivir. Ther. 12, 97–105 (2007).

    CAS  PubMed  Google Scholar 

  130. McComsey, G. A. et al. A 48-week randomized study of uridine supplementation vs switch to TDF on limb fat, mitochondrial function, inflammation, and bone mineral density in HIV lipoatrophy. 17th Conference on Retroviruses and Opportunistic Infections Paper 723 (2010).

    Google Scholar 

  131. Stanley, T. L. & Grinspoon, S. K. GH/GHRH axis in HIV lipodystrophy. Pituitary 12, 143–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Wanke, C., Gerrior, J., Kantaros, J., Coakley, E. & Albrecht, M. Recombinant human growth hormone improves the fat redistribution syndrome (lipodystrophy) in patients with HIV. AIDS 13, 2099–2103 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Grunfeld, C. et al. Recombinant human growth hormone to treat HIV-associated adipose redistribution syndrome: 12 week induction and 24-week maintenance therapy. J. Aquir. Immune Defic. Syndr. 45, 286–297 (2007).

    CAS  Google Scholar 

  134. Bickel, M. et al. A randomized, open-label study to compare the effects of two different doses of recombinant human growth hormone on fat reduction and fasting metabolic parameters in HIV-1-infected patients with lipodystrophy. HIV Med. 7, 397–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Lo, J. et al. Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA 300, 509–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Engelson, E. S. et al. Effect of recombinant human growth hormone in the treatment of visceral fat accumulation in HIV infection. J. Acquir. Immune Defic. Syndr. 30, 379–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Andersen, O. et al. Low-dose growth hormone and human immunodeficiency virus-associated lipodystrophy syndrome: a pilot study. Eur. J. Clin. Invest. 34, 561–568 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Honda, M. et al. Effectiveness of subcutaneous growth hormone in HIV-1 patients with moderate to severe facial lipoatrophy. Intern. Med. 46, 359–362 (2007).

    Article  PubMed  Google Scholar 

  139. Luzi, L. et al. GH treatment reduces trunkal adiposity in HIV-infected patients with lipodystrophy: a randomized placebo-controlled study. Eur. J. Endocrinol. 153, 781–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Koutkia, P. et al. Growth hormone-releasing hormone in HIV-infected men with lipodystrophy: a randomized controlled trial. JAMA 292, 210–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Falutz, J. et al. A placebo-controlled, dose-ranging study of a growth hormone releasing factor in HIV-infected patients with abdominal fat accumulation. AIDS 19, 1279–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Falutz, J. et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N. Engl. J. Med. 357, 2359–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Falutz, J. et al. Effects of tesamorelin, a growth hormone-releasing factor, in HIV-infected patients with abdominal fat accumulation: a randomized placebo-controlled trial with a safety extension. J. Aquir. Immune Defic. Syndr. 53, 311–322 (2010).

    Article  CAS  Google Scholar 

  144. Brown, T. T. Approach to the human immunodeficiency virus-infected patient with lipodystrophy. J. Clin. Endocrinol. Metab. 93, 2937–2945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sweeney, L. L., Brennan, A. M. & Mantzoros, C. S. The role of adipokines in relation to HIV lipodystrophy. AIDS 21, 895–904 (2007).

    Article  PubMed  Google Scholar 

  146. Coope, A. et al. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett. 582, 1471–1476 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Tong, Q. et al. Regulation of adiponectin in human immunodeficiency virus-infected patients: relationship to body composition and metabolic indices. J. Clin. Endocrinol. Metab. 88, 1559–1564 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Vigouroux, C. et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 17, 1503–1511 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Antuna-Puente, B. et al. Higher adiponectin levels in patients with Berardinelli–Seip congenital lipodystrophy due to seipin as compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J. Clin. Endocrinol. Metab. 95, 1463–1468 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Mynarcik, D. C. et al. Adiponectin and leptin levels in HIV-infected subjects with insulin resistance and body fat redistribution. J. Acquir. Immune Defic. Syndr. 31, 514–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Duntas, L. H., Popovic, V. & Panotopoulos, G. Adiponectin: novelties in metabolism and hormonal regulation. Nutr. Neurosci. 7, 195–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Xu, A., Yin, S., Wong, L., Chan, K. W. & Lam, K. S. Adiponectin ameliorates dyslipidemia induced by the human immunodeficiency virus protease inhibitor ritonavir in mice. Endocrinology 145, 487–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Asilmaz, E. et al. Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J. Clin. Invest. 113, 414–424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Mantzoros, C. S. Role of leptin in reproduction. Ann. NY Acad. Sci. 900, 174–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Kelesidis, T., Kelesidis, I., Chou, S. & Mantzoros, C. S. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann. Intern. Med. 152, 93–100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kim, J. K., Gavrilova, O., Chen, Y., Reitmann, M. L. & Shulman, G. I. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J. Biol. Chem. 275, 8456–8460 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Ceddia, R. B. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int. J. Obes. (Lond.) 29, 1175–1183 (2005).

    Article  CAS  Google Scholar 

  160. Duan, S. Z. et al. Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality. J. Clin. Invest. 117, 812–822 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Razani, B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277, 8635–8647 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Cortés, V. A. et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 9, 165–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Burant, C. F. et al. Troglitazone action is independent of adipose tissue. J. Clin. Invest. 100, 2900–2908 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Moitra, J. et al. Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ebihara, K. et al. Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 50, 1440–1448 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Colombo, C. et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes 51, 2727–2733 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Mantzoros, C. S. W(h)ither metreleptin for lipodystrophy and the metabolic syndrome? Endocr. Pract 29, 1–18 (2010).

    Google Scholar 

  169. Wong, S. L., DePaoli, A. M., Lee, J. H. & Mantzoros, C. S. Leptin hormonal kinetics in the fed state: effects of adiposity, age, and gender on endogenous leptin production and clearance rates. J. Clin. Endocrinol. Metab. 89, 2672–2677 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Chan, J. L., Wong, S. L., Orlova, C., Raciti, P. & Mantzoros, C. S. Pharmacokinetics of recombinant methionyl human leptin after subcutaneous administration: variation of concentration-dependent parameters according to assay. J. Clin. Endocrinol. Metab. 92, 2307–2311 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Chan, J. L., Wong, S. L. & Mantzoros, C. S. Pharmacokinetics of subcutaneous recombinant methionyl human leptin administration in healthy subjects in the fed and fasting states: regulation by gender and adiposity. Clin. Pharmacokinet. 47, 753–764 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Beltrand, J. et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli–Seip congenital lipoatrophy. Pediatrics 120, E291–E296 (2007).

    Article  PubMed  Google Scholar 

  173. Chong, A. Y., Lupsa, B. C., Cochran, E. K. & Gorden, P. Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologia 53, 27–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Ebihara, K. et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J. Clin. Endocrinol. Metab. 92, 532–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Javor, E. D. et al. Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes 54, 1994–2002 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Javor, E. D. et al. Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy. Hepatology 41, 753–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Oral, E. A. & Chan, J. L. Rationale for leptin-replacement therapy for severe lipodystrophy. Endocr. Pract. 16, 324–333 (2010).

    Article  PubMed  Google Scholar 

  178. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Moran, S. A. et al. Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. Metabolism 53, 513–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. McDuffie, J. R. et al. Effects of exogenous leptin on satiety and satiation in patients with lipodystrophy and leptin insufficiency. J. Clin. Endocrinol. Metab. 89, 4258–4263 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Guettier, J. M. et al. Leptin therapy for partial lipodystrophy linked to a PPAR-gamma mutation. Clin. Endocrinol. (Oxf) 68, 547–554 (2008).

    Article  CAS  Google Scholar 

  183. Park, J. Y., Javor, E. D., Cochran, E. K., DePaoli, A. M. & Gorden, P. Long-term efficacy of leptin replacement in patients with Dunnigan-type familial partial lipodystrophy. Metabolism 56, 508–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Javor, E. D. et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J. Clin. Endocrinol. Metab. 89, 3199–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Musso, C. et al. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism 54, 255–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Oral, E. A. et al. Leptin replacement therapy modulates circulating lymphocyte subsets and cytokine responsiveness in severe lipodystrophy. J. Clin. Endocrinol. Metab. 91, 621–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Savage, D. B. & O'Rahilly, S. Leptin therapy in lipodystrophy. Diabetologia 53, 7–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Beltrand, J. et al. Resistance to leptin-replacement therapy in Berardinelli–Seip congenital lipodystrophy: an immunological origin. Eur. J. Endocrinol. 162, 1083–1091 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Lee, J. H., Chan, J. L., Sourlas, E., Raptopoulos, V. & Mantzoros, C. S. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J. Clin. Endocrinol. Metab. 91, 2605–2611 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Mulligan, K. et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J. Clin. Endocrinol. Metab. 94, 1137–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mantzoros, C. S. Whither recombinant human leptin treatment for HIV-associated lipoatrophy and the metabolic syndrome? J. Clin. Endocrinol. Metab. 94, 1089–1091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Brennan, A. M. et al. r-metHuLeptin improves highly active antiretroviral therapy-induced lipoatrophy and the metabolic syndrome, but not through altering circulating IGF and IGF-binding protein levels: observational and interventional studies in humans. Eur. J. Endocrinol. 160, 173–176 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Magkos, F. & Mantzoros, C. S. Body fat redistribution and metabolic abnormalities in HIV-infected patients on highly active antiretroviral therapy: novel insights into pathophysiology and emerging opportunities for treatment. Metabolism (2010) [in press].

  194. [No authors listed] Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 372, 293–299 (2008).

  195. Centers for Disease Control and Prevention. HIV Surveillance Report, 2008; vol. 20 [online], (2010).

  196. Herbst, K. L. et al. Köbberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care 26, 1819–1824 (2003).

    Article  PubMed  Google Scholar 

  197. Monajemi, H. et al. Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. J. Clin. Endocrinol. Metab. 92, 1606–1612 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Rosen, E. D. et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Cao, H., Alston, L., Ruschman, J. & Hegele, R. A. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 7, 3 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Leow, M. K., Addy, C. L. & Mantzoros, C. S. Clinical review 159: Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies. J. Clin. Endocrinol. Metab. 88, 1961–1976 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Grinspoon, S. & Carr, A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N. Engl. J. Med. 352, 48–62 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. S. Mantzoros is supported by grants DK-58785, DK-79929, DK-081913 and AG-032030 from the NIH. His work on HIV-related lipodystrophy has been supported by the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Contributions

C. G. Fiorenza and S. H. Chou researched the data for the article. All authors provided a substantial contribution to discussions of the content, contributed equally to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Christos S. Mantzoros.

Ethics declarations

Competing interests

C. S. Mantzoros declares an association with the following company: Amylin (grant/research support). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorenza, C., Chou, S. & Mantzoros, C. Lipodystrophy: pathophysiology and advances in treatment. Nat Rev Endocrinol 7, 137–150 (2011). https://doi.org/10.1038/nrendo.2010.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing