Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress responses: the contribution of prostaglandin E2 and its receptors

Abstract

Stress is a state of physiological or psychological strain caused by adverse stimuli; responses to stress include activation of the sympathetic nervous system, glucocorticoid secretion and emotional behaviors. Prostaglandin E2 (PGE2), acting through its four receptor subtypes (EP1, EP2, EP3 and EP4), is involved in these stress responses. Studies of EP-selective drugs and mice lacking specific EPs have identified the neuronal pathways regulated by PGE2. In animals with febrile illnesses, PGE2 acts on neurons expressing EP3 in the preoptic hypothalamus. In illness-induced activation of the hypothalamic–pituitary–adrenal axis, EP1 and EP3 regulate distinct neuronal pathways that converge at the paraventricular hypothalamus. During psychological stress, EP1 suppresses impulsive behaviors via the midbrain dopaminergic systems. PGE2 promotes illness-induced memory impairment, yet also supports hippocampus-dependent memory formation and synaptic plasticity via EP2 in physiological conditions. In response to illness, PGE2 is synthesized by enzymes induced in various cell types inside and outside the brain, whereas constitutively expressed enzymes in neurons and/or microglia synthesize PGE2 in response to psychological stress. Dependent on the type of stress stimuli, PGE2 released from different cell types activates distinct EP receptors, which mobilize multiple neuronal pathways, resulting in stress responses.

Key Points

  • Prostaglandin E2 (PGE2) regulates multiple responses to illness and psychological stress via distinct PGE receptor subtypes (EP1, EP2, EP3 and EP4)

  • During illness-induced fever, PGE2 activates EP3 in neurons in the preoptic hypothalamus, which promotes two independent effector mechanisms: heat production in brown adipose tissue and vasoconstriction of the skin

  • In illness-induced activation of the hypothalamic–pituitary–adrenal axis, EP1 and EP3 mediate distinct neuronal pathways that converge on neurons in the paraventricular hypothalamus that contain corticotropin-releasing factor

  • Under psychological stress, the PGE2–EP1 signaling pathway regulates impulsive behaviors via the midbrain dopaminergic system

  • PGE2 regulates illness-induced impairment of memory formation, but under physiological conditions (without illness), it supports hippocampus-dependent memory formation and synaptic plasticity via EP2

  • PGE2 is synthesized by enzymes induced inside and outside the brain in response to illness and by constitutive enzymes in neurons and/or microglia in response to psychological stress

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PGE2 synthesis, prostaglandin E receptor subtypes and subtype-selective compounds.
Figure 2: Proposed sites of PGE2 production during illness and psychological stress.
Figure 3: Neuronal pathways involved in stress responses to illness.
Figure 4: EP1-mediated regulation of dopaminergic systems under psychological stress.
Figure 5: Proposed mechanisms in EP2-mediated control of synaptic plasticity.

Similar content being viewed by others

References

  1. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  2. Vollmer-Conna, U. Acute sickness behavior: an immune system-to-brain communication? Psychol. Med. 31, 761–767 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Ivanov, A. I. & Romanovsky, A. A. Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front. Biosci. 9, 1977–1993 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Turnbull, A. V. & Rivier, C. L. Regulation of the hypothalamic–pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79, 1–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Elmquist, J. K., Scammell, T. E. & Saper, C. B. Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci. 20, 565–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narumiya, S. Physiology and pathophysiology of prostanoid receptors. Proc. Jpn Acad. Ser. B 83, 296–319 (2007).

    Article  CAS  Google Scholar 

  9. Furuyashiki, T. & Narumiya, S. Roles of prostaglandin E receptors in stress responses. Curr. Opin. Pharmacol. 9, 31–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Morimoto, A., Murakami, N., Nakamori, T. & Watanabe, T. Multiple control of fever productions in the central nervous system of rabbits. J. Physiol. 397, 269–280 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scammell, T. E., Elmquist, J. K., Griffin, J. D. & Saper, C. B. Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J. Neurosci. 16, 6246–6254 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morimoto, A., Murakami, N., Nakamori, T., Sakata, Y. & Watanabe, T. Possible involvement of prostaglandin E in development of ACTH response in rats induced by human recombinant interleukin-1. J. Physiol. 411, 245–256 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katsuura, G., Arimura, A., Koves, K. & Gottschall, P. E. Involvement of organum vasculosum of lamina terminalis and preoptic area in interleukin 1 beta-induced ACTH release. Am. J. Physiol. 258, E163–E171 (1990).

    CAS  PubMed  Google Scholar 

  14. Ushikubi, F. et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395, 281–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Oka, T. et al. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. J. Physiol. 551, 945–954 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10, 1131–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Matsuoka, Y. et al. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc. Natl Acad. Sci. USA 100, 4132–4137 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanada, R. et al. Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov, A. I., Pero, R. S., Scheck, A. C. & Romanovsky, A. A. Prostaglandin E2-synthesizing enzymes in fever: differential transcriptional regulation. Am. J. Physiol. 283, R1104–R1117 (2002).

    Google Scholar 

  20. Zhang, Y. H., Lu, J., Elmquist, J. K. & Saper, C. B. Specific roles of cyclooxygenase-1 and cyclooxygenase-2 in lipopolysaccharide-induced fever and Fos expression in rat brain. J. Comp. Neurol. 463, 3–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Li, S. et al. The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(−/−), but not in cyclooxygenase-1(−/−) mice. Brain Res. 825, 86–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S., Ballou, L. R., Morham, S. G. & Blatteis, C. M. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1β. Brain Res. 910, 163–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Engblom, D. et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat. Neurosci. 6, 1137–1138 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Saha, S., Engström, L., Mackerlova, L., Jakobsson, P. J. & Blomqvist, A. Impaired febrile response to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1100–R1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Elander, L. et al. Inducible prostaglandin E2 synthesis interacts in a temporally supplementary sequence with constitutive prostaglandin-synthesizing enzymes in creating the hypothalamic-pituitary-adrenal axis response to immune challenge. J. Neurosci. 29, 1404–1413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dallaporta, M. et al. c-Fos immunoreactivity induced by intraperitoneal LPS administration is reduced in the brain of mice lacking the microsomal prostaglandin E synthase-1 (mPGES-1). Brain Behav. Immun. 21, 1109–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Matsumura, K. et al. Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J. Neurosci. 18, 6279–6289 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elmquist, J. K. et al. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J. Comp. Neurol. 381, 119–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Yamagata, K. et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J. Neurosci. 21, 2669–2677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Serrats, J. et al. Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65, 94–106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schiltz, J. C. & Sawchenko, P. E. Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J. Neurosci. 22, 5606–5618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ek, M. et al. Inflammatory response: pathway across the blood–brain barrier. Nature 410, 430–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ericsson, A., Liu, C., Hart, R. P. & Sawchenko, P. E. Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J. Comp. Neurol. 361, 681–698 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Konsman, J. P., Vigues, S., Mackerlova, L., Bristow, A. & Blomqvist, A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J. Comp. Neurol. 472, 113–129 (2004).

    Article  PubMed  Google Scholar 

  35. Ching, S. et al. Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J. Neurosci. 27, 10476–10486 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. García-Bueno, B., Serrats, J. & Sawchenko, P. E. Cerebrovascular cyclooxygenase-1 expression, regulation, and role in hypothalamic–pituitary–adrenal axis activation by inflammatory stimuli. J. Neurosci. 29, 12970–12981 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Elander, L., Ruud, J., Korotkova, M., Jakobsson, P.-J. & Blomqvist, A. Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide. Neurosci. Lett. 470, 10–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Choi, S. H., Aid, S. & Bosetti, F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol. Sci. 30, 174–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steiner, A. A. et al. Expanding the febrigenic role of cyclooxygenase-2 to the previously overlooked responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1253–R1257 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Steiner, A. A. et al. Cellular and molecular bases of the initiation of fever. PLoS Biol. 4, e284 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Romanovsky, A. A., Ivanov, A. I. & Karman, E. K. Blood-borne, albumin-bound prostaglandin E2 may be involved in fever. Am. J. Physiol. 276, R1840–R1844 (1999).

    CAS  PubMed  Google Scholar 

  42. Ootsuka, Y., Blessing, W. W., Steiner, A. A. & Romanovsky, A. A. Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am. J. Physiol. 294, R1294–R1303 (2008).

    CAS  Google Scholar 

  43. Romanovsky, A. A., Simons, C. T., Székely, M. & Kulchitsky, V. A. The vagus nerve in the thermoregulatory response to systemic inflammation. Am. J. Physiol. 273, R407–R413 (1997).

    CAS  PubMed  Google Scholar 

  44. Hansen, M. K., O'Connor, K. A., Goehler, L. E., Watkins, L. R. & Maier, S. F. The contribution of the vagus nerve in interlukin-1β-induced fever is dependent on dose. Am. J. Physiol. 280, R929–R934 (2001).

    Article  CAS  Google Scholar 

  45. Davidson, J., Abul, H. T., Milton, A. S. & Rotondo, D. Cytokines and cytokine inducers stimulate prostaglandin E2 entry into the brain. Pflügers Arch. 442, 526–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Nagashima, K., Nakai, S., Tanaka, M. & Kanosue, K. Neuronal circuitries involved in thermoregulation. Auton. Neurosci. 85, 18–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Morrison, S. F., Nakamura, K. & Madden, C. J. Central control of thermogenesis in mammals. Exp. Physiol. 93, 773–797 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Komaki, G., Arimura, A. & Koves, K. Effect of intravenous injection of IL-1 beta on PGE2 levels in several brain areas as determined by microdialysis. Am. J. Physiol. 262, E246–E251 (1992).

    CAS  PubMed  Google Scholar 

  49. Oka, K., Oka, T. & Hori, T. PGE2 receptor subtype EP1 antagonist may inhibit central interleukin-1β-induced fever in rats. Am. J. Physiol. 275, R1762–R1765 (1998).

    CAS  PubMed  Google Scholar 

  50. Nakamura, K. et al. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J. Comp. Neurol. 421, 543–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Oka, T. et al. Relationship of EP(1–4) prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. J. Comp. Neurol. 428, 20–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura, K. et al. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 22, 4600–4610 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Madden, C. J. & Morrison, S. F. Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue. Am. J. Physiol. 286, R320–R325 (2004).

    CAS  Google Scholar 

  54. Nakamura, Y. et al. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur. J. Neurosci. 22, 3137–3146 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nakamura, Y., Nakamura, K. & Morrison, S. F. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience 161, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Rathner, J. A., Madden, C. J. & Morrison, S. F. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R343–R354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakamura, K. et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24, 5370–5380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Almeida, M. C., Steiner, A. A., Branco, L. G. & Romanovsky, A. A. Neural substrate of cold-seeking behavior in endotoxin shock. PLoS ONE 1, e1 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Romanovsky, A. A., Shido, O., Sakurada, S., Sugimoto, N. & Nagasaka, T. Endotoxin shock: thermoregulatory mechanisms. Am. J. Physiol. 270, R693–R703 (1996).

    CAS  PubMed  Google Scholar 

  60. Steiner, A. A. et al. Cyclooxygenase-1 or -2--which one mediates lipopolysaccharide-induced hypothermia? Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R485–R494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oka, T., Oka, K. & Saper, C. B. Contrasting effects of E type prostaglandin (EP) receptor agonists on core body temperature in rats. Brain Res. 968, 256–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, J. & Rivest, S. Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur. J. Neurosci. 11, 2651–2668 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McCoy, J. G., Matta, S. G. & Sharp, B. M. Prostaglandins mediate the ACTH response to interleukin-1-beta instilled into the hypothalamic median eminence. Neuroendocrinology 60, 426–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Ferri, C. C. & Ferguson, A. V. Prostaglandin E2 mediates cellular effects of interleukin-1β on parvocellular neurones in the paraventricular nucleus of the hypothalamus. J. Neuroendocrinol. 17, 498–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Watanobe, H. & Takebe, K. Intrahypothalamic perfusion with interleukin-1-beta stimulates the local release of corticotropin-releasing hormone and arginine vasopressin and the plasma adrenocorticotropin in freely moving rats: a comparative perfusion of the paraventricular nucleus and the median eminence. Neuroendocrinology 57, 593–599 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, Y., Day, T. A. & Buller, K. M. The central amygdala modulates hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β administration. Neuroscience 94, 175–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura, K., Li, Y. Q., Kaneko, T., Katoh, H. & Negishi, M. Prostaglandin EP3 receptor protein in serotonin and catecholamine cell groups: a double immunofluorescence study in the rat brain. Neuroscience 103, 763–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Ericsson, A., Arias, C. & Sawchenko, P. E. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J. Neurosci. 17, 7166–7179 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langhans, W., Harlacher, R. & Scharrer, E. Verapamil and indomethacin attenuate endotoxin-induced anorexia. Physiol. Behav. 46, 535–539 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, P. M., Vogt, S. K., Burney, M. W. & Muglia, L. J. COX-2 inhibition attenuates anorexia during systemic inflammation without impairing cytokine production. Am. J. Physiol. 282, E650–E656 (2002).

    Article  CAS  Google Scholar 

  72. Lugarini, F., Hrupka, B. J., Schwartz, G. J., Plata-Salaman, C. R. & Langhans, W. A role for cyclooxygenase-2 in lipopolysaccharide-induced anorexia in rats. Am. J. Physiol. 283, R862–R868 (2002).

    CAS  Google Scholar 

  73. Elander, L., Engström, L., Hallbeck, M. & Blomqvist, A. IL-1β and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R258–R267 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Pecchi, E. et al. Involvement of central microsomal prostaglandin E synthase-1 in IL-1β-induced anorexia. Physiol. Genomics 25, 485–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ohinata, K., Suetsugu, K., Fujiwara, Y. & Yoshikawa, M. Activation of prostaglandin E receptor EP4 subtype suppresses food intake in mice. Prostaglandins Other Lipid Mediat. 81, 31–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, W., Andersson, M., Lönnroth, C., Svanberg, E. & Lundholm, K. Anorexia and cachexia in prostaglandin EP1 and EP3 subtype receptor knockout mice bearing a tumor with high intrinsic PGE2 production and prostaglandin related cachexia. J. Exp. Clin. Cancer Res. 24, 99–107 (2005).

    CAS  PubMed  Google Scholar 

  77. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of feeding intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Richard, D., Lin, Q. & Timofeeva, E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur. J. Pharmacol. 440, 189–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, Z. L. et al. Prostaglandin E2 activates the histaminergic system via the EP4 receptor to induce wakefulness in rats. J. Neurosc. 23, 5975–5983 (2003).

    Article  CAS  Google Scholar 

  80. Masaki, T. & Yoshimatsu, H. The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol. Sci. 27, 279–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Chiba, S. et al. Hypothalamic neuronal histamine modulates febrile response but not anorexia induced by lipopolysaccharide. Exp. Biol. Med. 230, 334–342 (2005).

    Article  CAS  Google Scholar 

  82. Pecchi, E., Dallaporta, M., Jean, A., Thirion, S. & Troadec, J. D. mPGES-1 knock-out mice are resistant to cancer-induced anorexia despite the absence of central mPGES-1 up-regulation in wild-type anorexic mice. J. Neuroimmunol. 199, 104–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Crestani, F., Seguy, F. & Dantzer, R. Behavioural effects of peripherally injected interleukin-1: role of prostaglandins. Brain Res. 542, 330–335 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Gibertini, M., Newton, C., Friedman, H. & Klein, T. W. Spatial learning impairment in mice infected with Legionella pneumophila or administered exogenous interleukin-1-β. Brain Behav. Immun. 9, 113–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Pugh, C. R. et al. Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav. Immun. 12, 212–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Jain, N. K., Patil, C. S., Kulkarni, S. K. & Singh, A. Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav. Brain Res. 133, 369–376 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Matsumoto, Y., Yamaguchi, T., Watanabe, S. & Yamamoto, T. Involvement of arachidonic acid cascade in working memory impairment induced by interleukin-1 beta. Neuropharmacology 46, 1195–1200 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Shaw, K. N., Commins, S. & O'Mara, S. M. Cyclooxygenase inhibition attenuates endotoxin-induced spatial learning deficits, but not an endotoxin-induced blockade of long-term potentiation. Brain Res. 1038, 231–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Hein, A. M. et al. Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience 150, 754–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Shaftel, S. S. et al. Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J. Neurosci. 27, 9301–9309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moore, A. H., Wu, M., Shaftel, S. S., Graham, K. A. & O'Banion, M. K. Sustained expression of interleukin-1β in mouse hippocampus impairs spatial memory. Neuroscience 164, 1484–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Matousek, S. B. et al. Cyclooxygenase-1 mediates prostaglandin E(2) elevation and contextual memory impairment in a model of sustained hippocampal interleukin-1β expression. J. Neurochem. 114, 247–258 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sang, N., Zhang, J., Marcheselli, V., Bazan, N. G. & Chen, C. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J. Neurosci. 25, 9858–9870 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Akaneya, Y. & Tsumoto, T. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex. J. Neurosci. 26, 10209–10221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Savonenko, A. et al. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp. Neurol. 217, 63–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, H., Zhang, J., Breyer, R. M. & Chen, C. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J. Neurochem. 108, 295–304 (2009).

    Article  PubMed  CAS  Google Scholar 

  98. Waschbisch, A. et al. Interleukin-1 beta-induced expression of the prostaglandin E-receptor subtype EP3 in U373 astrocytoma cells depends on protein kinase C and nuclear factor-kappaB. J. Neurochem. 96, 680–693 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Matsuoka, Y. et al. Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc. Natl Acad. Sci. USA 102, 16066–16071 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soubrié, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sc. 9, 319–335 (1986).

    Article  Google Scholar 

  101. Tanaka, Y. et al. Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur. J. Neurosci. 30, 2338–2346 (2009).

    Article  PubMed  Google Scholar 

  102. Kitaoka, S. et al. Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum. J. Neurosci. 27, 12900–12907 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dalley, J. W., Mar, A. C., Economidou, D. & Robbins, T. W. Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol. Biochem. Behav. 90, 250–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Goto, Y. & Grace, A. A. Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci. 31, 552–558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Christakou, A., Robbins, T. W. & Everitt, B. J. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J. Neurosci. 24, 773–780 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yamagata, K., Andreasson, K. I., Kaufmann, W. E., Barnes, C. A. & Worley, P. F. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11, 371–386 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. García-Bueno, B., Madrigal, J. L., Pérez-Nievas, B. G. & Leza, J. C. Stress mediators regulate brain prostaglandin synthesis and peroxisome proliferator-activated receptor-γ activation after stress in rats. Endocrnology 149, 1969–1978 (2008).

    Article  CAS  Google Scholar 

  108. Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. & Maier, S. F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21, 47–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Sugama, S., Fujita, M., Hashimoto, M. & Conti, B. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience 146, 1388–1399 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Koob, G. F., Stinus, L. & Le Moal, M. Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system. Behav. Brain Res. 3, 341–359 (1981).

    Article  CAS  PubMed  Google Scholar 

  111. Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S. & Krugers, H. J. Learning under stress: how does it work? Trends Cogn. Sci. 10, 152–158 (2006).

    Article  PubMed  Google Scholar 

  112. Yirmiya, R., Winocur, G. & Goshen, I. Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol. Learn. Mem. 78, 379–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Avital, A. et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13, 826–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Teather, L. A., Packard, M. G. & Bazan, N. G. Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn. Mem. 9, 41–47 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shaw, K. N., Commins, S. & O'Mara, S. M. Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor. Eur. J. Neurosc. 17, 2438–2446 (2003).

    Article  Google Scholar 

  116. Rall, J. M., Mach, S. A. & Dash, P. K. Intrahippocampal infusion of a cyclooxygenase-2 inhibitor attenuates memory acquisition in rats. Brain Res. 968, 273–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Sharifzadeh, M. et al. Post-training intrahippocampal infusion of the COX-2 inhibitor celecoxib impaired spatial memory retention in rats. Eur. J. Pharmacol. 511, 159–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Pugh, C. R. et al. Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav. Brain Res. 106, 109–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Rudy, J. W. Postconditioning isolation disrupts contextual conditioning: an experimental analysis. Behav. Neurosci. 110, 238–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, C., Magee, J. C. & Bazan, N. G. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol. 87, 2851–2857 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Cowley, T. R., Fahey, B. & O'Mara, S. M. COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivo. Eur. J. Neurosci. 27, 2999–3008 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Murray, H. J. & O'Connor, J. J. A role for COX-2 and p38 mitogen activated protein kinase in long-term depression in the rat dentate gyrus in vitro. Neuropharmacology 44, 374–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Le, T. D. et al. Lipid signaling in cytosolic phospholipase A2α-cyclooxygenase-2 cascade mediates cerebellar long-term depression and motor learning. Proc. Natl Acad. Sci. USA 107, 3198–3203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pepicelli, O. et al. Cyclo-oxygenase-1 and -2 differentially contribute to prostaglandin E2 synthesis and lipid peroxidation after in vivo activation of N-methyl-D-aspartate receptors in rat hippocampus. J. Neurochem. 93, 1561–1567 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Müller, N. & Schwartz, M. J. COX-2 inhibition in schizophrenia and major depression. Curr. Pharm. Des. 14, 1452–1465 (2008).

    Article  PubMed  Google Scholar 

  126. Myint, A. M. et al. Effect of the COX-2 inhibitor celecoxib on behavioural and immune changes in an olfactory bulbectomised rat model of depression. Neuroimmunomodulation 14, 65–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Song, C., Zhang, X. Y. & Manku, M. Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J. Neurosci. 29, 14–22 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Guo, J. Y. et al. Chronic treatment with celecoxib reverses chronic unpredictable stress-induced depressive-like behavior via reducing cyclooxygenase-2 expression in rat brain. Eur. J. Pharmacol. 612, 54–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Gerfen, C. R. in The Rat Nervous System 3rd edn Ch. 18 (ed. Paxinos, G.) 455–508 (Elsevier Academic Press, San Diego, 2004).

    Book  Google Scholar 

  130. Romanovsky, A. A. et al. First and second phases of biphasic fever: two sequential stages of the sickness syndrome? Am. J. Physiol. 271, R244–R253 (1996).

    CAS  PubMed  Google Scholar 

  131. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Oka, T., Oka, K. & Hori, T. Mechanisms and mediators of psychological stress-induced rise in core temperature. Psychosom. Med. 63, 476–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Vinkers, C. H. et al. Stress-induced hyperthermia and infection-induced fever: two of a kind? Physiol. Behav. 98, 37–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Nakamori, T., Morimoto, A. & Murakami, N. Effect of a central CRF antagonist on cardiovascular and thermoregulatory responses induced by stress or IL-1β. Am. J. Physiol. 265, R834–R839 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Tomoyuki Furuyashiki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuyashiki, T., Narumiya, S. Stress responses: the contribution of prostaglandin E2 and its receptors. Nat Rev Endocrinol 7, 163–175 (2011). https://doi.org/10.1038/nrendo.2010.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing