Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic causes and treatment of isolated growth hormone deficiency—an update

Abstract

Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.

Key Points

  • Mutations have been identified in up to 11% of cases of isolated growth hormone deficiency, with a higher percentage found in familial cases

  • Known genes involved in the genetic etiology of isolated growth hormone deficiency include GH1 (which encodes growth hormone), GHRHR (which encodes growth-hormone-releasing hormone receptor) and SOX3 (which encodes transcription factor SOX3)

  • Unidentified genetic factors may also be involved in the etiology of isolated growth hormone deficiency and their identification could lead to reclassification of the types of isolated growth hormone deficiency in the future

  • Patients with autosomal dominant GH1 mutations have variable phenotypes and, in some cases, can develop additional pituitary hormone deficiencies; lifelong follow-up is, therefore, recommended

  • Genetic variations in growth hormone, its receptor, insulin-like growth factor (IGF) 1, IGF-binding protein 3, or other factors may explain the variability in the therapeutic response to recombinant human growth hormone

  • Further studies are required to elucidate the pharmacogenomics of growth hormone activity, as results so far have not proved conclusive

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic presentation of GH1.
Figure 2: The 13 exons of GHRHR.

Similar content being viewed by others

References

  1. Mullis, P. E. Genetic control of growth. Eur. J. Endocrinol. 152, 11–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Alatzoglou, K. S. et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 3191–3199 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, P. Q. et al. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum. Mol. Genet. 10, 39–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Laumonnier, F. et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am. J. Hum. Genet. 71, 1450–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagner, J. K., Eblé, A., Hindmarsh, P. C. & Mullis, P. E. Prevalence of human GH-1 gene alterations in patients with isolated growth hormone deficiency. Pediatr. Res. 43, 105–110 (1998).

    CAS  PubMed  Google Scholar 

  6. Procter, A. M., Phillips, J. A. 3rd & Cooper, D. N. The molecular genetics of growth hormone deficiency. Hum. Genet. 103, 255–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Horan, M. et al. Human growth hormone 1 (GH1) gene expression: complex haplotype-dependent influence of polymorphic variation in the proximal promoter and locus control region. Hum. Mutat. 21, 408–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Shewchuk, B. M., Liebhaber, S. A. & Cooke, N. E. Specification of unique Pit-1 activity in the hGH locus control region. Proc. Natl Acad. Sci. USA 99, 11784–11789 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11, 345–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ryther, R. C., Flynt, A. S., Harris, B. D., Phillips, J. A. 3rd & Patton, J. G. GH1 splicing is regulated by multiple enhancers whose mutation produces a dominant-negative GH isoform that can be degraded by allele-specific small interfering RNA (siRNA). Endocrinology 145, 2988–2996 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Mullis, P. E., Deladoëy, J. & Dannies, P. S. Molecular and cellular basis of isolated dominant-negative growth hormone deficiency, IGHD type II: insights on the secretory pathway of peptide hormones. Horm. Res. 58, 53–66 (2002).

    CAS  PubMed  Google Scholar 

  12. de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld, R. G. et al. Defects in growth hormone receptor signaling. Trends Endocrinol. Metab. 18, 134–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. He, Y. A., Chen, S. S., Wang, Y. X., Lin, X. Y. & Wang, D. F. A Chinese familial growth hormone deficiency with a deletion of 7.1 kb of DNA. J. Med. Genet. 27, 151–154 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamijo, T. & Phillips, J. A. 3rd. Detection of molecular heterogeneity in GH-1 gene deletions by analysis of polymerase chain reaction amplification products. J. Clin. Endocrinol. Metab. 74, 786–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Phillips, J. A. 3rd & Cogan, J. D. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J. Clin. Endocrinol. Metab. 78, 11–16 (1994).

    CAS  PubMed  Google Scholar 

  17. Braga, S., Phillips, J. A. 3rd, Joss, E., Schwarz, H. & Zuppinger, K. Familial growth hormone deficiency resulting from a 7.6 kb deletion within the growth hormone gene cluster. Am. J. Med. Genet. 25, 443–452 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Ghizzoni, L. et al. Isolated growth hormone deficiency type IA associated with a 45-kilobase gene deletion within the human growth hormone gene cluster in an Italian family. Pediatr. Res. 36, 654–659 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Goossens, M., Brauner, R., Czernichow, P., Duquesnoy, P. & Rappaport, R. Isolated growth hormone (GH) deficiency type 1A associated with a double deletion in the human GH gene cluster. J. Clin. Endocrinol. Metab. 62, 712–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Laron, Z. et al. Human growth hormone gene deletion without antibody formation or growth arrest during treatment—a new disease entity? Isr. J. Med. Sci. 21, 999–1006 (1985).

    CAS  PubMed  Google Scholar 

  21. Igarashi, Y. et al. A new mutation causing inherited growth hormone deficiency: a compound heterozygote of a 6.7 kb deletion and a two base deletion in the third exon of the GH-1 gene. Hum. Mol. Genet. 2, 1073–1074 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Iughetti, L. et al. Complex disease phenotype revealed by GH deficiency associated with a novel and unusual defect in the GH-1 gene. Clin. Endocrinol. (Oxf.) 69, 170–172 (2008).

    Article  Google Scholar 

  23. Duquesnoy, P., Amselem, S., Gourmelen, M., Le, B.Y. & Goossens, M. A frameshift mutation causing isolated growth hormone deficiency type 1A. Am. J. Hum. Genet. 47 (Suppl.), A110 (1990).

    Google Scholar 

  24. Cogan, J. D. et al. Heterogeneous growth hormone (GH) gene mutations in familial GH deficiency. J. Clin. Endocrinol. Metab. 76, 1224–1228 (1993).

    CAS  PubMed  Google Scholar 

  25. Leiberman, E. et al. Short stature in carriers of recessive mutation causing familial isolated growth hormone deficiency. Am. J. Med. Genet. 90, 188–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, J. A. 3rd, Hjelle, B. L., Seeburg, P. H. & Zachmann, M. Molecular basis for familial isolated growth hormone deficiency. Proc. Natl Acad. Sci. USA 78, 6372–6375 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Binder, G. et al. Isolated GH deficiency with dominant inheritance: new mutations, new insights. J. Clin. Endocrinol. Metab. 86, 3877–3881 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. de Graaff, L. C. et al. Genetic screening of a Dutch population with isolated GH deficiency (IGHD). Clin. Endocrinol. (Oxf.) 70, 742–750 (2009).

    Article  CAS  Google Scholar 

  29. Cogan, J. D., Phillips, J. A. 3rd, Schenkman, S. S., Milner, R. D. & Sakati, N. Familial growth hormone deficiency: a model of dominant and recessive mutations affecting a monomeric protein. J. Clin. Endocrinol. Metab. 79, 1261–1265 (1994).

    CAS  PubMed  Google Scholar 

  30. Fofanova, O. V. et al. A novel IVS2 −2A>T splicing mutation in the GH-1 gene in familial isolated growth hormone deficiency type II in the spectrum of other splicing mutations in the Russian population. J. Clin. Endocrinol. Metab. 88, 820–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Cogan, J. D. et al. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency—a clinical research center study. J. Clin. Endocrinol. Metab. 80, 3591–3595 (1995).

    CAS  PubMed  Google Scholar 

  32. Binder, G. & Ranke, M. B. Screening for growth hormone (GH) gene splice-site mutations in sporadic cases with severe isolated GH deficiency using ectopic transcript analysis. J. Clin. Endocrinol. Metab. 80, 1247–1252 (1995).

    CAS  PubMed  Google Scholar 

  33. Hayashi, Y. et al. Inhibition of growth hormone (GH) secretion by a mutant GH-I gene product in neuroendocrine cells containing secretory granules: an implication for isolated GH deficiency inherited in an autosomal dominant manner. J. Clin. Endocrinol. Metab. 84, 2134–2139 (1999).

    CAS  PubMed  Google Scholar 

  34. Hayashi, Y. et al. A novel mutation at the donor splice site of intron 3 of the GH-I gene in a patient with isolated growth hormone deficiency. Growth Horm. IGF Res. 9, 434–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Katsumata, N., Matsuo, S., Sato, N. & Tanaka, T. A novel and de novo splice-donor site mutation in intron 3 of the GH-1 gene in a patient with isolated growth hormone deficiency. Growth Horm. IGF Res. 11, 378–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Fofanova, O. V., Evgrafov, O. V., Polyakov, A. V., Peterkova, V. A. & Dedov, I. I. A novel splicing mutation in exon 4 (456G>A) of the GH1 gene in a patient with congenital isolated growth hormone deficiency. Hormones 5, 288–294 (2006).

    Article  PubMed  Google Scholar 

  37. Lee, M. S. et al. Autosomal dominant growth hormone (GH) deficiency type II: the Del32-71-GH deletion mutant suppresses secretion of wild-type GH. Endocrinology 141, 883–890 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. McGuinness, L. et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology 144, 720–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Salemi, S., Yousefi, S., Eblé, A., Deladoëy, J. & Mullis, P. E. Impact of del32-71-GH (exon 3 skipped GH) on intracellular GH distribution, secretion and cell viability: a quantitative confocal microscopy analysis. Horm. Res. 65, 132–141 (2006).

    CAS  PubMed  Google Scholar 

  40. Salemi, S. et al. Isolated autosomal dominant growth hormone deficiency: stimulating mutant GH-1 gene expression drives GH-1 splice-site selection, cell proliferation, and apoptosis. Endocrinology 148, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ryther, R. C. et al. Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum. Genet. 113, 140–148 (2003).

    CAS  PubMed  Google Scholar 

  42. Moseley, C. T., Mullis, P. E., Prince, M. A. & Phillips, J. A. 3rd. An exon splice enhancer mutation causes autosomal dominant GH deficiency. J. Clin. Endocrinol. Metab. 87, 847–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi, I., Takahashi, T., Komatsu, M., Sato, T. & Takada, G. An exonic mutation of the GH-1 gene causing familial isolated growth hormone deficiency type II. Clin. Genet. 61, 222–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Shariat, N., Holladay, C. D., Cleary, R. K., Phillips, J. A. 3rd & Patton, J. G. Isolated growth hormone deficiency type II caused by a point mutation that alters both splice site strength and splicing enhancer function. Clin. Genet. 74, 539–545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petkovic, V. et al. Exon splice enhancer mutation (GH-E32A) causes autosomal dominant growth hormone deficiency. J. Clin. Endocrinol. Metab. 92, 4427–4435 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Millar, D. S. et al. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum. Mutat. 21, 424–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Cogan, J. D. et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum. Mol. Genet. 6, 909–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. McCarthy, E. M. & Phillips, J. A. 3rd. Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA. Hum. Mol. Genet. 7, 1491–1496 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Vivenza, D. et al. A novel deletion in the GH1 gene including the IVS3 branch site responsible for autosomal dominant isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 91, 980–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi, Y. et al. Brief report: short stature caused by a mutant growth hormone. N. Engl. J. Med. 334, 432–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Miyata, I. et al. Detection of growth hormone gene defects by dideoxy fingerprinting (ddF). Endocr. J. 44, 149–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, Y. et al. Biologically inactive growth hormone caused by an amino acid substitution. J. Clin. Invest. 100, 1159–1165 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lewis, M. D. et al. A novel dysfunctional growth hormone variant (Ile179Met) exhibits a decreased ability to activate the extracellular signal-regulated kinase pathway. J. Clin. Endocrinol. Metab. 89, 1068–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Petkovic, V. et al. GH mutant (R77C) in a pedigree presenting with the delay of growth and pubertal development: structural analysis of the mutant and evaluation of the biological activity. Eur. J. Endocrinol. 157, S67–S74 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Deladoëy, J., Stocker, P. & Mullis, P. E. Autosomal dominant GH deficiency due to an Arg183His GH-1 gene mutation: clinical and molecular evidence of impaired regulated GH secretion. J. Clin. Endocrinol. Metab. 86, 3941–3947 (2001).

    Article  PubMed  Google Scholar 

  56. Zhu, Y. L., Conway-Campbell, B., Waters, M. J. & Dannies, P. S. Prolonged retention after aggregation into secretory granules of human R183H-growth hormone (GH), a mutant that causes autosomal dominant GH deficiency type II. Endocrinology 143, 4243–4248 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Salemi, S. et al. Variability of isolated autosomal dominant GH deficiency (IGHD II): impact of the P89L GH mutation on clinical follow-up and GH secretion. Eur. J. Endocrinol. 153, 791–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Petkovic, V. et al. Growth hormone (GH) deficiency type II: a novel GH-1 gene mutation (GH-R178H) affecting secretion and action. J. Clin. Endocrinol. Metab. 95, 731–739 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Binder, G., Nagel, B. H., Ranke, M. B. & Mullis, P. E. Isolated GH deficiency (IGHD) type II: imaging of the pituitary gland by magnetic resonance reveals characteristic differences in comparison with severe IGHD of unknown origin. Eur. J. Endocrinol. 147, 755–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Hess, O. et al. Variable phenotypes in familial isolated growth hormone deficiency caused by a G6664A mutation in the GH-1 gene. J. Clin. Endocrinol. Metab. 92, 4387–4393 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Hamid, R. et al. A molecular basis for variation in clinical severity of isolated growth hormone deficiency type II. J. Clin. Endocrinol. Metab. 94, 4728–4734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mullis, P. E. et al. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study. J. Clin. Endocrinol. Metab. 90, 2089–2096 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Turton, J. P., Buchanan, C. R., Robinson, I. C., Aylwin, S. J. & Dattani, M. T. Evolution of gonadotropin deficiency in a patient with type II autosomal dominant GH deficiency. Eur. J. Endocrinol. 155, 793–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Petkovic, V. et al. Growth hormone (GH)-releasing hormone increases the expression of the dominant-negative GH isoform in cases of isolated GH deficiency due to GH splice-site mutations. Endocrinology 151, 2650–2658 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Solloso, A. et al. GHRH proliferative action on somatotrophs is cell-type specific and dependent on Pit-1/GHF-1 expression. J. Cell Physiol. 215, 140–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Wajnrajch, M. P., Gertner, J. M., Harbison, M. D., Chua, S. C. Jr & Leibel, R. L. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat. Genet. 12, 88–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Salvatori, R. et al. Three new mutations in the gene for the growth hormone (gh)-releasing hormone receptor in familial isolated gh deficiency type 1b. J. Clin. Endocrinol. Metab. 86, 273–279 (2001).

    CAS  PubMed  Google Scholar 

  68. Salvatori, R., Fan, X., Phillips, J. A. 3rd, Prince, M. & Levine, M. A. Isolated growth hormone (GH) deficiency due to compound heterozygosity for two new mutations in the GH-releasing hormone receptor gene. Clin. Endocrinol. (Oxf.) 54, 681–687 (2001).

    Article  CAS  Google Scholar 

  69. Salvatori, R., Fan, X., Veldhuis, J. D. & Couch, R. Serum GH response to pharmacological stimuli and physical exercise in two siblings with two new inactivating mutations in the GH-releasing hormone receptor gene. Eur. J. Endocrinol. 147, 591–596 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Roelfsema, F. et al. Growth hormone (GH) secretion in patients with an inactivating defect of the GH-releasing hormone (GHRH) receptor is pulsatile: evidence for a role for non-GHRH inputs into the generation of GH pulses. J. Clin. Endocrinol. Metab. 86, 2459–2464 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Hilal, L. et al. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene. Mol. Med. 14, 286–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Q. et al. Identification of a novel splicing mutation in the growth hormone (GH)-releasing hormone receptor gene in a Chinese family with pituitary dwarfism. Mol. Cell Endocrinol. 313, 50–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Godi, M. et al. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 3939–3947 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Salvatori, R., Fan, X., Veldhuis, J. D. & Couch, R. Serum GH response to pharmacological stimuli and physical exercise in two siblings with two new inactivating mutations in the GH-releasing hormone receptor gene. Eur. J. Endocrinol. 147, 591–596 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Carakushansky, M. et al. A new missense mutation in the growth hormone-releasing hormone receptor gene in familial isolated GH deficiency. Eur. J. Endocrinol. 148, 25–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Salvatori, R., Fan, X., Mullis, P. E., Haile, A. & Levine, M. A. Decreased expression of the GHRH receptor gene due to a mutation in a Pit-1 binding site. Mol. Endocrinol. 16, 450–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Haskin, O. et al. A new mutation in the growth hormone-releasing hormone receptor gene in two Israeli Arab families. J. Endocrinol. Invest. 29, 122–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Horikawa, R. Isolated GH deficiency due to inactivating mutation of GHRH receptor [Japanese]. Nippon Rinsho 60, 297–305 (2002).

    PubMed  Google Scholar 

  79. Alba, M. et al. Variability in anterior pituitary size within members of a family with GH deficiency due to a new splice mutation in the GHRH receptor gene. Clin. Endocrinol. (Oxf.) 60, 470–475 (2004).

    Article  CAS  Google Scholar 

  80. Alba, M. & Salvatori, R. Naturally-occurring missense mutations in the human growth hormone-releasing hormone receptor alter ligand binding. J. Endocrinol. 186, 515–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Salvatori, R. et al. Familial dwarfism due to a novel mutation of the growth hormone-releasing hormone receptor gene. J. Clin. Endocrinol. Metab. 84, 917–923 (1999).

    CAS  PubMed  Google Scholar 

  82. Salvatori, R. et al. Detection of a recurring mutation in the human growth hormone-releasing hormone receptor gene. Clin. Endocrinol. (Oxf.) 57, 77–80 (2002).

    Article  CAS  Google Scholar 

  83. Maheshwari, H. G., Silverman, B. L., Dupuis, J. & Baumann, G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J. Clin. Endocrinol. Metab. 83, 4065–4074 (1998).

    CAS  PubMed  Google Scholar 

  84. Gondo, R. G. et al. Growth hormone-releasing peptide-2 stimulates GH secretion in GH-deficient patients with mutated GH-releasing hormone receptor. J. Clin. Endocrinol. Metab. 86, 3279–3283 (2001).

    CAS  PubMed  Google Scholar 

  85. Pereira, R. M. et al. Heterozygosity for a mutation in the growth hormone-releasing hormone receptor gene does not influence adult stature, but affects body composition. J. Clin. Endocrinol. Metab. 92, 2353–2357 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Stewart, D. M., Tian, L., Notarangelo, L. D. & Nelson, D. L. X-linked hypogammaglobulinemia and isolated growth hormone deficiency: an update. Immunol. Res. 40, 262–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Rizzoti, K. et al. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat. Genet. 36, 247–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Solomon, N. M. et al. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. J. Med. Genet. 41, 669–678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Woods, K. S. et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am. J. Hum. Genet. 76, 833–849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kojima, M. & Kangawa, K. Ghrelin: structure and function. Physiol. Rev. 85, 495–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Zizzari, P. et al. Endogenous ghrelin regulates episodic growth hormone (GH) secretion by amplifying GH Pulse amplitude: evidence from antagonism of the GH secretagogue-R1a receptor. Endocrinology 146, 3836–3842 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Pantel, J. et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J. Clin. Invest. 116, 760–768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pantel, J. et al. Recessive isolated growth hormone deficiency and mutations in the ghrelin receptor. J. Clin. Endocrinol. Metab. 94, 4334–4341 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Sun, Y., Ahmed, S. & Smith, R. G. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell. Biol. 23, 7973–7981 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mohamadi, A. et al. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB. J. Clin. Endocrinol. Metab. 94, 2565–2570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McNay, D. E. et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J. Clin. Endocrinol. Metab. 92, 691–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Fluck, C. et al. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg→Cys at codon 120 (R120C). J. Clin. Endocrinol. Metab. 83, 3727–3734 (1998).

    CAS  PubMed  Google Scholar 

  98. Turton, J. P. et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 90, 4762–4770 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J. Clin. Endocrinol. Metab. 85, 3990–3993 (2000).

  100. Gandrud, L. M. & Wilson, D. M. Is growth hormone stimulation testing in children still appropriate? Growth Horm. IGF Res. 14, 185–194 (2004).

    Article  PubMed  Google Scholar 

  101. Loche, S. et al. Results of early reevaluation of growth hormone secretion in short children with apparent growth hormone deficiency. J. Pediatr. 140, 445–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Osorio, M. G. et al. Pituitary magnetic resonance imaging and function in patients with growth hormone deficiency with and without mutations in GHRH-R, GH-1, or PROP-1 genes. J. Clin. Endocrinol. Metab. 87, 5076–5084 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Di, I. N. et al. Deterioration of growth hormone (GH) response and anterior pituitary function in young adults with childhood-onset GH deficiency and ectopic posterior pituitary: a two-year prospective follow-up study. J. Clin. Endocrinol. Metab. 92, 3875–3884 (2007).

    Article  CAS  Google Scholar 

  104. Leger, J., Danner, S., Simon, D., Garel, C. & Czernichow, P. Do all patients with childhood-onset growth hormone deficiency (GHD) and ectopic neurohypophysis have persistent GHD in adulthood? J. Clin. Endocrinol. Metab. 90, 650–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Gelwane, G. et al. Subnormal serum insulin-like growth factor-I levels in young adults with childhood-onset nonacquired growth hormone (GH) deficiency who recover normal gh secretion may indicate less severe but persistent pituitary failure. J. Clin. Endocrinol. Metab. 92, 3788–3795 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Raben, M. S. Treatment of a pituitary dwarf with human growth hormone. J. Clin. Endocrinol. Metab. 18, 901–903 (1958).

    Article  CAS  PubMed  Google Scholar 

  107. Bell, J. et al. Long-term safety of recombinant human growth hormone in children. J. Clin. Endocrinol. Metab. 95, 167–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Hindmarsh, P. C. & Dattani, M. T. Use of growth hormone in children. Nat. Clin. Pract. Endocrinol. Metab. 2, 260–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Cohen, P., Bright, G. M., Rogol, A. D., Kappelgaard, A. M. & Rosenfeld, R. G. Effects of dose and gender on the growth and growth factor response to GH in GH-deficient children: implications for efficacy and safety. J. Clin. Endocrinol. Metab. 87, 90–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Coelho, R. et al. A randomised study of two doses of biosynthetic human growth hormone on final height of pubertal children with growth hormone deficiency. Horm. Res. 70, 85–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Radetti, G., Buzi, F., Paganini, C., Pilotta, A. & Felappi, B. Treatment of GH-deficient children with two different GH doses: effect on final height and cost-benefit implications. Eur. J. Endocrinol. 148, 515–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Carel, J. C. et al. Adult height after long term treatment with recombinant growth hormone for idiopathic isolated growth hormone deficiency: observational follow up study of the French population based registry. BMJ 325, 70 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thomas, M. et al. Final height in children with idiopathic growth hormone deficiency treated with recombinant human growth hormone: the Belgian experience. Horm. Res. 55, 88–94 (2001).

    CAS  PubMed  Google Scholar 

  114. Reiter, E. O., Price, D. A., Wilton, P., Albertsson-Wikland, K. & Ranke, M. B. Effect of growth hormone (GH) treatment on the near-final height of 1258 patients with idiopathic GH deficiency: analysis of a large international database. J. Clin. Endocrinol. Metab. 91, 2047–2054 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Cole, T. J., Hindmarsh, P. C. & Dunger, D. B. Growth hormone (GH) provocation tests and the response to GH treatment in GH deficiency. Arch. Dis. Child. 89, 1024–1027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ranke, M. B. et al. The mathematical model for total pubertal growth in idiopathic growth hormone (GH) deficiency suggests a moderate role of GH dose. J. Clin. Endocrinol. Metab. 88, 4748–4753 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ranke, M. B. et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. KIGS International Board. Kabi Pharmacia International Growth Study. J. Clin. Endocrinol. Metab. 84, 1174–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Wikland, K. A., Kristrom, B., Rosberg, S., Svensson, B. & Nierop, A. F. Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr. Res. 48, 475–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. de Ridder, M. A., Stijnen, T. & Hokken-Koelega, A. C. Prediction of adult height in growth-hormone-treated children with growth hormone deficiency. J. Clin. Endocrinol. Metab. 92, 925–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Cohen, P. et al. Insulin growth factor-based dosing of growth hormone therapy in children: a randomized, controlled study. J. Clin. Endocrinol. Metab. 92, 2480–2486 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Kristrom, B. et al. Growth hormone (GH) dosing during catch-up growth guided by individual responsiveness decreases growth response variability in prepubertal children with GH deficiency or idiopathic short stature. J. Clin. Endocrinol. Metab. 94, 483–490 (2009).

    Article  PubMed  CAS  Google Scholar 

  122. Ranke, M. B. & Lindberg, A. Observed and predicted growth responses in prepubertal children with growth disorders: guidance of growth hormone treatment by empirical variables. J. Clin. Endocrinol. Metab. 95, 1229–1237 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Bakker, B., Frane, J., Anhalt, H., Lippe, B. & Rosenfeld, R. G. Height velocity targets from the national cooperative growth study for first-year growth hormone responses in short children. J. Clin. Endocrinol. Metab. 93, 352–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Rosenfeld, R. G. Pharmacogenomics and pharmacoproteomics in the evaluation and management of short stature. Eur. J. Endocrinol. 157, S27–S31 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Dos Santos, C. et al. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat. Genet. 36, 720–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Blum, W. F. et al. The growth response to growth hormone (GH) treatment in children with isolated GH deficiency is independent of the presence of the exon 3-minus isoform of the GH receptor. J. Clin. Endocrinol. Metab. 91, 4171–4174 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Pantel, J. et al. Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. J. Biol. Chem. 275, 18664–18669 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Millar, D. S. et al. Growth hormone (GH1) gene variation and the growth hormone receptor (GHR) exon 3 deletion polymorphism in a West-African population. Mol. Cell. Endocrinol. 296, 18–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Pilotta, A. et al. Common polymorphisms of the growth hormone (GH) receptor do not correlate with the growth response to exogenous recombinant human GH in GH-deficient children. J. Clin. Endocrinol. Metab. 91, 1178–1180 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Jorge, A. A. et al. Growth hormone (GH) pharmacogenetics: influence of GH receptor exon 3 retention or deletion on first-year growth response and final height in patients with severe GH deficiency. J. Clin. Endocrinol. Metab. 91, 1076–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Carrascosa, A. et al. The exon 3-deleted/full-length growth hormone receptor polymorphism did not influence growth response to growth hormone therapy over two years in prepubertal short children born at term with adequate weight and length for gestational age. J. Clin. Endocrinol. Metab. 93, 764–770 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. van der Klaauw, A. A. et al. Influence of the d3-growth hormone (GH) receptor isoform on short-term and long-term treatment response to GH replacement in GH-deficient adults. J. Clin. Endocrinol. Metab. 93, 2828–2834 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Wassenaar, M. J. et al. Impact of the exon 3-deleted growth hormone (GH) receptor polymorphism on baseline height and the growth response to recombinant human GH therapy in GH-deficient (GHD) and non-GHD children with short stature: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 94, 3721–3730 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Wan, L. et al. Growth Hormone (GH) receptor C.1319 G>T polymorphism, but not exon 3 retention or deletion is associated with better first-year growth response to GH therapy in patients with GH deficiency. Pediatr. Res. 62, 735–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Marchisotti, F. G. et al. Comparison between weight-based and IGF-I-based growth hormone (GH) dosing in the treatment of children with GH deficiency and influence of exon 3 deleted GH receptor variant. Growth Horm. IGF Res. 19, 179–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. de Graaff, L. C., Meyer, S., Els, C. & Hokken-Koelega, A. C. GH receptor d3 polymorphism in Dutch patients with MPHD and IGHD born small or appropriate for gestational age. Clin. Endocrinol. (Oxf.) 68, 930–934 (2008).

    Article  CAS  Google Scholar 

  137. Raz, B. et al. Influence of growth hormone (GH) receptor deletion of exon 3 and full-length isoforms on GH response and final height in patients with severe GH deficiency. J. Clin. Endocrinol. Metab. 93, 974–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Costalonga, E. F. et al. The −202 A allele of insulin-like growth factor binding protein-3 (IGFBP3) promoter polymorphism is associated with higher IGFBP-3 serum levels and better growth response to growth hormone treatment in patients with severe growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 588–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Kapoor, R. R. et al. Monitoring of concordance in growth hormone therapy. Arch. Dis. Child. 93, 147–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Cox, G. N. et al. A long-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 148, 1590–1597 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Clemmons, D. R. Long-acting forms of growth hormone-releasing hormone and growth hormone: effects in normal volunteers and adults with growth hormone deficiency. Horm. Res. 68, 178–181 (2007).

    PubMed  Google Scholar 

  142. Reiter, E. O. et al. A multicenter study of the efficacy and safety of sustained release GH in the treatment of naive pediatric patients with GH deficiency. J. Clin. Endocrinol. Metab. 86, 4700–4706 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Kemp, S. F. et al. Pharmacokinetic and pharmacodynamic characteristics of a long-acting growth hormone (GH) preparation (nutropin depot) in GH-deficient children. J. Clin. Endocrinol. Metab. 89, 3234–3240 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Cook, D. M. et al. The pharmacokinetic and pharmacodynamic characteristics of a long-acting growth hormone (GH) preparation (nutropin depot) in GH-deficient adults. J. Clin. Endocrinol. Metab. 87, 4508–4514 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Hoffman, A. R. et al. Efficacy of a long-acting growth hormone (GH) preparation in patients with adult GH deficiency. J. Clin. Endocrinol. Metab. 90, 6431–6440 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Bidlingmaier, M. et al. Comparative pharmacokinetics and pharmacodynamics of a new sustained-release growth hormone (GH), LB03002, versus daily GH in adults with GH deficiency. J. Clin. Endocrinol. Metab. 91, 2926–2930 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Touraine, P. et al. Lipoatrophy in GH deficient patients treated with a long-acting pegylated GH. Eur. J. Endocrinol. 161, 533–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Peter, F. et al. Pharmacokinetic and pharmacodynamic profile of a new sustained-release GH formulation, LB03002, in children with GH deficiency. Eur. J. Endocrinol. 160, 349–355 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Pavlovic, M., Girardin, E., Kapetanovic, L., Ho, K. & Trouvin, J. H. Similar biological medicinal products containing recombinant human growth hormone: European regulation. Horm. Res. 69, 14–21 (2008).

    CAS  PubMed  Google Scholar 

  150. Ranke, M. B. New preparations comprising recombinant human growth hormone: deliberations on the issue of biosimilars. Horm. Res. 69, 22–28 (2008).

    CAS  PubMed  Google Scholar 

  151. Declerck, P. J. et al. Biosimilars: controversies as illustrated by rhGH. Curr. Med. Res. Opin. 26, 1219–1229 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Saenger, P. Current status of biosimilar growth hormone. Int. J. Pediatr. Endocrinol. 2009, 370329 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Shariat, N., Ryther, R. C., Phillips, J. A. 3rd, Robinson, I. C. & Patton, J. G. Rescue of pituitary function in a mouse model of isolated growth hormone deficiency type II by RNA interference. Endocrinology 149, 580–586 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Besson, A. et al. Short stature caused by a biologically inactive mutant growth hormone (GH-C53S). J. Clin. Endocrinol. Metab. 90, 2493–2499 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Laurie Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

K. S. Alatzoglou and M. T. Dattani researched the data for the article and both provided a substantial contribution to discussions of the content. K. S. Alatzoglou and M. T. Dattani contributed equally to writing the article and M. T. Dattani reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Mehul T. Dattani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alatzoglou, K., Dattani, M. Genetic causes and treatment of isolated growth hormone deficiency—an update. Nat Rev Endocrinol 6, 562–576 (2010). https://doi.org/10.1038/nrendo.2010.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing