Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Stem cell and gene therapies for diabetes mellitus

Abstract

In this Perspectives article, we comment on the progress in experimental stem cell and gene therapies that might one day become a clinical reality for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Finally, gene therapy shows some promise for the generation of insulin-producing cells. Here, we discuss two of the most frequently used approaches: in vitro gene delivery into cells which are then transplanted into the recipient and direct delivery of genes in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stem cell and gene therapies for diabetes mellitus.

Similar content being viewed by others

References

  1. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Ryan, E. A. et al. Five-year follow-up after clinical islet transplantation. Diabetes 54, 2060–2069 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, R. N. et al. Pathology of an islet transplant 2 years after transplantation: evidence for a nonimmunological loss. Transplantation 86, 54–62 (2008).

    Article  PubMed  Google Scholar 

  4. Cardona, K. et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat. Med. 12, 304–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hering, B. J. et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat. Med. 12, 301–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Valdés-González, R. A. et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur. J. Endocrinol. 153, 419–427 (2005).

    Article  PubMed  Google Scholar 

  7. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Fujikawa, T. et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am. J. Pathol. 166, 1781–1791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyd, A. S. & Wood, K. J. Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87, 1300–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Tateishi, K. et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem. 283, 31601–31607 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, D. et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 19, 429–438 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ber, I. et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 278, 31950–31957 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yechoor, V. et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev. Cell 16, 358–373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oh, S. H. et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 84, 607–617 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Gabr, M. M., Sobh, M. M., Zakaria, M. M., Refaie, A. F. & Ghoneim, M. A. Transplantation of insulin-producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp. Clin. Transplant. 6, 236–243 (2008).

    PubMed  Google Scholar 

  19. Kang, H. M. et al. Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice. Stem Cells 27, 1999–2008 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Juang, J. H., Bonner-Weir, S., Ogawa, Y., Vacanti, J. P. & Weir, G. C. Outcome of subcutaneous islet transplantation improved by polymer device. Transplantation 61, 1557–1561 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Salvay, D. M. et al. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 85, 1456–1464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, N. K. et al. Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model. PLoS One 3, e1734 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ren, B. et al. Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy. Diabetologia 50, 1910–1920 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the generous grant support from the Kidney Dialysis Foundation, the National Medical Research Council and the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Y. Calne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calne, R., Gan, S. & Lee, K. Stem cell and gene therapies for diabetes mellitus. Nat Rev Endocrinol 6, 173–177 (2010). https://doi.org/10.1038/nrendo.2009.276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.276

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research