Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutritional programming of the metabolic syndrome

Abstract

The primary markers of the metabolic syndrome are central obesity, insulin resistance and hypertension. In this review, we consider the effect of changes in maternal nutrition during critical windows in fetal development on an individual's subsequent predisposition to the metabolic syndrome. The fetal origins of obesity, cardiovascular disease and insulin resistance have been investigated in a wide range of epidemiological and animal studies; these investigations highlight adaptations made by the nutritionally manipulated fetus that aim to maintain energy homeostasis to ensure survival. One consequence of such developmental plasticity may be a long term re-setting of cellular energy homeostasis, most probably via epigenetic modification of genes involved in a number of key regulatory pathways. For example, reduced maternal–fetal nutrition during early gestation to midgestation affects adipose tissue development and adiposity of the fetus by setting an increased number of adipocyte precursor cells. Importantly, clinically relevant adaptations to nutritional challenges in utero may only manifest as primary components of the metabolic syndrome if followed by a period of accelerated growth early in the postnatal period and/or if offspring become obese.

Key Points

  • Foundations for the metabolic syndrome may be laid down in very early life as a consequence of changes in dietary supply to the rapidly growing conceptus and/or postnatal offspring

  • Critical windows of development, during which the fetus is susceptible to nutritional programming, must be considered in the etiology of the metabolic syndrome

  • A common epigenetic mechanism is fundamental to developmental programming of endocrine balance and cellular energy metabolism; the latter determines the partition of energy between catabolism and energy storage

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects on reproductive outcomes of the gross differences in maternal diet between women in developed and developing countries.88,27,29
Figure 2: Critical windows for fetal organogenesis and changes in placental and body weight between conception and early postnatal life, in a range of species.
Figure 3: The contributory role of the maternal–fetal environment in the developmental programming of cellular energy metabolism in favor of lipid storage.

Similar content being viewed by others

References

  1. Björntorp, P. Metabolic implications of body fat distribution. Diabetes Care 14, 1132–1143 (1991).

    Article  PubMed  Google Scholar 

  2. Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hamaguchi, M. et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann. Intern. Med. 143, 722–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lemieux, I. et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler. Thromb. Vasc. Biol. 21, 961–967 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. DeFronzo, R. A. & Ferrannini, E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14, 173–194 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Ferrannini, E. Is insulin resistance the cause of the metabolic syndrome? Ann. Med. 38, 42–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Roberts, R. M. et al. Research priorities. Farm animal research in crisis. Science 324, 468–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Sattar, N. The metabolic syndrome: should current criteria influence clinical practice? Curr. Opin. Lipidol. 17, 404–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Poulsen, P., Vaag, A. A., Kyvik, K. O., Møller Jensen, D. & Beck-Nielson, H. Low birth weight is associated with NIDDM in monozygotic and dizygotic twin pairs. Diabetologia 40, 439–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Ferrannini, E. et al. Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. European Group for the Study of Insulin Resistance (EGIR). Hypertension 30, 1144–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  12. Zimmet, P. et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr. Diabetes 8, 299–306 (2007).

    Article  Google Scholar 

  13. Lebovitz, H. E. & Banerji, M. A. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care 28, 2322–2325 (2005).

    Article  PubMed  Google Scholar 

  14. Després, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Abbasi, F. & Reaven, G. M. Relationship between fasting and day-long plasma glucose concentrations in diet-treated patients with type 2 diabetes. Metabolism 51, 457–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Seidell, J. C. Obesity, insulin resistance and diabetes--a worldwide epidemic. Br. J. Nutr. 83 (Suppl. 1), S5–S8 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tantisira, K. G. et al. Airway responsiveness in mild to moderate childhood asthma: sex influences on the natural history. Am. J. Respir. Crit. Care Med. 178, 325–331 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Field, A. E., Cook, N. R. & Gillman, M. W. Weight status in childhood as a predictor of becoming overweight or hypertensive in early adulthood. Obes. Res. 13, 163–169 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pan, Y. & Pratt, C. A. Metabolic syndrome and its association with diet and physical activity in US adolescents. J. Am. Diet Assoc. 108, 276–286 (2008).

    Article  PubMed  Google Scholar 

  20. Yajnik, C. S. Obesity epidemic in India intrauterine origins? Proc. Nutr. Soc. 63, 387–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Yajnik, C. S. et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int. J. Obes. Relat. Metab. Disord. 27, 173–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Kuo, L. E. et al. Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Ann. NY Acad. Sci. 1148, 232–237 (2008).

    Article  PubMed  Google Scholar 

  23. Keith, S. W. et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int. J. Obes. (Lond.) 30, 1585–1594 (2006).

    Article  CAS  Google Scholar 

  24. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Symonds, M. E. Nutrition and its contribution to obesity and diabetes: a life-course approach to disease prevention? Proc. Nutr. Soc. 68, 71–77 (2009).

    Article  PubMed  Google Scholar 

  26. Symonds, M. E., Stephenson, T., Gardner, D. S. & Budge, H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod. Fertil. Dev. 19, 53–63 (2007).

    Article  PubMed  Google Scholar 

  27. Rao, S. et al. Maternal activity in relation to birth size in rural India. The Pune Maternal Nutrition Study. Eur. J. Clin. Nutr. 57, 531–542 (2003).

  28. Mathews, F., Yudkin, P. & Neil, A. Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 319, 339–343 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reynolds, R. M., Godfrey, K. M., Barker, M., Osmond, C. & Phillips, D. I. Stress responsiveness in adult life: Influence of mother's diet in late pregnancy. J. Clin. Endocrinol. Metab. 92, 2208–2210 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Barker, D. J., Bull, A. R., Osmond, C. & Simmonds, S. J. Fetal and placental size and risk of hypertension in adult life. BMJ 301, 259–262 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pepper, G. V. and Craig Roberts, S. Rates of nausea and vomiting in pregnancy and dietary characteristics across populations. Proc. Biol. Sci. 273, 2675–2679 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neville, M. C. Adaptation of maternal lipid flux to pregnancy: research needs. Eur. J. Clin. Nutr. 53 (Suppl. 1), S120–S123 (1999).

    Article  PubMed  Google Scholar 

  33. Symonds, M. E., Sebert, S. P. & Budge, H. The impact of diet during early life and its contribution to later disease—critical checkpoints in development and their long term consequences for metabolic health. Proc. Nutr. Soc. doi:10.1017/50029665109990152.

  34. McCance, R. A. & Widdowson, E. M. The determinants of growth and form. Proc. R. Soc. Lond. B Biol. Sci. 185, 1–17 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. Streeter, G. L. Weight, sitting height, head size, foot length and menstrual age of the human embryo. Contrib. Embryol. 11, 143 (1920).

    Google Scholar 

  36. Villar, J. & Belizan, J. M. The timing factor in the pathophysiology of intrauterine growth retardation syndrome. Obstet. Gynecol. Surv. 37, 449–506 (1982).

    Article  Google Scholar 

  37. Fleischman, A. R., Oakes, G. K., Epstein, M. F., Catt, K. J. & Chez, R. A. Plasma renin activity during ovine pregnancy. Am. J. Physiol. 228, 901–904 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Roseboom, T. J. et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: An overview. Twin Res. 4, 293–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Painter, R. C., Roseboom, T. J. & Bleker, O. P. Prenatal exposure to the Dutch famine and disease in later life: An overview. Reprod. Toxicol. 20, 345–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Lopuhaä, C. E. et al. Atopy, lung function, and obstructive airways disease after prenatal exposure to famine. Thorax 55, 555–561 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Painter, R. C. et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J. Am. Soc. Nephrol. 16, 189–194 (2005).

    Article  Google Scholar 

  43. Roseboom, T. J. et al. Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am. J. Clin. Nutr. 72, 1101–1106 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Ravelli, A. C., Van der Meulen, J. H., Osmund, C., Barker, D. J. & Bleker, O. P. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 70, 811–816 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Roseboom, T. J. et al. Coronary heart disease after prenatal exposure to the Dutch famine. Heart 84, 595–598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naeye, R. L. Do placental weights have clinical significance? Hum. Pathol. 18, 387–391 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Fowden, A. L., Li, J. & Forhead, A. J. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc. Nutr. Soc. 57, 113–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Symonds, M. E., Mostyn, A., Pearce, S., Budge, H. & Stephenson, T. Endocrine and nutritional regulation of fetal adipose tissue development. J. Endocrinol. 179, 293–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Bispham, J. et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144, 3575–3585 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Gardner, D. S. et al. Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R947–R954 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Costello, P. M. et al. Peri-implantation and late gestation maternal undernutrition differentially affect fetal sheep skeletal muscle development. J. Physiol. 586, 2371–2379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, Z., Puigserver, P. & Spiegelman, B. M. Transcriptional activation of adipogenesis. Curr. Opin. Cell Biol. 11, 689–694 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Harrington, T. A., Thomas, E. L., Frost, G., Modi, N. & Bell, J. D. Distribution of adipose tissue in the newborn. Pediatr. Res. 55, 437–441 (2004).

    Article  PubMed  Google Scholar 

  55. Modi, N. et al. Determinants of adiposity during preweaning postnatal growth in appropriately grown and growth-restricted term infants. Pediatr. Res. 60, 345–348 (2006).

    Article  PubMed  Google Scholar 

  56. Crowther, N. J., Cameron, N., Trusler, J. & Gray, I. P. Association between poor glucose tolerance and rapid post natal weight gain in seven-year-old children. Diabetologia 41, 1163–1167 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Iñiguez, G. et al. Longitudinal changes in insulin-like growth factor-I, insulin sensitivity, and secretion from birth to age three years in small-for-gestational-age children. J. Clin. Endocrinol. Metab. 91, 4645–4649 (2006).

    Article  PubMed  CAS  Google Scholar 

  58. Ong, K. K. & Loos, R. J. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr. 95, 904–908 (2006).

    Article  PubMed  Google Scholar 

  59. Singhal, A. & Lucas, A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 363, 1642–1645 (2004).

    Article  PubMed  Google Scholar 

  60. Symonds, M. E. Integration of physiological and molecular mechanisms of the developmental origins of adult disease: new concepts and insights. Proc. Nutr. Soc. 66, 442–450 (2007).

    Article  PubMed  Google Scholar 

  61. McMillen, I. C. & Robinson, J. S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633 (2005).

    Article  CAS  Google Scholar 

  62. Snoeck, A., Remacle, C., Reusens, B. & Hoet, J. J. Effect of low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate 57, 107–118 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Gopalakrishnan, G. S. et al. Influence of maternal pre-pregnancy body composition and diet during early-mid pregnancy on cardiovascular function and nephron number in juvenile sheep. Br. J. Nutr. 94, 938–947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gallou-Kabani, C., Vigé, A., Gross, M. S. & Junien, C. Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin. Chem. Lab. Med. 45, 321–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Gallou-Kabani, C., Vigé, A. & Junien, C. Lifelong circadian and epigenetic drifts in metabolic syndrome. Epigenetics 2, 137–146 (2007).

    Article  PubMed  Google Scholar 

  66. Zeisel, S. H. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am. J. Clin. Nutr. 89, S1488–S1493 (2009).

    Article  CAS  Google Scholar 

  67. Malenfant, P. et al. Fat content in individual muscle fibers of lean and obese subjects. Int. J. Obes. Relat. Metab. Disord. 25, 1316–1321 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, G., Ukkola, O., Rankinen, T., Joanisse, D. R. & Bouchard, C. Skeletal muscle characteristics predict body fat gain in response to overfeeding in never-obese young men. Metabolism 51, 451–456 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Casba, G. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol. Rev. Camb. Philos. Soc. 55, 47–63 (1980).

    Article  Google Scholar 

  70. Nakae, J., Kido, Y. & Accili, D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. 22, 818–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. DeLellis, K. et al. IGF1 genotype, mean plasma level and breast cancer risk in the Hawaii/Los Angeles multiethnic cohort. Br. J. Cancer 88, 277–282 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Non-genomic transgenerational inheritance of disease risk. Bioessays 29, 145–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Hales, C. N. & Barker, D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Vickers, M. H., Ikenasio, B. A. & Breier, B. H. IGF-I treatment reduces hyperphagia, obesity, and hypertension in metabolic disorders induced by fetal programming. Endocrinology 142, 3964–3973 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Sébert, S. P. et al. Maternal nutrient restriction between early-to-mid gestation and its impact upon appetite regulation following juvenile obesity. Endocrinology 150, 634–641 (2009).

    Article  PubMed  CAS  Google Scholar 

  76. Park, J. H., Stoffers, D. A., Nicholls, R. D. & Simmons, R. A. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest. 118, 2316–2324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blondeau, B., Avril, I., Duchene, B. & Bréant, B. Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition. Diabetologia 45, 394–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Sharkey, D. et al. Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring. FASEB J. 23, 1314–1324 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Tarry-Adkins, J. L. et al. Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J. 23, 1521–1528 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Mühlhäusler, B. S. et al. Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation. J. Physiol. 565, 185–195 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chan, L. L. et al. Effect of maternal nutrient restriction from early to midgestation on cardiac function and metabolism after adolescent-onset obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1455–R1463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zawia, N. H., Lahiri, D. K. & Cardozo-Pelaez, F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic. Biol. Med. 46, 1241–1249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Percy, C. J., Brown, L., Power, D. A., Johnson, D. W. & Gobe, G. C. Obesity and hypertension have differing oxidant handling molecular pathways in age-related chronic kidney disease. Mech. Ageing Dev. 130, 129–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Zhu, M. J. et al. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J. Physiol. 586, 2651–2664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Boden, G. et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57, 2438–2444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yajnik, C. S. et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the European Union Sixth Framework Program for Research and Technical Development of the European Community—The Early Nutrition Programming Project (FOOD-CT-2005-007,036)—in their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Symonds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symonds, M., Sebert, S., Hyatt, M. et al. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 5, 604–610 (2009). https://doi.org/10.1038/nrendo.2009.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing