Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MRI as a tool to monitor islet transplantation

Abstract

The development of new methods for noninvasive imaging is an area of biotechnology that is of great relevance for the diagnosis and characterization of diabetes mellitus. Noninvasive imaging can be used to study the dynamics of β-cell mass and function; β-cell death; vascularity, innervation and autoimmune attack of pancreatic islets; and the efficacy of islet transplantation to remedy β-cell loss in patients with diabetes mellitus. In this Review, we focus on the application of MRI for monitoring islet transplantation and on the potential causes of islet graft failure, which are still poorly understood. Questions that have been addressed by MRI studies encompass graft longevity, and the effects of immune rejection, glucose toxic effects, and the transplanted islets' purity on graft fate. We also highlight novel technologies for simultaneous imaging and delivery of experimental therapies that aim to extend the lifespan and functionality of islet grafts. On the basis of this evidence, MRI represents a valuable platform for a thorough investigation of β-cell function in the context of islet transplantation. State-of-the-art multimodality approaches, such as PET–MRI, can extend our current capabilities and help answer the critical questions that currently inhibit the prevention and cure of diabetes mellitus.

Key Points

  • The development of new methods for noninvasive imaging can improve the diagnosis and characterization of diabetes mellitus

  • Noninvasive imaging can help to monitor the dynamics of the β-cell mass, function and death of β cells, vascularity, innervation, autoimmune activation and infiltration of pancreatic islets

  • Although islet transplantation is a promising approach, substantial graft loss can occur owing to allorejection, autoimmune attack, glucose toxic effects, mechanical stress and microvascular disruption of the islets during transplantation

  • The use of MRI to assess transplanted islets can help to optimize transplantation protocols, explore the anatomy and physiology of transplanted islets and study the immunology of islet engraftment

  • MRI has improved our understanding of immune rejection, toxic effects of glucose, the influence of transplanted islets' purity on graft fate and facilitated delivery of experimental therapies to extend grafts' lifespan

  • State-of-the-art multimodality approaches, such as PET–MRI, can extend our current capabilities and help tackle the obstacles that currently inhibit the prevention and cure of diabetes mellitus

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo MRI of islet transplantation under the kidney capsule.
Figure 2: In vivo imaging of intrahepatically transplanted human islets.
Figure 3: Toxic effects of glucose and influence of islet purity on islet transplantation.
Figure 4: In vivo MRI scans of encapsulated pancreatic islets transplanted into pigs, a | before and b | 5 min after intraportal infusion of magnetic capsules.
Figure 5: Multifunctional imaging and delivery of siRNA to pancreatic islets.

Similar content being viewed by others

References

  1. U. S. Department of Health and Human Services, Centers for Disease Control and Prevention CDC National Diabetes Fact Sheet, 2007: General Information[online] (2008).

  2. Moore, A., Bonner-Weir, S. & Weissleder, R. Non-invasive in vivo measurement of β-cell mass in mouse model of diabetes. Diabetes 50, 2231–2236 (2001).

    Article  CAS  Google Scholar 

  3. Ladriere, L., Malaisse-Lagae, F., Alejandro, R. & Malaisse, W. J. Pancreatic fate of a 125I-labelled mouse monoclonal antibody directed against pancreatic B-cell surface ganglioside(s) in control and diabetic rats. Cell Biochem. Funct. 19, 107–115 (2001).

    Article  CAS  Google Scholar 

  4. Ladriere, L., Malaisse-Lagae, F. & Malaisse, W. J. Uptake of tritiated glibenclamide by endocrine and exocrine pancreas. Endocrine 13, 133–136 (2000).

    Article  CAS  Google Scholar 

  5. Hohmeier, H. E. et al. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49, 424–430 (2000).

    Article  CAS  Google Scholar 

  6. Samli, K. N., McGuire, M. J., Newgard, C. B., Johnston, S. A. & Brown, K. C. Peptide-mediated targeting of the islets of Langerhans. Diabetes 54, 2103–2108 (2005).

    Article  CAS  Google Scholar 

  7. Medarova, Z., Bonner-Weir, S., Lipes, M. & Moore, A. Imaging β-cell death with a near-infrared probe. Diabetes 54, 1780–1788 (2005).

    Article  CAS  Google Scholar 

  8. Medarova, Z. et al. Noninvasive magnetic resonance imaging of microvascular changes in type 1 diabetes. Diabetes 56, 2677–2682 (2007).

    Article  CAS  Google Scholar 

  9. Simpson, N. R. et al. Visualizing pancreatic β-cell mass with 11C-DTBZ. Nucl. Med. Biol. 33, 855–864 (2006).

    Article  CAS  Google Scholar 

  10. Souza, F. et al. Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model. J. Clin. Invest. 116, 1506–1513 (2006).

    Article  CAS  Google Scholar 

  11. Kung, M. P. et al. In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J. Nucl. Med. 49, 1171–1176 (2008).

    Article  CAS  Google Scholar 

  12. Medarova, Z., Tsai, S., Evgenov, N., Santamaria, P. & Moore, A. In vivo imaging of a diabetogenic CD8+ T cell response during type 1 diabetes progression. Magn. Reson. Med. 59, 712–720 (2008).

    Article  Google Scholar 

  13. Moore, A., Grimm, J., Han, B. & Santamaria, P. Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 53, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  14. Kaufman, D., Baker, M., Nelson, J., Zhang, X. & Chen, X. In vivo, real-time, non-invasive bioluminescent imaging of transplanted islets in a functional murine model. Presented at Imaging the Pancreatic β Cell, April 21–22, Bethesda, MD (2003).

  15. Powers, A. et al. Using bioluminescence to non-invasively image and assess transplanted islet mass. Presented at Imaging the Pancreatic β Cell, April 21–22, Bethesda, MD (2003).

  16. Lu, Y. et al. Repetitive microPET imaging of implanted human islets in mice. Presented at Imaging the Pancreatic β Cell, April 21–22, Bethesda, MD (2003).

  17. Lu, Y. et al. Bioluminescent monitoring of islet graft survival after transplantation. Mol. Ther. 9, 428–435 (2004).

    Article  CAS  Google Scholar 

  18. Lu, Y. et al. Noninvasive imaging of islet grafts using positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 11294–11299 (2006).

    Article  CAS  Google Scholar 

  19. Fowler, M. et al. Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79, 768–776 (2005).

    Article  Google Scholar 

  20. Toso, C. et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am. J. Transplant. 8, 701–706 (2008).

    Article  CAS  Google Scholar 

  21. Toso, C. et al. Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation 79, 353–355 (2005).

    Article  Google Scholar 

  22. Eich, T., Eriksson, O., Lundgren, T. & Nordic Network for Clinical Islet Transplantation. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N. Engl. J. Med. 356, 2754–2755 (2007).

    Article  CAS  Google Scholar 

  23. Eich, T. et al. Positron emission tomography: a real-time tool to quantify early islet engraftment in a preclinical large animal model. Transplantation 84, 893–898 (2007).

    Article  Google Scholar 

  24. Evgenov, N. V., Medarova, Z., Dai, G., Bonner-Weir, S. & Moore, A. In vivo imaging of islet transplantation. Nat. Med. 12, 144–148 (2006).

    Article  CAS  Google Scholar 

  25. Evgenov, N. V. et al. In vivo imaging of immune rejection in transplanted pancreatic islets. Diabetes 55, 2419–2428 (2006).

    Article  CAS  Google Scholar 

  26. Evgenov, N. V., Pratt, J., Pantazopoulos, P. & Moore, A. Effects of glucose toxicity and islet purity on in vivo magnetic resonance imaging of transplanted pancreatic islets. Transplantation 85, 1091–1098 (2008).

    Article  Google Scholar 

  27. Biancone, L. et al. Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed. 20, 40–48 (2007).

    Article  Google Scholar 

  28. Koblas, T. et al. Magnetic resonance imaging of intrahepatically transplanted islets using paramagnetic beads. Transplant. Proc. 37, 3493–3495 (2005).

    Article  CAS  Google Scholar 

  29. Tai, J. H. et al. Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55, 2931–2938 (2006).

    Article  CAS  Google Scholar 

  30. Butler, A. E. et al. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  Google Scholar 

  31. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  Google Scholar 

  32. Sosnovik, D. E., Nahrendorf, M. & Weissleder, R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res. Cardiol. 103, 122–130 (2008).

    Article  CAS  Google Scholar 

  33. Ryan, E. A. et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50, 710–719 (2001).

    Article  CAS  Google Scholar 

  34. Shapiro, A. M. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    Article  CAS  Google Scholar 

  35. Davalli, A. M. et al. A selective decrease in the β cell mass of human islets transplanted into diabetic nude mice. Transplantation 59, 817–820 (1995).

    Article  CAS  Google Scholar 

  36. Davalli, A. M. et al. Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes 44, 104–111 (1995).

    Article  CAS  Google Scholar 

  37. Rossetti, L., Giaccari, A. & DeFronzo, R. Glucose toxicity. Diabetes Care 13, 610–630 (1990).

    Article  CAS  Google Scholar 

  38. Moore, W., Bieser, K., Geng, Z., Tong, P. & Kover, K. Decreased survival of islet allografts in rats with advanced chronic complications of diabetes. Cell Transplant. 11, 707–713 (2002).

    Article  Google Scholar 

  39. Inverardi, L., Kenyon, N. S. & Ricordi, C. Islet transplantation: immunological perspectives. Curr. Opin. Immunol. 15, 507–511 (2003).

    Article  CAS  Google Scholar 

  40. Pileggi, A., Ricordi, C., Alessiani, M. & Inverardi, L. Factors influencing islet of Langerhans graft function and monitoring. Clin. Chim. Acta 310, 3–16 (2001).

    Article  CAS  Google Scholar 

  41. Castano, L. & Eisenbarth, G. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu. Rev. Immunol. 8, 647–679 (1990).

    Article  CAS  Google Scholar 

  42. Atkinson, M. & Maclaren, N. The pathogenesis of insulin-dependent diabetes mellitus. N. Engl. J. Med. 331, 1428–1436 (1994).

    Article  CAS  Google Scholar 

  43. Virostko, J. et al. Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants. Mol. Imaging 3, 333–342 (2004).

    Article  Google Scholar 

  44. Roth, D. J., Jansen, E. D., Powers, A. C. & Wang, T. G. Bioluminescent imaging of an NF-κB transgenic mouse model. Transplantation 81, 1185–1190 (2006).

    Article  CAS  Google Scholar 

  45. Chen, X., Zhang, X., Larson, C. S., Baker, M. S. & Kaufman, D. B. In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation 81, 1421–1427 (2006).

    Article  Google Scholar 

  46. Bertera, S. et al. Body window-enabled in vivo multicolour imaging of transplanted mouse islets expressing as insulin–Timer fusion protein. Biotechniques 35, 718–722 (2003).

    Article  CAS  Google Scholar 

  47. Kim, S. et al. Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat. Med. 12, 1423–1428 (2006).

    Article  CAS  Google Scholar 

  48. Medarova, Z. & Moore, A. Non-invasive detection of transplanted pancreatic islets. Diabetes Obes. Metab. 10 (Suppl. 4), 88–97 (2008).

    Article  Google Scholar 

  49. Medarova, Z. & Moore, A. Cellular and molecular imaging of the diabetic pancreas. In Molecular and Cellular MR Imaging Part III Ch 19 (eds Modo, M. M. J. & Bulte, J. W. M.) 343–369 (CRC, 2007).

    Google Scholar 

  50. Jirák, D. et al. MRI of transplanted pancreatic islets. Magn. Reson. Med. 52, 1228–1233 (2004).

    Article  Google Scholar 

  51. Medarova, Z., Evgenov, N. V., Dai, G., Bonner-Weir, S. & Moore, A. In vivo multimodal imaging of transplanted pancreatic islets. Nat. Protoc. 1, 429–435 (2006).

    Article  CAS  Google Scholar 

  52. Barshes, N. R. et al. Achievement of insulin independence via pancreatic islet transplantation using a remote isolation center: a first-year review. Transplant. Proc. 36, 1127–1129 (2004).

    Article  CAS  Google Scholar 

  53. Kriz, J. et al. Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation 80, 1596–1603 (2005).

    Article  Google Scholar 

  54. Arnush, M. et al. IL-1 produced and released endogenously within human islets inhibits β cell function. J. Clin. Invest. 102, 516–526 (1998).

    Article  CAS  Google Scholar 

  55. Barnett, B. P. et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med. 13, 986–991 (2007).

    Article  CAS  Google Scholar 

  56. Hathout, E. et al. In vivo imaging demonstrates a time-line for new vessel formation in islet transplantation. Pediatr. Transplant. doi:10.1111/j.1399–30462008.01088.x

  57. Hathout, E. et al. In vivo magnetic resonance imaging of vascularization in islet transplantation. Transpl. Int. 20, 1059–1065 (2007).

    Article  Google Scholar 

  58. Gimi, B. et al. Functional MR microimaging of pancreatic β-cell activation. Cell Transplant. 15, 195–203 (2006).

    Article  Google Scholar 

  59. Antkowiak, P. F. et al. Non-invasive assessment of pancreatic β cell function in vivo using manganese-enhanced magnetic resonance imaging. Am. J. Physiol. Endocrinol. Metab. 296, E573–E578 (2009).

    Article  CAS  Google Scholar 

  60. Medarova, Z. et al. Multifunctional magnetic nanocarriers for image-tagged siRNA delivery to intact pancreatic Islets. Transplantation 86, 1170–1177 (2008).

    Article  CAS  Google Scholar 

  61. Claiborn, K. C. & Stoffers, D. A. Toward a cell-based cure for diabetes: advances in production and transplant of β cells. Mt Sinai J. Med. 75, 362–371 (2008).

    Article  Google Scholar 

  62. Caravan, P. Strategies for increasing the sensitivity of gadolinium-based MRI contrast agents. Chem. Soc. Rev. 35, 512–23 (2006).

    Article  CAS  Google Scholar 

  63. Heyn, C. et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn. Reson. Med. 55, 23–29 (2006).

    Article  Google Scholar 

  64. Moore, A., Medarova, Z., Potthast, A. & Dai, G. In vivo targeting of underglycosylated MUC-1 tumour antigen using a multimodal imaging probe. Cancer Res. 64, 1821–1827 (2004).

    Article  CAS  Google Scholar 

  65. Wagner, S., Schnorr, J., Pilgrimm, H., Hamm, B. & Taupitz, M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest. Radiol. 37, 167–177 (2002).

    Article  CAS  Google Scholar 

  66. Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In vivo imaging of siRNA delivery and silencing in tumours. Nat. Med. 13, 372–377 (2007).

    Article  CAS  Google Scholar 

  67. Arbab, A. S. & Frank, J. A. Cellular MRI and its role in stem cell therapy. Regen. Med. 3, 199–215 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medarova, Z., Moore, A. MRI as a tool to monitor islet transplantation. Nat Rev Endocrinol 5, 444–452 (2009). https://doi.org/10.1038/nrendo.2009.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing