Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics of type 2 diabetes mellitus: implications for the clinician

Abstract

Our understanding of the genetics of type 2 diabetes mellitus (T2DM) has changed, in part owing to implementation of genome-wide association studies as a method for unraveling the genetic architecture of complex traits. These studies enable a global search throughout the nuclear genome for variants that are associated with specific phenotypes. Currently, single nucleotide polymorphisms in about 24 different genetic loci have been associated with T2DM. Most of these genetic loci are associated with the insulin secretion pathway rather than insulin resistance. Study design, heritability differences and the intrinsic properties of in vivo insulin resistance measures might partially explain why only a few loci associated with insulin resistance have been detected through genome-wide association approaches. Despite the success of these approaches at detecting loci associated with T2DM, currently known associations explain only a small amount of the genetic variance involved in the disease. Compared with previous studies, larger cohorts might be needed to identify variants of smaller effect sizes and lower allele frequencies. Finally, the current list of genetic loci that are related to T2DM does not seem to offer greater predictive value in determining diabetes risk than do commonly used phenotypic risk factors and family history.

Key Points

  • Family and twin studies have demonstrated that type 2 diabetes mellitus has a substantial genetic component

  • Linkage analysis can be useful to find mutations that cause monogenic diabetes, such as maturity-onset diabetes of the young

  • Genome-wide association studies have been useful as a global screen for loci that might be involved in common forms of type 2 diabetes mellitus

  • Most of the diabetes-related genes that have been discovered so far seem to be involved in insulin secretion, not insulin resistance

  • Incorporation of the currently known diabetes-related polymorphisms into diabetes prediction models does not markedly improve their predictive ability compared with commonly measured phenotypic risk factors and family history

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Statistical power of the DIAGRAM meta-analysis (n = 9,562) to detect diabetes-related variants of different ORs across various risk allele frequencies, assuming complete coverage.36
Figure 2: ROC curves for the 'simple clinical model' in Framingham Heart Study participants with and without the genotype score.77

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. DIABETES—Successes and Opportunities for Population-Based Prevention and Control: At A Glance 2009 Chronic Disease Prevention and Health Promotion [online]. (2009).

  2. Moore, A. F. & Florez, J. C. Genetic susceptibility to type 2 diabetes and implications for antidiabetic therapy. Annu. Rev. Med. 59, 95–111 (2008).

    Article  CAS  Google Scholar 

  3. Barnett, A. H., Eff, C., Leslie, R. D. & Pyke, D. A. Diabetes in identical twins. A study of 200 pairs. Diabetologia 20, 87–93 (1981).

    Article  CAS  Google Scholar 

  4. Ghosh, S. & Schork, N. Genetic analysis of NIDDM. The study of quantitative traits. Diabetes 45, 1–14 (1996).

    Article  CAS  Google Scholar 

  5. Neel, J. Diabetes mellitus—a geneticist's nightmare. In The Genetics of Diabetes Mellitus (Eds Creutzfeldt, W. et al.) 1–11 (Springer, New York, 1976).

    Google Scholar 

  6. Fajans, S. S., Bell, G. I. & Polonsky, K. S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 971–980 (2001).

    Article  CAS  Google Scholar 

  7. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    Article  CAS  Google Scholar 

  8. Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52, 568–572 (2003).

    Article  CAS  Google Scholar 

  9. Florez, J. C. et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53, 1360–1368 (2004).

    Article  CAS  Google Scholar 

  10. Nielsen E.-M. D. et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52, 573–577 (2003).

    Article  CAS  Google Scholar 

  11. Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    Article  CAS  Google Scholar 

  12. Cauchi, S. et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med. 85, 777–782 (2007).

    Article  CAS  Google Scholar 

  13. Florez, J. C. The new type 2 diabetes gene TCF7L2. Curr. Opin. Clin. Nutr. Metab. Care 10, 391–396 (2007).

    Article  CAS  Google Scholar 

  14. Helgason, A. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 39, 218–225 (2007).

    Article  CAS  Google Scholar 

  15. Inoue, H. et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat. Genet. 20, 143–148 (1998).

    Article  CAS  Google Scholar 

  16. Sandhu, M. S. et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 39, 951–953 (2007).

    Article  CAS  Google Scholar 

  17. Bonnycastle, L. L. et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes 55, 2534–2540 (2006).

    Article  CAS  Google Scholar 

  18. Winckler, W. et al. Association of common variation in the HNF1α gene region with risk of type 2 diabetes. Diabetes 54, 2336–2342 (2005).

    Article  CAS  Google Scholar 

  19. Winckler, W. et al. Association testing of variants in the hepatocyte nuclear factor 4α gene with risk of type 2 diabetes in 7,883 people. Diabetes 54, 886–892 (2005).

    Article  CAS  Google Scholar 

  20. Winckler, W. et al. Evaluation of common variants in the six known Maturity-Onset Diabetes of the Young (MODY) genes for association with type 2 diabetes. Diabetes 56, 685–693 (2007).

    Article  CAS  Google Scholar 

  21. Gudmundsson, J. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39, 977–983 (2007).

    Article  CAS  Google Scholar 

  22. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  23. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    Article  CAS  Google Scholar 

  24. Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of genetic association studies. Nat. Genet. 29, 306–309 (2001).

    Article  CAS  Google Scholar 

  25. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  26. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  Google Scholar 

  27. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  28. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  29. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  Google Scholar 

  30. Chimienti, F., Devergnas, S., Favier, A. & Seve, M. Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53, 2330–2337 (2004).

    Article  CAS  Google Scholar 

  31. Frayling, T. M. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8, 657–662 (2007).

    Article  CAS  Google Scholar 

  32. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University and Novartis Institutes of BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

  33. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    Article  CAS  Google Scholar 

  34. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  Google Scholar 

  35. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    Article  CAS  Google Scholar 

  36. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  Google Scholar 

  37. Unoki, H. et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40, 1098–1102 (2008).

    Article  CAS  Google Scholar 

  38. Yasuda, K. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40, 1092–1097 (2008).

    Article  CAS  Google Scholar 

  39. Weedon, M. N. et al. A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am. J. Hum. Genet. 79, 991–1001 (2006).

    Article  CAS  Google Scholar 

  40. Gloyn, A. L. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum. Mutat. 22, 353–362 (2003).

    Article  CAS  Google Scholar 

  41. Bouatia-Naji, N. et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320, 1085–1088 (2008).

    Article  CAS  Google Scholar 

  42. Chen, W. M. et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J. Clin. Invest. 118, 2620–2628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, C. et al. A genetic variant of G6PC2 is associated with type 2 diabetes and fasting plasma glucose level in the Chinese population. Diabetologia 52, 451–456 (2009).

    Article  CAS  Google Scholar 

  44. Bouatia-Naji, N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89–94 (2009).

    Article  CAS  Google Scholar 

  45. Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82–88 (2009).

    Article  CAS  Google Scholar 

  46. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    Article  CAS  Google Scholar 

  47. Florez, J. C. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51, 1100–1110 (2008).

    Article  CAS  Google Scholar 

  48. Barroso, I. et al. Population-specific risk of type 2 diabetes conferred by HNF4A P2 promoter variants: a lesson for replication studies. Diabetes 57, 3161–3165 (2008).

    Article  CAS  Google Scholar 

  49. Love-Gregory, L. D. et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4α gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes 53, 1134–1140 (2004).

    Article  CAS  Google Scholar 

  50. Silander, K. et al. Genetic variation near the hepatocyte nuclear factor-4α gene predicts susceptibility to type 2 diabetes. Diabetes 53, 1141–1149 (2004).

    Article  CAS  Google Scholar 

  51. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    Article  CAS  Google Scholar 

  52. Florez, J. C. et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 355, 241–250 (2006).

    Article  CAS  Google Scholar 

  53. Saxena, R. et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 55, 2890–2895 (2006).

    Article  CAS  Google Scholar 

  54. Gonzalez-Sanchez, J. et al. Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia 51, 1993–1997 (2008).

    Article  CAS  Google Scholar 

  55. Kirchhoff, K. et al. Polymorphisms in the TCF7L2, CDKAL1, and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51, 597–601 (2008).

    Article  CAS  Google Scholar 

  56. Loos, R. J. et al. TCF7L2 polymorphisms modulate proinsulin levels and β-cell function in a British Europid population. Diabetes 56, 1943–1947 (2007).

    Article  CAS  Google Scholar 

  57. Stolerman, E. S. et al. TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52, 614–620 (2009).

    Article  CAS  Google Scholar 

  58. Grarup, N. et al. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 57, 2534–2540 (2008).

    Article  CAS  Google Scholar 

  59. Grarup, N. et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56, 3105–3111 (2007).

    Article  CAS  Google Scholar 

  60. Pascoe, L. et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes 56, 3101–3104 (2007).

    Article  CAS  Google Scholar 

  61. Sparso, T. et al. Impact of polymorphisms in WFS1 on prediabetic phenotypes in a population-based samples of middle-aged people with normal and abnormal glucose regulation. Diabetologia 51, 1646–1652 (2008).

    Article  CAS  Google Scholar 

  62. Staiger, H. et al. Polymorphisms within novel risk loci for type 2 diabetes determine β-cell function. PLoS ONE 2, e832 (2007).

    Article  Google Scholar 

  63. Panhuysen, C. I. et al. A genome scan for loci linked to quantitative insulin traits in persons without diabetes: the Framingham Offspring Study. Diabetologia 46, 579–587 (2003).

    Article  CAS  Google Scholar 

  64. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  Google Scholar 

  65. Freathy, R. M. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 57, 1419–1426 (2008).

    Article  CAS  Google Scholar 

  66. Grunnet, L. G. et al. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibres and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609. J. Clin. Endocrinol. Metab. 94, 596–602 (2008).

    Article  Google Scholar 

  67. Jacobsson, J. A. et al. Novel genetic variant in FTO influences insulin levels and insulin resistance in severely obese children and adolescents. Int. J. Obes. 32, 1730–1735 (2008).

    Article  CAS  Google Scholar 

  68. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    Article  CAS  Google Scholar 

  69. Pearson, E. R. et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362, 1275–1281 (2003).

    Article  CAS  Google Scholar 

  70. Nathan, D. M. et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32, 193–203 (2009).

    Article  CAS  Google Scholar 

  71. Pearson, E. R. et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 355, 467–477 (2006).

    Article  CAS  Google Scholar 

  72. Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355, 456–466 (2006).

    Article  CAS  Google Scholar 

  73. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007).

    Article  CAS  Google Scholar 

  74. Zhou, K. et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes 58, 1434–1439 (2009).

    Article  CAS  Google Scholar 

  75. Becker, M. L. et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 58, 745–749 (2009).

    Article  CAS  Google Scholar 

  76. Pearson, E. R. et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 56, 2178–2182 (2007).

    Article  CAS  Google Scholar 

  77. Feng, Y. et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care 31, 1939–1944 (2008).

    Article  CAS  Google Scholar 

  78. Wilson, P. W. et al. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch. Intern. Med. 167, 1068–1074 (2007).

    Article  Google Scholar 

  79. Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219 (2008).

    Article  CAS  Google Scholar 

  80. Lyssenko, V. et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N. Engl. J. Med. 359, 2220–2232 (2008).

    Article  CAS  Google Scholar 

  81. van Hoek, M. et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57, 3122–3128 (2008).

    Article  CAS  Google Scholar 

  82. Lango, H. et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57, 3129–3135 (2008).

    Article  CAS  Google Scholar 

  83. Frayling, T. M. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8, 657–662 (2007).

    Article  CAS  Google Scholar 

  84. Ludovico, O. et al. Heterogeneous effect of peroxisome proliferator-activated receptor γ2 Ala12 variant on type 2 diabetes risk. Obesity (Silver Spring) 15, 1076–1081 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. S. Stolerman is supported by NIH Training Grant T32 GM007748 in Genetics. J. C. Florez is supported by a Physician Scientist Development Award by the Massachusetts General Hospital and a Clinical Scientist Development Award from the Doris Duke Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose C. Florez.

Ethics declarations

Competing interests

J. C. Florez declares having received one-time consulting fees from the following companies: Merck, Pfizer, bioStrategies Group, XOMA and Publicis Healthcare Communications Group (engaged by Amylin Pharmaceuticals). E. S. Stolerman declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolerman, E., Florez, J. Genomics of type 2 diabetes mellitus: implications for the clinician. Nat Rev Endocrinol 5, 429–436 (2009). https://doi.org/10.1038/nrendo.2009.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing