Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rheumatoid arthritis

Abstract

Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that primarily affects the joints and is associated with autoantibodies that target various molecules including modified self-epitopes. The identification of novel autoantibodies has improved diagnostic accuracy, and newly developed classification criteria facilitate the recognition and study of the disease early in its course. New clinical assessment tools are able to better characterize disease activity states, which are correlated with progression of damage and disability, and permit improved follow-up. In addition, better understanding of the pathogenesis of RA through recognition of key cells and cytokines has led to the development of targeted disease-modifying antirheumatic drugs. Altogether, the improved understanding of the pathogenetic processes involved, rational use of established drugs and development of new drugs and reliable assessment tools have drastically altered the lives of individuals with RA over the past 2 decades. Current strategies strive for early referral, early diagnosis and early start of effective therapy aimed at remission or, at the least, low disease activity, with rapid adaptation of treatment if this target is not reached. This treat-to-target approach prevents progression of joint damage and optimizes physical functioning, work and social participation. In this Primer, we discuss the epidemiology, pathophysiology, diagnosis and management of RA.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Development and progression of RA.
Figure 2: Mechanisms involved in initiation and progression of rheumatoid arthritis.
Figure 3: Histological features of synovitis and joint destruction in RA.
Figure 4: Clinical manifestations of RA.
Figure 5: Screening for rheumatoid arthritis.
Figure 6: Management of RA with disease-modifying antirheumatic drugs.
Figure 7: Treatment response to disease-modifying antirheumatic drugs in RA.
Figure 8: HRQOL in individuals with RA.

References

  1. Malmstrom, V., Catrina, A. I. & Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol. 17, 60–75 (2017).

    PubMed  Google Scholar 

  2. Myasoedova, E., Crowson, C. S., Kremers, H. M., Therneau, T. M. & Gabriel, S. E. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 62, 1576–1582 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Tobon, G. J., Youinou, P. & Saraux, A. The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. J. Autoimmun 35, 10–14 (2010).

    PubMed  Google Scholar 

  4. Malemba, J. J. et al. The epidemiology of rheumatoid arthritis in Kinshasa, Democratic Republic of Congo—a population-based study. Rheumatology 51, 1644–1647 (2012).

    PubMed  Google Scholar 

  5. Peschken, C. A. & Esdaile, J. M. Rheumatic diseases in North America's indigenous peoples. Semin. Arthritis Rheum. 28, 368–391 (1999).

    CAS  PubMed  Google Scholar 

  6. Kawatkar, A. A., Portugal, C., Chu, L.-H. & Iyer, R. Racial/ethnic trends in incidence and prevalence of rheumatoid arthritis in a large multi-ethnic managed care population [abstract]. Arthritis Rheum. 64, S1061 (2012).

    Google Scholar 

  7. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    CAS  PubMed  Google Scholar 

  8. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Padyukov, L. et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 70, 259–265 (2011).

    PubMed  Google Scholar 

  10. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987). This is the single most important paper on the genetics of RA, after the seminal work of Peter Stastny detecting the association between RA and HLA-DR4, and explains the differences in associations found between different populations by a short amino acid sequence common to all these molecules.

    CAS  PubMed  Google Scholar 

  11. Weyand, C. M., Hicok, K. C., Conn, D. L. & Goronzy, J. J. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann. Intern. Med. 117, 801–806 (1992).

    CAS  PubMed  Google Scholar 

  12. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  PubMed  Google Scholar 

  13. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Google Scholar 

  14. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomson, W. et al. Rheumatoid arthritis association at 6q23. Nat. Genet. 39, 1431–1433 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Barton, A. et al. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat. Genet. 40, 1156–1159 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raychaudhuri, S. Recent advances in the genetics of rheumatoid arthritis. Curr. Opin. Rheumatol 22, 109–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karlson, E. W. et al. Cumulative association of 22 genetic variants with seropositive rheumatoid arthritis risk. Ann. Rheum. Dis. 69, 1077–1085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Viatte, S. et al. Replication of associations of genetic loci outside the HLA region with susceptibility to anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis Rheumatol. 68, 1603–1613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Viatte, S. et al. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 71, 1984–1990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    CAS  PubMed  Google Scholar 

  26. Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McGovern, A. et al. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol. 17, 212 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Viatte, S. et al. Association between genetic variation in FOXO3 and reductions in inflammation and disease activity in inflammatory polyarthritis. Arthritis Rheumatol. 68, 2629–2636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Krabben, A., Huizinga, T. W. & Mil, A. H. Biomarkers for radiographic progression in rheumatoid arthritis. Curr. Pharm. Des. 21, 147–169 (2015).

    CAS  PubMed  Google Scholar 

  30. Lee, J. C. et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Oliver, J., Plant, D., Webster, A. P. & Barton, A. Genetic and genomic markers of anti-TNF treatment response in rheumatoid arthritis. Biomark Med. 9, 499–512 (2015).

    CAS  PubMed  Google Scholar 

  32. Gomez-Cabrero, D. et al. High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis. Genome Med. 8, 124 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31, 142–147 (2013). This paper describes the importance of epigenetic modifications beyond genetic factors in the pathogenesis of RA.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng, W. et al. DNA methylation mediates genotype and smoking interaction in the development of anti-citrullinated peptide antibody-positive rheumatoid arthritis. Arthritis Res. Ther. 19, 71 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35, 347–369 (2014).

    CAS  PubMed  Google Scholar 

  37. Crowson, C. S. et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 63, 633–639 (2011).

    PubMed  PubMed Central  Google Scholar 

  38. Alpizar-Rodriguez, D., Pluchino, N., Canny, G., Gabay, C. & Finckh, A. The role of female hormonal factors in the development of rheumatoid arthritis. Rheumatology 56, 1254–1263 (2017).

    CAS  PubMed  Google Scholar 

  39. Alamanos, Y., Voulgari, P. V. & Drosos, A. A. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: a systematic review. Semin. Arthritis Rheum. 36, 182–188 (2006).

    PubMed  Google Scholar 

  40. Sugiyama, D. et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 69, 70–81 (2010).

    CAS  PubMed  Google Scholar 

  41. Vesperini, V. et al. Association of tobacco exposure and reduction of radiographic progression in early rheumatoid arthritis: results from a French multicenter cohort. Arthritis Care Res. 65, 1899–1906 (2013).

    CAS  Google Scholar 

  42. Kallberg, H. et al. Smoking is a major preventable risk factor for rheumatoid arthritis: estimations of risks after various exposures to cigarette smoke. Ann. Rheum. Dis. 70, 508–511 (2011).

    PubMed  Google Scholar 

  43. Sokolove, J. et al. Increased inflammation and disease activity among current cigarette smokers with rheumatoid arthritis: a cross-sectional analysis of US veterans. Rheumatology 55, 1969–1977 (2016).

    PubMed  Google Scholar 

  44. Svendsen, A. J. et al. Differentially methylated DNA regions in monozygotic twin pairs discordant for rheumatoid arthritis: an epigenome-wide study. Front. Immunol. 7, 510 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Jiang, X., Alfredsson, L., Klareskog, L. & Bengtsson, C. Smokeless tobacco (moist snuff) use and the risk of developing rheumatoid arthritis: results from a case-control study. Arthritis Care Res. 66, 1582–1586 (2014).

    Google Scholar 

  46. Naranjo, A. et al. Smokers and non smokers with rheumatoid arthritis have similar clinical status: data from the multinational QUEST-RA database. Clin. Exp. Rheumatol. 28, 820–827 (2010).

    CAS  PubMed  Google Scholar 

  47. Stolt, P. et al. Silica exposure is associated with increased risk of developing rheumatoid arthritis: results from the Swedish EIRA study. Ann. Rheum. Dis. 64, 582–586 (2005).

    CAS  PubMed  Google Scholar 

  48. Webber, M. P. et al. Nested case-control study of selected systemic autoimmune diseases in World Trade Center rescue/recovery workers. Arthritis Rheumatol. 67, 1369–1376 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Too, C. L. et al. Occupational exposure to textile dust increases the risk of rheumatoid arthritis: results from a Malaysian population-based case-control study. Ann. Rheum. Dis. 75, 997–1002 (2016).

    CAS  PubMed  Google Scholar 

  50. Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kharlamova, N. et al. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking, and risk genes in rheumatoid arthritis etiology. Arthritis Rheumatol. 68, 604–613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl Med. 8, 369ra176 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Chen, J. et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 8, 43 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Pianta, A. et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J. Clin. Invest. 127, 2946–2956 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Naciute, M. et al. Frequency and significance of parvovirus B19 infection in patients with rheumatoid arthritis. J. Gen. Virol. 97, 3302–3312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gasque, P., Bandjee, M. C., Reyes, M. M. & Viasus, D. Chikungunya pathogenesis: from the clinics to the bench. J. Infect. Dis. 214 (Suppl. 5), S446–S448 (2016).

    CAS  PubMed  Google Scholar 

  58. Tan, E. M. & Smolen, J. S. Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. J. Exp. Med. 213, 1937–1950 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ljung, L. & Rantapaa-Dahlqvist, S. Abdominal obesity, gender and the risk of rheumatoid arthritis — a nested case-control study. Arthritis Res. Ther. 18, 277 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Lu, B., Solomon, D. H., Costenbader, K. H. & Karlson, E. W. Alcohol consumption and risk of incident rheumatoid arthritis in women: a prospective study. Arthritis Rheumatol. 66, 1998–2005 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Lee, Y. C. et al. Post-traumatic stress disorder and risk for incident rheumatoid arthritis. Arthritis Care Res. 68, 292–298 (2016).

    Google Scholar 

  62. Camacho, E. M., Verstappen, S. M. & Symmons, D. P. Association between socioeconomic status, learned helplessness, and disease outcome in patients with inflammatory polyarthritis. Arthritis Care Res. 64, 1225–1232 (2012).

    CAS  Google Scholar 

  63. Radner, H., Lesperance, T., Accortt, N. A. & Solomon, D. H. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res. 69, 1510–1518 (2017).

    Google Scholar 

  64. Lopez-Mejias, R. et al. Cardiovascular risk assessment in patients with rheumatoid arthritis: the relevance of clinical, genetic and serological markers. Autoimmun. Rev. 15, 1013–1030 (2016).

    PubMed  Google Scholar 

  65. Sparks, J. A. et al. Rheumatoid arthritis and mortality among women during 36 years of prospective follow-up: results from the Nurses’ Health Study. Arthritis Care Res. 68, 753–762 (2016).

    Google Scholar 

  66. Markusse, I. M. et al. Long-term outcomes of patients with recent-onset rheumatoid arthritis after 10 years of tight controlled treatment: a randomized trial. Ann. Intern. Med. 164, 523–531 (2016).

    PubMed  Google Scholar 

  67. Masi, A. T. Articular patterns in the early course of rheumatoid arthritis. Am. J. Med. 75, 16–26 (1983).

    CAS  PubMed  Google Scholar 

  68. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    CAS  PubMed  Google Scholar 

  69. Dissick, A. et al. Association of periodontitis with rheumatoid arthritis: a pilot study. J. Periodontol. 81, 223–230 (2010).

    PubMed  Google Scholar 

  70. Holers, V. M. Autoimmunity to citrullinated proteins and the initiation of rheumatoid arthritis. Curr. Opin. Immunol. 25, 728–735 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Muller, S. & Radic, M. Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms. Clin. Rev. Allergy Immunol. 49, 232–239 (2015).

    CAS  PubMed  Google Scholar 

  72. Trouw, L. A., Huizinga, T. W. & Toes, R. E. Autoimmunity in rheumatoid arthritis: different antigens — common principles. Ann. Rheum. Dis. 72 (Suppl. 2), ii132–ii136 (2013).

    CAS  PubMed  Google Scholar 

  73. Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010). This article explains that after almost 25 years, new RA classification criteria were developed in a data-driven, consensus process; these criteria also allow classification of patients with early RA who failed to be classified with the previous criteria.

    PubMed  Google Scholar 

  74. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004). After the seminal observations of Kimmo Aho on the presence of RF and anti-keratin antibodies (which later became known as ACPAs), this paper reveals that ACPA (and RF) precedes the clinical symptoms of RA by assessing sera from blood donors.

    PubMed  Google Scholar 

  75. Aletaha, D., Alasti, F. & Smolen, J. S. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. Arthritis Res. Ther. 17, 229 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Laurent, L. et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann. Rheum. Dis. 74, 1425–1431 (2015).

    CAS  PubMed  Google Scholar 

  77. Sokolove, J. et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 66, 813–821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. van Beers, J. J. et al. ACPA fine-specificity profiles in early rheumatoid arthritis patients do not correlate with clinical features at baseline or with disease progression. Arthritis Res. Ther. 15, R140 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Deane, K. D. et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 62, 3161–3172 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. de Hair, M. J. et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 66, 513–522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kraan, M. C. et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum. 41, 1481–1488 (1998).

    CAS  PubMed  Google Scholar 

  82. Arend, W. P. & Firestein, G. S. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat. Rev. Rheumatol. 8, 573–586 (2012).

    CAS  PubMed  Google Scholar 

  83. Steiner, G. Auto-antibodies and autoreactive T-cells in rheumatoid arthritis: pathogenetic players and diagnostic tools. Clin. Rev. Allergy Immunol. 32, 23–36 (2007).

    CAS  PubMed  Google Scholar 

  84. Kinslow, J. D. et al. Elevated IgA plasmablast levels in subjects at risk of developing rheumatoid arthritis. Arthritis Rheumatol. 68, 2372–2383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi, J. et al. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann. Rheum. Dis. 73, 780–783 (2014).

    CAS  PubMed  Google Scholar 

  86. Bohler, C., Radner, H., Smolen, J. S. & Aletaha, D. Serological changes in the course of traditional and biological disease modifying therapy of rheumatoid arthritis. Ann. Rheum. Dis. 72, 241–244 (2013).

    PubMed  Google Scholar 

  87. Klarenbeek, P. L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012).

    CAS  PubMed  Google Scholar 

  88. Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Castor, C. W. The microscopic structure of normal human synovial tissue. Arthritis Rheum. 3, 140–151 (1960).

    CAS  PubMed  Google Scholar 

  90. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  91. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Stanczyk, J. et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    PubMed  Google Scholar 

  93. Philippe, L. et al. MiR-20a regulates ASK1 expression and TLR4-dependent cytokine release in rheumatoid fibroblast-like synoviocytes. Ann. Rheum. Dis. 72, 1071–1079 (2013).

    CAS  PubMed  Google Scholar 

  94. Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ziff, M. Relation of cellular infiltration of rheumatoid synovial membrane to its immune response. Arthritis Rheum. 17, 313–319 (1974).

    CAS  PubMed  Google Scholar 

  96. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLOS Med. 6, e1 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Randen, I. et al. Clonally related IgM rheumatoid factors undergo affinity maturation in the rheumatoid synovial tissue. J. Immunol. 148, 3296–3301 (1992).

    CAS  PubMed  Google Scholar 

  98. Catrina, A. I., Ytterberg, A. J., Reynisdottir, G., Malmstrom, V. & Klareskog, L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 645–653 (2014).

    CAS  PubMed  Google Scholar 

  99. Orr, C. et al. Synovial tissue research: a state-of-the-art review. Nat. Rev. Rheumatol 13, 463–475 (2017).

    PubMed  Google Scholar 

  100. Kiener, H. P. et al. Cadherin 11 promotes invasive behavior of fibroblast-like synoviocytes. Arthritis Rheum. 60, 1305–1310 (2009).

    PubMed  PubMed Central  Google Scholar 

  101. Keyszer, G. et al. Differential expression of cathepsins B and L compared with matrix metalloproteinases and their respective inhibitors in rheumatoid arthritis and osteoarthritis: a parallel investigation by semiquantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. Arthritis Rheum. 41, 1378–1387 (1998).

    CAS  PubMed  Google Scholar 

  102. Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    CAS  PubMed  Google Scholar 

  103. Muller-Ladner, U. et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 149, 1607–1615 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).

    CAS  PubMed  Google Scholar 

  105. Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schett, G. & Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 8, 656–664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Redlich, K. & Smolen, J. S. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 11, 234–250 (2012).

    CAS  PubMed  Google Scholar 

  108. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Krishnamurthy, A. et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis. 75, 721–729 (2016).

    CAS  PubMed  Google Scholar 

  110. Hayer, S. et al. Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. Arthritis Rheum. 56, 79–88 (2007).

    Google Scholar 

  111. Nakano, S. et al. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology 54, 1498–1506 (2015).

    Google Scholar 

  112. Behrens, F. et al. MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann. Rheum. Dis. 74, 1058–1064 (2015).

    CAS  Google Scholar 

  113. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    CAS  Google Scholar 

  114. Genovese, M. C. et al. Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med. 374, 1243–1252 (2016).

    CAS  Google Scholar 

  115. Boyle, D. L. et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1311–1316 (2015).

    CAS  PubMed  Google Scholar 

  116. Genovese, M. C. Inhibition of p38: has the fat lady sung? Arthritis Rheum. 60, 317–320 (2009).

    Google Scholar 

  117. Genovese, M. C. et al. A phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study of 2 dosing regimens of fostamatinib in patients with rheumatoid arthritis with an inadequate response to a tumor necrosis factor-alpha antagonist. J. Rheumatol. 41, 2120–2128 (2014).

    CAS  Google Scholar 

  118. Firestein, G. S. The disease formerly known as rheumatoid arthritis. Arthritis Res. Ther. 16, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Smolen, J. S. et al. Validity and reliability of the twenty-eight-joint count for the assessment of rheumatoid arthritis activity. Arthritis Rheum. 38, 38–43 (1995).

    CAS  Google Scholar 

  120. Koduri, G. et al. Interstitial lung disease has a poor prognosis in rheumatoid arthritis: results from an inception cohort. Rheumatology 49, 1483–1489 (2010).

    Google Scholar 

  121. Bongartz, T. et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: a population-based study. Arthritis Rheum. 62, 1583–1591 (2010).

    PubMed  PubMed Central  Google Scholar 

  122. Minichiello, E., Semerano, L. & Boissier, M. C. Time trends in the incidence, prevalence, and severity of rheumatoid arthritis: a systematic literature review. Joint Bone Spine 83, 625–630 (2016).

    PubMed  Google Scholar 

  123. Theander, L. et al. Severe extraarticular manifestations in a community-based cohort of patients with rheumatoid arthritis: risk factors and incidence in relation to treatment with tumor necrosis factor inhibitors. J. Rheumatol 44, 981–987 (2017).

    CAS  Google Scholar 

  124. Aggarwal, R. et al. Distinctions between diagnostic and classification criteria? Arthritis Care Res. 67, 891–897 (2015).

    Google Scholar 

  125. Radner, H., Neogi, T., Smolen, J. S. & Aletaha, D. Performance of the 2010 ACR/EULAR classification criteria for rheumatoid arthritis: a systematic literature review. Ann. Rheum. Dis. 73, 114–123 (2014).

    PubMed  Google Scholar 

  126. Hazlewood, G. et al. Algorithm for identification of undifferentiated peripheral inflammatory arthritis: a multinational collaboration through the 3e initiative. J. Rheumatol. Suppl. 87, 54–58 (2011).

    Google Scholar 

  127. Kurko, J. et al. Genetics of rheumatoid arthritis — a comprehensive review. Clin. Rev. Allergy Immunol. 45, 170–179 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Aletaha, D. & Smolen, J. S. Joint damage in rheumatoid arthritis progresses in remission according to the Disease Activity Score in 28 joints and is driven by residual swollen joints. Arthritis Rheum. 63, 3702–3711 (2011).

    Google Scholar 

  129. Gormley, G. J. et al. Can diagnostic triage by general practitioners or rheumatology nurses improve the positive predictive value of referrals to early arthritis clinics? Rheumatology 42, 763–768 (2003).

    CAS  PubMed  Google Scholar 

  130. Villeneuve, E. et al. A systematic literature review of strategies promoting early referral and reducing delays in the diagnosis and management of inflammatory arthritis. Ann. Rheum. Dis. 72, 13–22 (2013).

    Google Scholar 

  131. de Rooy, D. P., van der Linden, M. P., Knevel, R., Huizinga, T. W. & van der Helm-van Mil, A. H. Predicting arthritis outcomes — what can be learned from the Leiden Early Arthritis Clinic? Rheumatology 50, 93–100 (2011).

    PubMed  Google Scholar 

  132. van der Helm- van Mil, A. H. et al. A prediction rule for disease outcome in patients with recent-onset undifferentiated arthritis: how to guide individual treatment decisions. Arthritis Rheum. 56, 433–440 (2007).

    Google Scholar 

  133. van Aken, J. et al. Five-year outcomes of probable rheumatoid arthritis treated with methotrexate or placebo during the first year (the PROMPT study). Ann. Rheum. Dis. 73, 396–400 (2014).

    CAS  PubMed  Google Scholar 

  134. Weinblatt, M. E. Efficacy of methotrexate in rheumatoid arthritis. Br. J. Rheumatol 34 (Suppl. 2), 43–48 (1995).

    PubMed  Google Scholar 

  135. Visser, K. & van der Heijde, D. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: a systematic review of the literature. Ann. Rheum. Dis. 68, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  136. van Ede, A. E. et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 44, 1515–1524 (2001). This study changed the approach to methotrexate therapy, showing that folate substitution does not reduce the efficacy but highly improves the tolerability of methotrexate, thus allowing optimal dosing of the drug.

    CAS  PubMed  Google Scholar 

  137. Felson, D. T. et al. American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum. 38, 727–735 (1995).

    CAS  PubMed  Google Scholar 

  138. van der Heijde, D. M. et al. Validity of single variables and composite indices for measuring disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 51, 177–181 (1992). This article presents the first definition of a continuous measure for disease activity; its derivative, DAS28, became more widely used because it is less time-consuming to evaluate and further simplifications of composite measures were developed with CDAI and SDAI.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Smolen, J. S. et al. A simplified disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology 42, 244–257 (2003).

    CAS  PubMed  Google Scholar 

  140. van der Heide, A. et al. The effectiveness of early treatment with “second-line” antirheumatic drugs. A randomized, controlled trial. Ann. Intern. Med. 124, 699–707 (1996). This is one of the first studies to reveal the importance of the early institution of DMARD therapy and thus the inappropriateness of the pyramid approach, although patients still had relatively long-standing disease.

    CAS  PubMed  Google Scholar 

  141. Huizinga, W. J., Machold, K. P., Breedveld, F. C., Lipsky, P. E. & Smolen, J. S. Criteria for early rheumatoid arthritis: From Bayes’ law revisited to new thoughts on pathogenesis. (Conference summary). Arthritis Rheum. 46, 1155–1159 (2002).

    PubMed  Google Scholar 

  142. Nell, V. et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology 43, 906–914 (2004).

    CAS  PubMed  Google Scholar 

  143. McCarty, D. J. Suppress rheumatoid inflammation early and leave the pyramid to the Egyptians. J. Rheumatol 17, 1117–1118 (1990).

    Google Scholar 

  144. Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364, 263–269 (2004).

    PubMed  Google Scholar 

  145. Aletaha, D. et al. Remission and active disease in rheumatoid arthritis: defining criteria for disease activity states. Arthritis Rheum. 52, 2625–2636 (2005).

    PubMed  Google Scholar 

  146. Felson, D. T. et al. American College of Rheumatology/European League Against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann. Rheum. Dis. 70, 404–413 (2011). This paper provides a new definition for remission that is sufficiently stringent to be associated with lack of considerable residual disease activity, functional impairment and progression of damage.

    PubMed  Google Scholar 

  147. Smolen, J. S. et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 75, 3–15 (2016). This study defines the pathways to optimizing disease control in RA on the basis of available evidence and consensus finding,

    PubMed  Google Scholar 

  148. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994). This is the first controlled study showing the efficacy of a biological agent in RA — namely, the anti-TNF antibody infliximab.

    CAS  PubMed  Google Scholar 

  149. Maini, R. N. et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 41, 1552–1563 (1998).

    CAS  PubMed  Google Scholar 

  150. Mierau, M. et al. Assessing remission in clinical practice. Rheumatology 46, 975–979 (2007).

    CAS  PubMed  Google Scholar 

  151. Verstappen, S. M. M. et al. Intensive treatment with methotrexate in early rheumatoid arthritis: aiming for remission. Computer Assisted Management in Early Rheumatoid Arthritis (CAMERA, an open-label strategy trial). Ann. Rheum. Dis. 66, 1443–1449 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Klarenbeek, N. B. et al. The impact of four dynamic, goal-steered treatment strategies on the 5-year outcomes of rheumatoid arthritis patients in the BeSt study. Ann. Rheum. Dis. 70, 1039–1046 (2011).

    PubMed  Google Scholar 

  153. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann. Rheum. Dis. 76, 960–977 (2017).

    PubMed  Google Scholar 

  154. Singh, J. A. et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. 68, 1–25 (2016).

    Google Scholar 

  155. Lau, C. S. et al. APLAR rheumatoid arthritis treatment recommendations. Int. J. Rheum. Dis. 18, 685–713 (2015).

    PubMed  Google Scholar 

  156. Smolen, J. S., Aletaha, D., Grisar, J. C., Stamm, T. A. & Sharp, J. T. Estimation of a numerical value for joint damage-related physical disability in rheumatoid arthritis clinical trials. Ann. Rheum. Dis. 69, 1058–1064 (2010).

    PubMed  Google Scholar 

  157. Aletaha, D., Smolen, J. & Ward, M. M. Measuring function in rheumatoid arthritis: identifying reversible and irreversible components. Arthritis Rheum. 54, 2784–2792 (2006).

    PubMed  Google Scholar 

  158. Aletaha, D., Alasti, F. & Smolen, J. S. Optimisation of a treat-to-target approach in rheumatoid arthritis: strategies for the 3-month time point. Ann. Rheum. Dis.https://doi.org/10.1136/annrheumdis-2015-208324 (2015).

    PubMed  Google Scholar 

  159. Haraoui, B. et al. Treating rheumatoid arthritis to target: a Canadian physician survey. J. Rheumatol. 39, 949–953 (2012).

    PubMed  Google Scholar 

  160. Pascual-Ramos, V., Contreras-Yanez, I., Villa, A. R., Cabiedes, J. & Rull-Gabayet, M. Medication persistence over 2 years of follow-up in a cohort of early rheumatoid arthritis patients: associated factors and relationship with disease activity and with disability. Arthritis Res. Ther. 11, R26 (2009).

    PubMed  PubMed Central  Google Scholar 

  161. Schoenthaler, A. M., Schwartz, B. S., Wood, C. & Stewart, W. F. Patient and physician factors associated with adherence to diabetes medications. Diabetes Educ. 38, 397–408 (2012).

    PubMed  Google Scholar 

  162. Kuusalo, L. et al. Impact of physicians’ adherence to treat-to-target strategy on outcomes in early rheumatoid arthritis in the NEO-RACo trial. Scand. J. Rheumatol 44, 449–455 (2015).

    CAS  PubMed  Google Scholar 

  163. Solomon, D. H. et al. Implementation of treat to target in rheumatoid arthritis through a learning collaborative: results of the TRACTION trial. Arthritis Rheumatol. (in press).

  164. Smolen, J. S. & Aletaha, D. Forget personalised medicine and focus on abating disease activity. Ann. Rheum. Dis. 72, 3–6 (2013).

    CAS  PubMed  Google Scholar 

  165. Van der Heijde, D. M.F. M., van't Hof, M., van Riel, P. L. & van de Putte, L. B. A. Development of a disease activity score based on judgement in clinical practice by rheumatologists. J. Rheumatol 20, 579–581 (1993).

    CAS  PubMed  Google Scholar 

  166. Prevoo, M. L. L., van't Hof, M. A., Kuper, H. H., van de Putte, L. B. A. & van Riel, P. L.C. M. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 38, 44–48 (1995).

    CAS  PubMed  Google Scholar 

  167. Bakker, M. F., Jacobs, J. W., Verstappen, S. M. & Bijlsma, J. W. Tight control in the treatment of rheumatoid arthritis: efficacy and feasibility. Ann. Rheum. Dis. 66 (Suppl. 3), iii56–iii60 (2007).

    PubMed  PubMed Central  Google Scholar 

  168. Smolen, J. S. & Aletaha, D. The assessment of disease activity in rheumatoid arthritis. Clin. Exp. Rheumatol. 28 (Suppl. 59), S18–S27 (2010).

    PubMed  Google Scholar 

  169. Smolen, J. S. et al. Brief Report: Remission rates with tofacitinib treatment in rheumatoid arthritis: a comparison of various remission criteria. Arthritis Rheumatol. 69, 728–734 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Smolen, J. S. & Aletaha, D. Interleukin-6 receptor inhibition with tocilizumab and attainment of disease remission in rheumatoid arthritis: the role of acute-phase reactants. Arthritis Rheum. 63, 43–52 (2011).

    CAS  PubMed  Google Scholar 

  171. Emery, P. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schoels, M., Alasti, F., Smolen, J. S. & Aletaha, D. Evaluation of newly proposed remission cut-points for disease activity score in 28 joints (DAS28) in rheumatoid arthritis patients upon IL-6 pathway inhibition. Arthritis Res. Ther. 19, 155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Studenic, P., Smolen, J. S. & Aletaha, D. Near misses of ACR/EULAR criteria for remission: effects of patient global assessment in Boolean and index-based definitions. Ann. Rheum. Dis. 71, 1702–1705 (2012).

    PubMed  Google Scholar 

  174. Aletaha, D., Martinez-Avila, J., Kvien, T. K. & Smolen, J. S. Definition of treatment response in rheumatoid arthritis based on the simplified and the clinical disease activity index. Ann. Rheum. Dis. 71, 1190–1196 (2012).

    PubMed  Google Scholar 

  175. Dorner, T. et al. The changing landscape of biosimilars in rheumatology. Ann. Rheum. Dis. 75, 974–982 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Schneider, C. K. Biosimilars in rheumatology: the wind of change. Ann. Rheum. Dis. 72, 315–318 (2013).

    CAS  PubMed  Google Scholar 

  177. van der Goes, M. C. et al. Monitoring adverse events of low-dose glucocorticoid therapy: EULAR recommendations for clinical trials and daily practice. Ann. Rheum. Dis. 69, 1913–1919 (2010).

    CAS  PubMed  Google Scholar 

  178. Verschueren, P. et al. Methotrexate in combination with other DMARDs is not superior to methotrexate alone for remission induction with moderate-to-high-dose glucocorticoid bridging in early rheumatoid arthritis after 16 weeks of treatment: the CareRA trial. Ann. Rheum. Dis. 74, 27–34 (2015).

    CAS  PubMed  Google Scholar 

  179. de Jong, P. H. et al. Randomised comparison of initial triple DMARD therapy with methotrexate monotherapy in combination with low-dose glucocorticoid bridging therapy; 1-year data of the tREACH trial. Ann. Rheum. Dis. 73, 1331–1339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Nam, J. L. et al. Remission induction comparing infliximab and high-dose intravenous steroid, followed by treat-to-target: a double-blind, randomised, controlled trial in new-onset, treatment-naive, rheumatoid arthritis (the IDEA study). Ann. Rheum. Dis. 73, 75–85 (2014). This is an important study showing that methotrexate plus glucocorticoids is not inferior to methotrexate plus anti-TNF in early RA, thus refuting the use of biological agents before methotrexate.

    CAS  PubMed  Google Scholar 

  181. LaRochelle, G. E. Jr, LaRochelle, A. G., Ratner, R. E. & Borenstein, D. G. Recovery of the hypothalamic-pituitary-adrenal (HPA) axis in patients with rheumatic diseases receiving low-dose prednisone. Am. J. Med. 95, 258–264 (1993).

    PubMed  Google Scholar 

  182. Pincus, T., Sokka, T., Castrejon, I. & Cutolo, M. Decline of mean initial prednisone dosage from 3 to 3.6 mg/day to treat rheumatoid arthritis between 1980 and 2004 in one clinical setting, with long-term effectiveness of dosages less than 5 mg/day. Arthritis Care Res. 65, 729–736 (2013).

    CAS  Google Scholar 

  183. del Rincón, I., Battafarano, D. F., Restrepo, J. F., Erikson, J. M. & Escalante, A. Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis Rheumatol. 66, 264–272 (2014).

    PubMed  Google Scholar 

  184. Smolen, J. S. et al. Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate without or with concomitant infliximab. Results from the ASPIRE trial. Arthritis Rheum. 54, 702–710 (2006).

    CAS  PubMed  Google Scholar 

  185. Kiely, P., Walsh, D., Williams, R. & Young, A. Outcome in rheumatoid arthritis patients with continued conventional therapy for moderate disease activity—the early RA network (ERAN). Rheumatology 50, 926–931 (2011).

    PubMed  Google Scholar 

  186. van der Lubbe, P. A., Dijkmans, B. S., Markusse, H., Nassander, U. & Breedveld, F. C. A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis [abstract]. Arthritis Rheum. 38, 1097–1106 (1995).

    CAS  PubMed  Google Scholar 

  187. Blanco, F. J. et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 69, 1144–1153 (2017).

    CAS  PubMed  Google Scholar 

  188. Bonelli, M. et al. Abatacept (CTLA-4IG) treatment reduces the migratory capacity of monocytes in patients with rheumatoid arthritis. Arthritis Rheum. 65, 599–607 (2013).

    CAS  PubMed  Google Scholar 

  189. Buch, M. H. et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 70, 909–920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Nam, J. L. et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 76, 1113–1136 (2017).

    PubMed  Google Scholar 

  191. Chatzidionysiou, K. et al. Efficacy of glucocorticoids, conventional and targeted synthetic disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 76, 1102–1107 (2017).

    PubMed  Google Scholar 

  192. Fleischmann, R. et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol. 69, 506–517 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Fleischmann, R. et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390, 457–468 (2017).

    CAS  PubMed  Google Scholar 

  194. Weinblatt, M. E. et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheum. 65, 28–38 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Porter, D. et al. Tumour necrosis factor inhibition versus rituximab for patients with rheumatoid arthritis who require biological treatment (ORBIT): an open-label, randomised controlled, non-inferiority, trial. Lancet 388, 239–247 (2016).

    CAS  PubMed  Google Scholar 

  196. Smolen, J. S. et al. Head-to-head comparison of certolizumab pegol versus adalimumab in rheumatoid arthritis: 2-year efficacy and safety results from the randomised EXXELERATE study. Lancet 388, 2763–2774 (2016).

    CAS  PubMed  Google Scholar 

  197. Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017). This is the first study to show any drug being superior to an anti-TNF in RA, here using baricitinib, an oral (small-molecule) DMARD that inhibits JNK1 and JNK2 (to learn more about the clinical implications of these data, more studies are needed).

    CAS  PubMed  Google Scholar 

  198. Smolen, J. S. et al. Adjustment of therapy in rheumatoid arthritis on the basis of achievement of stable low disease activity with adalimumab plus methotrexate or methotrexate alone: the randomised controlled OPTIMA trial. Lancet 383, 321–332 (2014).

    CAS  PubMed  Google Scholar 

  199. Kavanaugh, A. et al. Testing treat-to-target outcomes with initial methotrexate monotherapy compared with initial tumour necrosis factor inhibitor (adalimumab) plus methotrexate in early rheumatoid arthritis. Ann. Rheum. Dis.https://doi.org/10.1136/annrheumdis-2017-211871 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Kavanaugh, A. et al. Clinical, functional and radiographic consequences of achieving stable low disease activity and remission with adalimumab plus methotrexate or methotrexate alone in early rheumatoid arthritis: 26-week results from the randomised, controlled OPTIMA study. Ann. Rheum. Dis. 72, 64–71 (2013).

    CAS  PubMed  Google Scholar 

  201. Quinn, M. A. et al. Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: results from a twelve-month randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 52, 27–35 (2005).

    CAS  PubMed  Google Scholar 

  202. Stamm, T. et al. Induction of sustained remission in ealry inflammatory arthritis with the combination of infliximab plus methotrexate, methotrexate alone or placebo: the DINORA trial [abstract]. Ann. Rheum. Dis. 76 (Suppl. 2), 560 (2017).

    Google Scholar 

  203. Emery, P. et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann. Rheum. Dis. 74, 979–984 (2015).

    CAS  PubMed  Google Scholar 

  204. Holloway, K. & van Dijk, L. The World Medicines Situation 2011, Rational Use of Medicines 3rd edn (World Health Organzization, Geneva, 2011).

    Google Scholar 

  205. Jorgensen, K. K. et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. Lancet 389, 2304–2316 (2017).

    PubMed  Google Scholar 

  206. Kay, J. et al. Consensus-based recommendations for the use of biosimilars to treat rheumatological diseases. Ann. Rheum. Dis.https://doi.org/10.1136/annrheumdis-2017-211937 (2017).

    PubMed  Google Scholar 

  207. Scheiman, J. M. NSAID-induced gastrointestinal injury: a focused update for clinicians. J. Clin. Gastroenterol. 50, 5–10 (2016).

    CAS  PubMed  Google Scholar 

  208. Nissen, S. E. et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med. 375, 2519–2529 (2016).

    CAS  PubMed  Google Scholar 

  209. Strehl, C. et al. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann. Rheum. Dis. 75, 952–957 (2016).

    CAS  PubMed  Google Scholar 

  210. Burmester, G. R. et al. Adalimumab long-term safety: infections, vaccination response and pregnancy outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 76, 414–417 (2017).

    PubMed  Google Scholar 

  211. DRFZ. RABBIT Risk Score of Infections. RABBIThttp://www.biologika-register.de/en/home/risk-score/ (2017).

  212. Strangfeld, A. et al. Risk of incident or recurrent malignancies among patients with rheumatoid arthritis exposed to biologic therapy in the German biologics register RABBIT. Arthritis Res. Ther. 12, R5 (2010).

    PubMed  PubMed Central  Google Scholar 

  213. Burmester, G. R., Panaccione, R., Gordon, K. B., McIlraith, M. J. & Lacerda, A. P. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn's disease. Ann. Rheum. Dis. 72, 517–524 (2013).

    CAS  PubMed  Google Scholar 

  214. Strangfeld, A. et al. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann. Rheum. Dis. 76, 504–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Molloy, E. S., Calabrese, C. M. & Calabrese, L. H. The risk of progressive multifocal leukoencephalopathy in the biologic era: prevention and management. Rheum. Dis. Clin. North Am. 43, 95–109 (2017).

    PubMed  Google Scholar 

  216. Winthrop, K. L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol 13, 234–243 (2017).

    CAS  PubMed  Google Scholar 

  217. Kubo, S., Nakayamada, S. & Tanaka, Y. Baricitinib for the treatment of rheumatoid arthritis. Expert Rev. Clin. Immunol. 12, 911–919 (2016).

    CAS  PubMed  Google Scholar 

  218. Strand, V. et al. Use of “spydergrams” to present and interpret SF-36 health-related quality of life data across rheumatic diseases. Ann. Rheum. Dis. 68, 1800–1804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Matcham, F. et al. The impact of rheumatoid arthritis on quality-of-life assessed using the SF-36: a systematic review and meta-analysis. Semin. Arthritis Rheum. 44, 123–130 (2014).

    PubMed  Google Scholar 

  220. Hewlett, S. et al. Patients’ perceptions of fatigue in rheumatoid arthritis: overwhelming, uncontrollable, ignored. Arthritis Rheum. 53, 697–702 (2005).

    PubMed  Google Scholar 

  221. West, E. & Jonsson, S. W. Health-related quality of life in rheumatoid arthritis in Northern Sweden: a comparison between patients with early RA, patients with medium-term disease and controls, using SF-36. Clin. Rheumatol 24, 117–122 (2005).

    PubMed  Google Scholar 

  222. Buitinga, L. Valuation of quality of life in rheumatoid arthritis. Thesis, Univ. Twente (2012).

    Google Scholar 

  223. Abu al Fadl, E. M., Ismail, M. A., Thabit, M. & El-Serogy, Y. Assessment of health-related quality of life, anxiety, and depression in patients with early rheumatoid arthritis. Egyptian Rheumatol. 36, 51–56 (2014).

    Google Scholar 

  224. Murillo, Y. A., Almagro, R. M., Campos-Gonzales, I. D. & Cardiel, M. H. Health related quality of life in rheumatoid arthritis, osteoarthritis, diabetes mellitus, end stage renal disease and geriatric subjects. Rheumatol. Clin. 11, 68–72 (2017).

    Google Scholar 

  225. Shokri, A., Mottaghi, P. & Qolipour, K. Quality of life and its predictors among Iranian patients with rheumatoid arthritis: a systematic review. J. Health Res. 6, e24636 (2015).

    Google Scholar 

  226. Kwan, Y. H., Koh, E. T., Leong, K. P. & Wee, H. L. Association between helplessness, disability, and disease activity with health-related quality of life among rheumatoid arthritis patients in a multiethnic Asian population. Rheumatol. Int. 34, 1085–1093 (2014).

    PubMed  Google Scholar 

  227. Scott, I. C., Ibrahim, F., Lewis, C. M., Scott, D. L. & Strand, V. Impact of intensive treatment and remission on health-related quality of life in early and established rheumatoid arthritis. RMD Open 2, e000270 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Gerhold, K. et al. Health-related quality of life in patients with long-standing rheumatoid arthritis in the era of biologics: data from the German biologics register RABBIT. Rheumatology 54, 1858–1866 (2015).

    CAS  PubMed  Google Scholar 

  229. Strand, V. & Singh, J. in Targeted Treatment of the Rheumatic Diseases 1st edn (ed. Weisman, M. ) (Elsevier, Philadelphia, PA, 2009).

    Google Scholar 

  230. Strand, V. & Singh, J. A. Newer biological agents in rheumatoid arthritis: impact on health-related quality of life and productivity. Drugs 70, 121–145 (2010).

    CAS  Google Scholar 

  231. Chen, J. S., Makovey, J., Lassere, M., Buchbinder, R. & March, L. M. Comparative effectiveness of anti-tumor necrosis factor drugs on health-related quality of life among patients with inflammatory arthritis. Arthritis Care Res. 66, 464–472 (2014).

    CAS  Google Scholar 

  232. Strand, V. & Khanna, D. The impact of rheumatoid arthritis and treatment on patients’ lives. Clin. Exp. Rheumatol. 28 (Suppl. 59), S32–S40 (2010).

    Google Scholar 

  233. Strand, V. et al. It's good to feel better but it's better to feel good and even better to feel good as soon as possible for as long as possible. Response criteria and the importance of change at OMERACT 10. J. Rheumatol. 38, 1720–1727 (2011).

    Google Scholar 

  234. Wolfe, F., Michaud, K. & Strand, V. Expanding the definition of clinical differences: from minimally clinically important differences to really important differences. Analyses in 8931 patients with rheumatoid arthritis. J. Rheumatol. 32, 583–589 (2005).

    Google Scholar 

  235. Kosinsk, M., Zhao, S. Z., Dedhiya, S., Osterhaus, J. T. & Ware, J. E. Jr. Determining minimally important changes in generic and disease-specific health-related quality of life questionnaires in clinical trials of rheumatoid arthritis. Arthritis Rheum. 43, 1478–1487 (2000).

    Google Scholar 

  236. Ward, M. M., Guthrie, L. C. & Alba, M. I. Clinically important changes in short form 36 health survey scales for use in rheumatoid arthritis clinical trials: the impact of low responsiveness. Arthritis Care Res. 66, 1783–1789 (2014).

    Google Scholar 

  237. Gossec, L. et al. Finalisation and validation of the rheumatoid arthritis impact of disease score, a patient-derived composite measure of impact of rheumatoid arthritis: a EULAR initiative. Ann. Rheum. Dis. 70, 935–942 (2011).

    CAS  Google Scholar 

  238. Dougados, M. et al. Defining cut-off values for disease activity states and improvement scores for patient-reported outcomes: the example of the Rheumatoid Arthritis Impact of Disease (RAID). Arthritis Res. Ther. 14, R129 (2012).

    PubMed  PubMed Central  Google Scholar 

  239. Pincus, T., Richardson, B., Strand, V. & Bergman, M. J. Relative efficiencies of the 7 rheumatoid arthritis Core Data Set measures to distinguish active from control treatments in 9 comparisons from clinical trials of 5 agents. Clin. Exp. Rheumatol. 32 (Suppl. 85), 47–54 (2014).

    Google Scholar 

  240. Taylor, P. C., Moore, A., Vasilescu, R., Alvir, J. & Tarallo, M. A structured literature review of the burden of illness and unmet needs in patients with rheumatoid arthritis: a current perspective. Rheumatol. Int. 36, 685–695 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Franke, L. C., Ament, A. J., van de Laar, M. A., Boonen, A. & Severens, J. L. Cost-of-illness of rheumatoid arthritis and ankylosing spondylitis. Clin. Exp. Rheumatol. 27 (Suppl. 55), S118–S123 (2009).

    CAS  Google Scholar 

  242. Lundkvist, J., Kastäng, F. & Kobelt, G. The burden of rheumatoid arthritis and access to treatment: health burden and costs. Eur. J. Health Econ. 8 (Suppl. 2), S49–S60 (2008).

    Google Scholar 

  243. ter Wee, M. M., Lems, W. F., Usan, H., Gulpen, A. & Boonen, A. The effect of biological agents on work participation in rheumatoid arthritis patients: a systematic review. Ann. Rheum. Dis. 71, 161–171 (2012).

    CAS  PubMed  Google Scholar 

  244. Bansback, N. et al. Triple therapy versus biologic therapy for active rheumatoid arthritis: a cost-effectiveness analysis. Ann. Intern. Med. 167, 8–16 (2017).

    Google Scholar 

  245. Dorner, T. et al. The role of biosimilars in the treatment of rheumatic diseases. Ann. Rheum. Dis. 72, 322–328 (2013).

    PubMed  Google Scholar 

  246. Smolen, J. S., van der Heijde, D., Machold, K. P., Aletaha, D. & Landewe, R. Proposal for a new nomenclature of disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 73, 3–5 (2014).

    CAS  PubMed  Google Scholar 

  247. Her, M. & Kavanaugh, A. Critical analysis of economic tools and economic measurement applied to rheumatoid arthritis. Clin. Exp. Rheumatol 30 (Suppl. 73), S107–S111 (2012).

    Google Scholar 

  248. Smolen, J. S. & Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2, 473–488 (2003).

    CAS  Google Scholar 

  249. Gartner, M. et al. Immediate access rheumatology clinic: efficiency and outcomes. Ann. Rheum. Dis. 71, 363–368 (2012).

    Google Scholar 

  250. Puchner, R. et al. Efficacy and outcome of Rapid Access Rheumatology Consultation: an office-based pilot cohort study. J. Rheumatol. 43, 1130–1135 (2016).

    Google Scholar 

  251. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Google Scholar 

  252. Deane, K. D. et al. Identification of undiagnosed inflammatory arthritis in a community health fair screen. Arthritis Rheum. 61, 1642–1649 (2009).

    PubMed  PubMed Central  Google Scholar 

  253. Sparks, J. A. et al. Personalized Risk Estimator for Rheumatoid Arthritis (PRE-RA) Family Study: rationale and design for a randomized controlled trial evaluating rheumatoid arthritis risk education to first-degree relatives. Contemp. Clin. Trials 39, 145–157 (2014).

    PubMed  PubMed Central  Google Scholar 

  254. Sparks, J. A. et al. Disclosure of personalized rheumatoid arthritis risk using genetics, biomarkers, and lifestyle factors to motivate health behavior improvements: a randomized controlled trial. Arthritis Care Res.https://doi.org/10.1002/acr.23411 (2017).

    CAS  Google Scholar 

  255. van Dongen, H. et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 56, 1424–1432 (2007).

    CAS  PubMed  Google Scholar 

  256. Gerlag, D. M. et al. A single infusion of rituximab delays the onset of arthritis in subjects at high risk of developing RA [abstract]. Arthritis Rheumatol. 68 (Suppl 10), 3028 (2016).

    Google Scholar 

  257. Emery, P. et al. Impact of T-cell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial). Ann. Rheum. Dis. 69, 510–516 (2010).

    CAS  PubMed  Google Scholar 

  258. Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    CAS  PubMed  Google Scholar 

  259. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02603146 (2017).

  260. Braun, J. & Rau, R. An update on methotrexate. Curr. Opin. Rheumatol. 21, 216–223 (2009).

    CAS  PubMed  Google Scholar 

  261. Keen, H. I., Conaghan, P. G. & Tett, S. E. Safety evaluation of leflunomide in rheumatoid arthritis. Expert Opin. Drug Saf. 12, 581–588 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.S.S.); Epidemiology (K.Y. and A.B.); Mechanisms/pathophysiology (I.B.M. and G.S.F.); Diagnosis, screening and prevention (D.A. and D.H.S.); Management (J.S.S., P.E. and G.R.B.); Quality of life (V.S. and A.K.); Outlook (J.S.S. and I.B.M.); Overview of Primer (J.S.S.).

Corresponding author

Correspondence to Josef S. Smolen.

Ethics declarations

Competing interests

J.S.S. has received grant support from and/or provided expert advice to AbbVie, Amgen, AstraZeneca, BMS, Boehringer-Ingelheim, Celgene, Celltrion, Gilead, Glaxo, ILTOO, Janssen, Lilly, Pfizer, MSD, Roche, Samsung, Novartis-Sandoz and UCB. D.A. served as a consultant and/or speaker for AbbVie, AstraZeneca, BMS, Janssen, Medac, MSD, Pfizer, Roche and UCB and received grant support from BMS. A.B. received grants, speaker fees and/or consultancy fees from Pfizer, Eli Lilly, Janssen, Celgene, Roche-Chugai and Boehringer-Ingelheim. G.R.B. received honoraria for consulting and lectures from AbbVie, BMS, MSD, Pfizer, UCB and Roche. P.E. has undertaken clinical trials and provided expert advice to Pfizer, MSD, AbbVie, BMS, UCB, Roche, Novartis, Samsung, Sandoz and Eli Lilly. G.S.F. has received grant funding from Janssen and Gilead. A.K. has served as a consultant and/or performed clinical research for AbbVie, Amgen, Celgene, Janssen, Novartis and UCB. I.B.M. has received grants, speaker fees and/or consultancy fees from BMS, AbbVie, Pfizer, Eli Lilly, GSK, Janssen, Novartis, Celgene, Roche-Chugai, UCB and Boehringer-Ingelheim. D.H.S. serves in unpaid roles on a clinical trial sponsored by Pfizer. V.S. has served as a consultant to AbbVie, Amgen, AstraZeneca, Bayer, BMS, Boehringer-Ingelheim, Celltrion, Genentech/Roche, GSK, Janssen, Lilly, Merck, Novartis, Pfizer, Regeneron, Samsung, Sanofi and UCB and is a founding member of the executive of OMERACT (Outcome Measures in Rheumatology; 1992–present), an organization that develops and validates outcome measures in rheumatology randomized controlled trials and longitudinal observational studies and receives arm's-length funding from 36 sponsors. K.Y. received honoraria for consulting and lectures from AbbVie, AYUMI, BMS, Chugai, Eisai, Janssen, Ono, Pfizer, Tanabe-Mitsubishi and UCB.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smolen, J., Aletaha, D., Barton, A. et al. Rheumatoid arthritis. Nat Rev Dis Primers 4, 18001 (2018). https://doi.org/10.1038/nrdp.2018.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2018.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing