Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Haemochromatosis

Abstract

Haemochromatosis is defined as systemic iron overload of genetic origin, caused by a reduction in the concentration of the iron regulatory hormone hepcidin, or a reduction in hepcidin–ferroportin binding. Hepcidin regulates the activity of ferroportin, which is the only identified cellular iron exporter. The most common form of haemochromatosis is due to homozygous mutations (specifically, the C282Y mutation) in HFE, which encodes hereditary haemochromatosis protein. Non-HFE forms of haemochromatosis due to mutations in HAMP, HJV or TFR2 are much rarer. Mutations in SLC40A1 (also known as FPN1; encoding ferroportin) that prevent hepcidin–ferroportin binding also cause haemochromatosis. Cellular iron excess in HFE and non-HFE forms of haemochromatosis is caused by increased concentrations of plasma iron, which can lead to the accumulation of iron in parenchymal cells, particularly hepatocytes, pancreatic cells and cardiomyocytes. Diagnosis is noninvasive and includes clinical examination, assessment of plasma iron parameters, imaging and genetic testing. The mainstay therapy is phlebotomy, although iron chelation can be used in some patients. Hepcidin supplementation might be an innovative future approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symptoms of haemochromatosis.
Figure 2: Iron uptake, cycling and distribution within the body.
Figure 3: Hepcidin regulation.
Figure 4: Diagnostic chart for systemic iron overload of genetic origin.
Figure 5: MRI findings in haemochromatosis owing to hepcidin deficiency and ferroportin disease.
Figure 6: Proposed phenotypic classification of haemochromatosis related to hepcidin deficiency.

Similar content being viewed by others

References

  1. Merryweather-Clarke, A. T., Pointon, J. J., Jouanolle, A. M., Rochette, J. & Robson, K. J. Geography of HFE C282Y and H63D mutations. Genet. Test. 4, 183–198 (2000).

    CAS  PubMed  Google Scholar 

  2. McLaren, C. E. et al. Hemochromatosis and Iron Overload Screening (HEIRS) study design for an evaluation of 100,000 primary care-based adults. Am. J. Med. Sci. 325, 53–62 (2003).

    PubMed  Google Scholar 

  3. Adams, P. C. et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med. 352, 1769–1778 (2005).

    CAS  PubMed  Google Scholar 

  4. Kirk, L. et al. Haemochromatosis gene frequency in a control and diabetic Irish population. Ir. J. Med. Sci. 178, 39–42 (2009).

    CAS  PubMed  Google Scholar 

  5. Hanson, E. H., Imperatore, G. & Burke, W. HFE gene and hereditary hemochromatosis: a HuGE review. Hum. Genome Epidemiol. Am. J. Epidemiol. 154, 193–206 (2001).

    CAS  Google Scholar 

  6. Wallace, D. F. & Subramaniam, V. N. The global prevalence of HFE and non-HFE hemochromatosis estimated from analysis of next-generation sequencing data. Genet. Med. 18, 618–626 (2016). This is the first comparative study of the prevalence of HFE-associated and non-HFE-associated haemochromatosis using next-generation sequencing data.

    CAS  PubMed  Google Scholar 

  7. Walker, A. R. & Arvidsson, U. B. Iron intake and haemochromatosis in the Bantu. Nature 166, 438–439 (1950).

    CAS  PubMed  Google Scholar 

  8. Strachan, A. Haemosiderosis and haemochromatosis in South African natives with a comment on etiology of haemochrmatosis. Thesis, Univ. Glasgow (1929).

    Google Scholar 

  9. Wallace, D. F. & Subramaniam, V. M. in Iron Physiology and Pathophysiology in Humans (eds Anderson, G. J. & McLaren, G. D. ) 399–416 (Humana Press, New York, 2012).

    Google Scholar 

  10. Gordeuk, V. R., Boyd, R. D. & Brittenham, G. M. Dietary iron overload persists in rural sub-Saharan Africa. Lancet 1, 1310–1313 (1986).

    CAS  PubMed  Google Scholar 

  11. Allen, K. J. et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N. Engl. J. Med. 358, 221–230 (2008).

    CAS  PubMed  Google Scholar 

  12. Whitlock, E. P., Garlitz, B. A., Harris, E. L., Beil, T. L. & Smith, P. R. Screening for hereditary hemochromatosis: a systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 145, 209–223 (2006).

    PubMed  Google Scholar 

  13. Olynyk, J. K., Hagan, S. E., Cullen, D. J., Beilby, J. & Whittall, D. E. Evolution of untreated hereditary hemochromatosis in the Busselton population: a 17-year study. Mayo Clin. Proc. 79, 309–313 (2004).

    PubMed  Google Scholar 

  14. Constantine, C. C. et al. A novel association between a SNP in CYBRD1 and serum ferritin levels in a cohort study of HFE hereditary haemochromatosis. Br. J. Haematol. 147, 140–149 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pelucchi, S. et al. CYBRD1 as a modifier gene that modulates iron phenotype in HFE p. C282Y homozygous patients. Haematologica 97, 1818–1825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McLaren, C. E. et al. Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology 62, 429–439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Barton, J. C. et al. GNPAT p. D519G is independently associated with markedly increased iron stores in HFE p. C282Y homozygotes. Blood Cells Mol. Dis. 63, 15–20 (2017).

    CAS  PubMed  Google Scholar 

  18. Mattman, A. et al. Transferrin receptor 2 (TfR2) and HFE mutational analysis in nonC282Y iron overload: identification of a novel TfR2 mutation. Blood 100, 1075–1077 (2002).

    CAS  PubMed  Google Scholar 

  19. Biasiotto, G. et al. Identification of new mutations of the HFE, hepcidin, and transferrin receptor 2 genes by denaturing HPLC analysis of individuals with biochemical indications of iron overload. Clin. Chem. 49, 1981–1988 (2003).

    CAS  PubMed  Google Scholar 

  20. Beutler, E. et al. Polymorphisms and mutations of human TMPRSS6 in iron deficiency anemia. Blood Cells Mol. Dis. 44, 16–21 (2010).

    CAS  PubMed  Google Scholar 

  21. Sato, T. et al. Novel missense mutation in the TMPRSS6 gene in a Japanese female with iron-refractory iron deficiency anemia. Int. J. Hematol. 94, 101–103 (2011).

    PubMed  Google Scholar 

  22. Del- Castillo-Rueda, A. et al. Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis. Gene 508, 15–20 (2012).

    Google Scholar 

  23. Barton, J. C. et al. HFE, SLC40A1, HAMP, HJV, TFR2, and FTL mutations detected by denaturing high-performance liquid chromatography after iron phenotyping and HFE C282Y and H63D genotyping in 785 HEIRS Study participants. Am. J. Hematol. 84, 710–714 (2009).

    CAS  PubMed  Google Scholar 

  24. Wallace, D. F., Clark, R. M., Harley, H. A. & Subramaniam, V. N. Autosomal dominant iron overload due to a novel mutation of ferroportin1 associated with parenchymal iron loading and cirrhosis. J. Hepatol. 40, 710–713 (2004).

    CAS  PubMed  Google Scholar 

  25. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1qlinked juvenile hemochromatosis. Nat. Genet. 36, 77–82 (2004).

    CAS  PubMed  Google Scholar 

  26. Daher, R. et al. Heterozygous mutations in BMP6 pro-peptide lead to inappropriate hepcidin synthesis and moderate iron overload in humans. Gastroenterology 150, 672–683.e4 (2016).

    CAS  PubMed  Google Scholar 

  27. Piubelli, C. et al. Identification of new BMP6 pro-peptide mutations in patients with iron overload. Am. J. Hematol. 92, 562–568 (2017).

    CAS  PubMed  Google Scholar 

  28. Stickel, F. et al. Evaluation of genome-wide loci of iron metabolism in hereditary hemochromatosis identifies PCSK7 as a host risk factor of liver cirrhosis. Hum. Mol. Genet. 23, 3883–3890 (2014).

    CAS  PubMed  Google Scholar 

  29. Loreal, O. et al. Liver fibrosis in genetic hemochromatosis. Respective roles of iron and non-iron-related factors in 127 homozygous patients. J. Hepatol. 16, 122–127 (1992).

    CAS  PubMed  Google Scholar 

  30. Wood, M. J., Powell, L. W., Dixon, J. L. & Ramm, G. A. Clinical cofactors and hepatic fibrosis in hereditary hemochromatosis: the role of diabetes mellitus. Hepatology 56, 904–911 (2012).

    CAS  PubMed  Google Scholar 

  31. Wheby, M. S., Suttle, G. E. & Ford, K. T. III. Intestinal absorption of hemoglobin iron. Gastroenterology 58, 647–654 (1970).

    CAS  PubMed  Google Scholar 

  32. Lombardi-Boccia, G., Martinez-Dominguez, B. & Aguzzi, A. Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 67, 1738–1741 (2002).

    CAS  Google Scholar 

  33. Cook, J. D. Adaptation in iron metabolism. Am. J. Clin. Nutr. 51, 301–308 (1990).

    CAS  PubMed  Google Scholar 

  34. Cade, J. E. et al. Diet and genetic factors associated with iron status in middle-aged women. Am. J. Clin. Nutr. 82, 813–820 (2005).

    CAS  PubMed  Google Scholar 

  35. Greenwood, D. C. et al. HFE genotype modifies the influence of heme iron intake on iron status. Epidemiology 16, 802–805 (2005).

    CAS  PubMed  Google Scholar 

  36. Liu, J. M. et al. Body iron stores and their determinants in healthy postmenopausal US women. Am. J. Clin. Nutr. 78, 1160–1167 (2003).

    CAS  PubMed  Google Scholar 

  37. Backstrand, J. R., Allen, L. H., Black, A. K., de Mata, M. & Pelto, G. H. Diet and iron status of nonpregnant women in rural Central Mexico. Am. J. Clin. Nutr. 76, 156–164 (2002).

    CAS  PubMed  Google Scholar 

  38. Gordeuk, V. R. et al. Dietary iron intake and serum ferritin concentration in 213 patients homozygous for the HFEC282Y hemochromatosis mutation. Can. J. Gastroenterol. 26, 345–349 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Skoien, R., & Powell, L. W. in Iron Physiology and Pathophysiology in Humans (eds Anderson, G. J. & McLaren, G. D. ) 385–398 (Humana Press, New York, 2012).

    Google Scholar 

  40. Fletcher, L. M., Dixon, J. L., Purdie, D. M., Powell, L. W. & Crawford, D. H. Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology 122, 281–289 (2002).

    PubMed  Google Scholar 

  41. Barton, J. C., Preston, B. L., McDonnell, S. M. & Rothenberg, B. E. Severity of iron overload in hemochromatosis: effect of volunteer blood donation before diagnosis. Transfusion 41, 123–129 (2001).

    CAS  PubMed  Google Scholar 

  42. Wood, M. J., Powell, L. W. & Ramm, G. A. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood 111, 4456–4462 (2008).

    CAS  PubMed  Google Scholar 

  43. Latour, C. et al. Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin. Hepatology 59, 683–694 (2014).

    CAS  PubMed  Google Scholar 

  44. Aguilar-Martinez, P. et al. Variable phenotypic presentation of iron overload in H63D homozygotes: are genetic modifiers the cause? Gut 48, 836–842 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aranda, N., Viteri, F. E., Montserrat, C. & Arija, V. Effects of C282Y, H63D, and S65C HFE gene mutations, diet, and life-style factors on iron status in a general Mediterranean population from Tarragona, Spain. Ann. Hematol. 89, 767–773 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Finch, C. Regulators of iron balance in humans. Blood 84, 1697–1702 (1994).

    CAS  PubMed  Google Scholar 

  47. Brissot, P. & Loreal, O. Iron metabolism and related genetic diseases: a cleared land, keeping mysteries. J. Hepatol. 64, 505–515 (2016).

    CAS  PubMed  Google Scholar 

  48. McKie, A. T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).

    CAS  PubMed  Google Scholar 

  49. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).

    CAS  PubMed  Google Scholar 

  50. Abboud, S. & Haile, D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 (2000).

    CAS  PubMed  Google Scholar 

  51. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).

    CAS  PubMed  Google Scholar 

  52. Pigeon, C. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811–7819 (2001). This study demonstrates the link between hepcidin and iron metabolism.

    CAS  PubMed  Google Scholar 

  53. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    CAS  PubMed  Google Scholar 

  54. Nicolas, G. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl Acad. Sci. USA 98, 8780–8785 (2001). This study demonstrates the link between hepcidin deficiency and the development of iron overload.

    CAS  PubMed  Google Scholar 

  55. Meynard, D. et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 41, 478–481 (2009).

    CAS  PubMed  Google Scholar 

  56. Andriopoulos, B. Jr et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41, 482–487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Finberg, K. E. et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 40, 569–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo, S. et al. Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice. J. Clin. Invest. 123, 1531–1541 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996). This seminal study establishes the link between haemochromatosis and mutations in HFE.

    CAS  PubMed  Google Scholar 

  60. Lebron, J. A. et al. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93, 111–123 (1998).

    CAS  PubMed  Google Scholar 

  61. Fleming, R. E. et al. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc. Natl Acad. Sci. USA 97, 2214–2219 (2000).

    CAS  PubMed  Google Scholar 

  62. Roetto, A. et al. New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 97, 2555–2560 (2001).

    CAS  PubMed  Google Scholar 

  63. D’Alessio, F., Hentze, M. W. & Muckenthaler, M. U. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J. Hepatol. 57, 1052–1060 (2012).

    PubMed  Google Scholar 

  64. Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926–1932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sonnweber, T. et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut 63, 1951–1959 (2014).

    CAS  PubMed  Google Scholar 

  66. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014). This study identifies erythroferrone as an erythroid regulator of iron metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tanno, T. et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 13, 1096–1101 (2007).

    CAS  PubMed  Google Scholar 

  68. Pietrangelo, A. et al. STAT3 is required for IL6gp130-dependent activation of hepcidin in vivo. Gastroenterology 132, 294–300 (2007).

    CAS  PubMed  Google Scholar 

  69. Verga Falzacappa, M. V. et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109, 353–358 (2007).

    PubMed  Google Scholar 

  70. Wrighting, D. M. & Andrews, N. C. Interleukin6 induces hepcidin expression through STAT3. Blood 108, 3204–3209 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nemeth, E. et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101, 2461–2463 (2003).

    CAS  PubMed  Google Scholar 

  72. Ikeda, Y. et al. Estrogen regulates hepcidin expression via GPR30BMP6dependent signaling in hepatocytes. PLoS ONE 7, e40465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Levy, J. E., Jin, O., Fujiwara, Y., Kuo, F. & Andrews, N. C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat. Genet. 21, 396–399 (1999).

    CAS  PubMed  Google Scholar 

  74. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37, 1264–1269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tabuchi, M., Yoshimori, T., Yamaguchi, K., Yoshida, T. & Kishi, F. Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp2 cells. J. Biol. Chem. 275, 22220–22228 (2000).

    CAS  PubMed  Google Scholar 

  76. Fleming, M. D. et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16, 383–386 (1997).

    CAS  PubMed  Google Scholar 

  77. Levi, S. et al. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J. Biol. Chem. 263, 18086–18092 (1988).

    CAS  PubMed  Google Scholar 

  78. Harrison, P. M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203 (1996).

    PubMed  Google Scholar 

  79. Ford, G. C. et al. Ferritin: design and formation of an iron-storage molecule. Phil. Trans. R. Soc. Lond. B Biol. Sci. 304, 551–565 (1984).

    CAS  Google Scholar 

  80. Hentze, M. W. & Kuhn, L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl Acad. Sci. USA 93, 8175–8182 (1996).

    CAS  PubMed  Google Scholar 

  81. Hershko, C., Graham, G., Bates, G. W. & Rachmilewitz, E. A. Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br. J. Haematol. 40, 255–263 (1978). This study demonstrates the existence of NTBI.

    CAS  PubMed  Google Scholar 

  82. Loreal, O. et al. Determination of non-transferrin-bound iron in genetic hemochromatosis using a new HPLC-based method. J. Hepatol. 32, 727–733 (2000).

    CAS  PubMed  Google Scholar 

  83. Grootveld, M. et al. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J. Biol. Chem. 264, 4417–4422 (1989).

    CAS  PubMed  Google Scholar 

  84. Le Lan, C. et al. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood 105, 4527–4531 (2005).

    CAS  PubMed  Google Scholar 

  85. Esposito, B. P. et al. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 102, 2670–2677 (2003).

    CAS  PubMed  Google Scholar 

  86. Koppenol, W. H. The Haber-Weiss cycle — 70 years later. Redox Rep. 6, 229–234 (2001).

    CAS  PubMed  Google Scholar 

  87. Bacon, B. R., Park, C. H., Brittenham, G. M., O’Neill, R. & Tavill, A. S. Hepatic mitochondrial oxidative metabolism in rats with chronic dietary iron overload. Hepatology 5, 789–797 (1985).

    CAS  PubMed  Google Scholar 

  88. Volani, C. et al. Dietary iron loading negatively affects liver mitochondrial function. Metallomics 9, 1634–1644 (2017).

    CAS  PubMed  Google Scholar 

  89. Brissot, P., Ropert, M., Le Lan, C. & Loreal, O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820, 403–410 (2012).

    CAS  PubMed  Google Scholar 

  90. Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D. & Cousins, R. J. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl Acad. Sci. USA 103, 13612–13617 (2006).

    CAS  PubMed  Google Scholar 

  91. Jenkitkasemwong, S. et al. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell. Metab. 22, 138–150 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Oudit, G. Y. et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 9, 1187–1194 (2003).

    CAS  PubMed  Google Scholar 

  93. Ludwiczek, S. et al. Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter1. Nat. Med. 13, 448–454 (2007).

    CAS  PubMed  Google Scholar 

  94. Brissot, P., Bolder, U., Schteingart, C. D., Arnaud, J. & Hofmann, A. F. Intestinal absorption and enterohepatic cycling of biliary iron originating from plasma non-transferrin-bound iron in rats. Hepatology 25, 1457–1461 (1997).

    CAS  PubMed  Google Scholar 

  95. Craven, C. M. et al. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc. Natl Acad. Sci. USA 84, 3457–3461 (1987).

    CAS  PubMed  Google Scholar 

  96. Brissot, P., Wright, T. L., Ma, W. L. & Weisiger, R. A. Efficient clearance of non-transferrin-bound iron by rat liver. Implications for hepatic iron loading in iron overload states. J. Clin. Invest. 76, 1463–1470 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Feder, J. N. et al. The haemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression J. Biol. Chem. 272, 14025–14028 (1997).

    CAS  PubMed  Google Scholar 

  98. Bridle, K. R. et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361, 669–673 (2003).

    CAS  PubMed  Google Scholar 

  99. Gehrke, S. G. et al. Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to serum transferrin saturation and non-transferrin-bound iron. Blood 102, 371–376 (2003).

    CAS  PubMed  Google Scholar 

  100. Roetto, A. et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 33, 21–22 (2003).

    CAS  PubMed  Google Scholar 

  101. Porto, G. et al. A Portuguese patient homozygous for the -25G>A mutation of the HAMP promoter shows evidence of steady-state transcription but fails to upregulate hepcidin levels by iron. Blood 106, 2922–2923 (2005).

    CAS  PubMed  Google Scholar 

  102. Island, M. L. et al. A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phenotype in HFE related hemochromatosis. Haematologica 94, 720–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kawabata, H. et al. Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 105, 376–381 (2005).

    CAS  PubMed  Google Scholar 

  104. Camaschella, C. et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat. Genet. 25, 14–15 (2000).

    CAS  PubMed  Google Scholar 

  105. Biasiotto, G. et al. Identification of new mutations of hepcidin and hemojuvelin in patients with HFE C282Y allele. Blood Cells Mol. Dis. 33, 338–343 (2004).

    CAS  PubMed  Google Scholar 

  106. Merryweather-Clarke, A. T. et al. Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum. Mol. Genet. 12, 2241–2247 (2003).

    CAS  PubMed  Google Scholar 

  107. Jacolot, S. et al. HAMP as a modifier gene that increases the phenotypic expression of the HFE pC282Y homozygous genotype. Blood 103, 2835–2840 (2004).

    CAS  PubMed  Google Scholar 

  108. Le Gac, G. et al. The recently identified type 2A juvenile haemochromatosis gene (HJV), a second candidate modifier of the C282Y homozygous phenotype. Hum. Mol. Genet. 13, 1913–1918 (2004).

    CAS  PubMed  Google Scholar 

  109. Hamdi-Roze, H. et al. Rare HFE variants are the most frequent cause of hemochromatosis in nonc282y homozygous patients with hemochromatosis. Am. J. Hematol. 91, 1202–1205 (2016).

    CAS  PubMed  Google Scholar 

  110. Njajou, O. T. et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet. 28, 213–214 (2001). This study identifies ferroportin-associated hemochromatosis.

    CAS  PubMed  Google Scholar 

  111. Drakesmith, H. et al. Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood 106, 1092–1097 (2005).

    CAS  PubMed  Google Scholar 

  112. Fernandes, A. et al. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 114, 437–443 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Detivaud, L. et al. Ferroportin diseases: functional studies, a link between genetic and clinical phenotype. Hum. Mutat. 34, 1529–1536 (2013).

    CAS  PubMed  Google Scholar 

  114. Le Gac, G. et al. Structure-function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum. Mutat. 34, 1371–1380 (2013).

    CAS  PubMed  Google Scholar 

  115. Preza, G. C. et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J. Clin. Invest. 121, 4880–4888 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pietrangelo, A. et al. Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. N. Engl. J. Med. 341, 725–732 (1999).

    CAS  PubMed  Google Scholar 

  117. Montosi, G. et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest. 108, 619–623 (2001). This study demonstrates ferroportin disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mayr, R. et al. Ferroportin disease: a systematic meta-analysis of clinical and molecular findings. J. Hepatol. 53, 941–949 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sabelli, M. et al. Human macrophage ferroportin biology and the basis for the ferroportin disease. Hepatology 65, 1512–1525 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Brissot, P. Optimizing the diagnosis and the treatment of iron overload diseases. Expert Rev. Gastroenterol. Hepatol. 10, 359–370 (2016).

    CAS  PubMed  Google Scholar 

  121. Brissot, P., Bardou-Jacquet, E., Jouanolle, A. M. & Loreal, O. Iron disorders of genetic origin: a changing world. Trends Mol. Med. 17, 707–713 (2011).

    CAS  PubMed  Google Scholar 

  122. Pietrangelo, A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139, 393–408.e2 (2010).

    PubMed  Google Scholar 

  123. Powell, L. W., Seckington, R. C. & Deugnier, Y. Haemochromatosis. Lancet 388, 706–716 (2016).

    CAS  PubMed  Google Scholar 

  124. Beaumont-Epinette, M. P. et al. Hereditary hypotransferrinemia can lead to elevated transferrin saturation and, when associated to HFE or HAMP mutations, to iron overload. Blood Cells Mol. Dis. 54, 151–154 (2015).

    CAS  PubMed  Google Scholar 

  125. Miyajima, H. Aceruloplasminemia. Neuropathol. 35, 83–90 (2015).

    CAS  Google Scholar 

  126. Wood, J. C. Estimating tissue iron burden: current status and future prospects. Br. J. Haematol. 170, 15–28 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. St Pierre, T. G. et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105, 855–861 (2005).

    CAS  PubMed  Google Scholar 

  128. Gandon, Y. et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 363, 357–362 (2004).

    CAS  PubMed  Google Scholar 

  129. d’Assignies, G. et al. Non-invasive measurement of liver iron concentration using 3Tesla magnetic resonance imaging: validation against biopsy. Eur. Radiol.https://doi.org/10.1007/s00330-017-5106-3 (2017).

    PubMed  Google Scholar 

  130. Franca, M. et al. Optimizing the management of hereditary haemochromatosis: the value of MRI R2* quantification to predict and monitor body iron stores. Br. J. Haematol.https://doi.org/10.1111/bjh.14982 (2017).

    PubMed  Google Scholar 

  131. Deugnier, Y. M. et al. Liver pathology in genetic hemochromatosis: a review of 135 homozygous cases and their bioclinical correlations. Gastroenterology 102, 2050–2059 (1992).

    CAS  PubMed  Google Scholar 

  132. Porter, J. B. & Garbowski, M. The pathophysiology of transfusional iron overload. Hematol. Oncol. Clin. North Am. 28, 683–701 (2014).

    Google Scholar 

  133. Musallam, K. M., Cappellini, M. D., Wood, J. C. & Taher, A. T. Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev. 26 (Suppl. 1), S16–S19 (2012).

    CAS  PubMed  Google Scholar 

  134. Kautz, L. & Nemeth, E. Molecular liaisons between erythropoiesis and iron metabolism. Blood 124, 479–482 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Badens, C. & Guizouarn, H. Advances in understanding the pathogenesis of the red cell volume disorders. Br. J. Haematol. 174, 674–685 (2016).

    CAS  PubMed  Google Scholar 

  136. Ribeiro, S., Belo, L., Reis, F. & Santos-Silva, A. Iron therapy in chronic kidney disease: recent changes, benefits and risks. Blood Rev. 30, 65–72 (2016).

    CAS  PubMed  Google Scholar 

  137. Deugnier, Y., Bardou-Jacquet, E. & Laine, F. Dysmetabolic iron overload syndrome (DIOS). Presse Med. 46, e306–e311 (2017).

    PubMed  Google Scholar 

  138. Harrison-Findik, D. D. et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J. Biol. Chem. 281, 22974–22982 (2006).

    CAS  PubMed  Google Scholar 

  139. Porto, G. et al. EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH). Eur. J. Hum. Genet. 24, 479–495 (2016). This paper contains practical guidelines for the molecular genetic diagnosis of haemochromatosis.

    CAS  PubMed  Google Scholar 

  140. Cezard, C. et al. Phenotypic expression of a novel C282Y/R226G compound heterozygous state in HFE hemochromatosis: molecular dynamics and biochemical studies. Blood Cells Mol. Dis. 52, 27–34 (2014).

    CAS  PubMed  Google Scholar 

  141. Brissot, P. et al. Current approach to hemochromatosis. Blood Rev. 22, 195–210 (2008).

    PubMed  Google Scholar 

  142. Barton, J. C. et al. Increased risk of death from iron overload among 422 treated probands with HFE hemochromatosis and serum levels of ferritin greater than 1000 mug/L at diagnosis. Clin. Gastroenterol. Hepatol. 10, 412–416 (2012).

    PubMed  Google Scholar 

  143. Le Lan, C. et al. Sex and acquired cofactors determine phenotypes of ferroportin disease. Gastroenterology 140, 1199–1207.e2 (2011).

    CAS  PubMed  Google Scholar 

  144. de Graaff, B. et al. Cost-effectiveness of different population screening strategies for hereditary haemochromatosis in Australia. Appl. Health Econ. Health Policy 15, 521–534 (2017).

    PubMed  Google Scholar 

  145. Grosse, S. D., Gurrin, L. C., Bertalli, N. A. & Allen, K. J. Clinical penetrance in hereditary hemochromatosis: estimates of the cumulative incidence of severe liver disease among HFE C282Y homozygotes. Genet. Med.https://doi.org/10.1038/gim.2017.121 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. McLaren G. D. & Gordeuk V. R. Hereditary hemochromatosis: insights from the Hemochromatosis and Iron Overload Screening (HEIRS) Study. Hematology Am. Soc. Hematol. Educ. Program 2009 195–206 (2009).

    Google Scholar 

  147. Adams, P. C. & Barton, J. C. How I treat hemochromatosis. Blood 116, 317–325 (2010).

    CAS  PubMed  Google Scholar 

  148. Adams, P. C. The natural history of untreated HFE-related hemochromatosis. Acta Haematol. 122, 134–139 (2009).

    PubMed  Google Scholar 

  149. Andersen, R. V., Tybjaerg-Hansen, A., Appleyard, M., Birgens, H. & Nordestgaard, B. G. Hemochromatosis mutations in the general population: iron overload progression rate. Blood 103, 2914–2919 (2004).

    CAS  PubMed  Google Scholar 

  150. Beutler, E. Natural history of hemochromatosis. Mayo Clin. Proc. 79, 305–306 (2004).

    PubMed  Google Scholar 

  151. Husar-Memmer, E., Stadlmayr, A., Datz, C. & Zwerina, J. HFE-related hemochromatosis: an update for the rheumatologist. Curr. Rheumatol. Rep. 16, 393 (2014).

    PubMed  Google Scholar 

  152. Brissot, P., Ball, S., Rofail, D., Cannon, H. & Jin, V. W. Hereditary hemochromatosis: patient experiences of the disease and phlebotomy treatment. Transfusion 51, 1331–1338 (2011).

    PubMed  Google Scholar 

  153. Lynch, S. R., Skikne, B. S. & Cook, J. D. Food iron absorption in idiopathic hemochromatosis. Blood 74, 2187–2193 (1989).

    CAS  PubMed  Google Scholar 

  154. Rombout-Sestrienkova, E. et al. Course of iron parameters in HFE-hemochromatosis patients during initial treatment with erythrocytapheresis compared to phlebotomy. J. Clin. Apher 31, 564–570 (2016).

    PubMed  Google Scholar 

  155. Adams, P. C., Kertesz, A. E. & Valberg, L. S. Rate of iron reaccumulation following iron depletion in hereditary hemochromatosis. Implications for venesection therapy. J. Clin. Gastroenterol. 16, 207–210 (1993).

    CAS  PubMed  Google Scholar 

  156. Adams, P. C. Factors affecting the rate of iron mobilization during venesection therapy for genetic hemochromatosis. Am. J. Hematol. 58, 16–19 (1998).

    CAS  PubMed  Google Scholar 

  157. Levstik, M. & Adams, P. C. Eligibility and exclusion of hemochromatosis patients as voluntary blood donors. Can. J. Gastroenterol. 12, 61–63 (1998).

    CAS  PubMed  Google Scholar 

  158. West, K. A. & Eder, A. F. Accepting hereditary hemochromatosis blood donors: ask not why, ask why not. Transfusion 56, 2907–2909 (2016).

    PubMed  Google Scholar 

  159. Bardou-Jacquet, E. et al. Worse outcomes of patients with HFE hemochromatosis with persistent increases in transferrin saturation during maintenance therapy. Clin. Gastroenterol. Hepatol. 15, 1620–1627 (2017).

    Google Scholar 

  160. Rombout-Sestrienkova, E., van Kraaij, M. G. & Koek, G. H. How we manage patients with hereditary haemochromatosis. Br. J. Haematol. 175, 759–770 (2016).

    PubMed  Google Scholar 

  161. Ong, S. Y. et al. Reduction of body iron in HFE-related haemochromatosis and moderate iron overload (MiIron): a multicentre, participant-blinded, randomised controlled trial. Lancet Haematol. 4, e607–e614 (2017).

    PubMed  Google Scholar 

  162. Barton, J. C. Should we treat individuals homozygous for HFE p. Cys282Tyr with ferritin 300–1000 mug/L? Lancet Haematol. 4, e569–e570 (2017).

    PubMed  Google Scholar 

  163. Phatak, P. et al. A phase 1/2, dose-escalation trial of deferasirox for the treatment of iron overload in HFE-related hereditary hemochromatosis. Hepatology 52, 1671–1779 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Olsson, K. S., Vaisanen, M., Konar, J. & Bruce, A. The effect of withdrawal of food iron fortification in Sweden as studied with phlebotomy in subjects with genetic hemochromatosis. Eur. J. Clin. Nutr. 51, 782–786 (1997).

    CAS  PubMed  Google Scholar 

  165. Kaltwasser, J. P. et al. Clinical trial on the effect of regular tea drinking on iron accumulation in genetic haemochromatosis. Gut 43, 699–704 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Vanclooster, A., van Deursen, C., Jaspers, R., Cassiman, D. & Koek, G. Proton pump inhibitors decrease phlebotomy need in HFE hemochromatosis: double-blind randomized placebo-controlled trial. Gastroenterology 153, 678–680.e2 (2017).

    CAS  PubMed  Google Scholar 

  167. Barton, J. C. & Acton, R. T. Hemochromatosis and Vibrio vulnificus wound infections. J. Clin. Gastroenterol. 43, 890–893 (2009).

    PubMed  Google Scholar 

  168. Crawford, D. H. et al. Patient and graft survival after liver transplantation for hereditary hemochromatosis: implications for pathogenesis. Hepatology 39, 1655–1662 (2004).

    PubMed  Google Scholar 

  169. Ludwig, J., Hashimoto, E., Porayko, M. K., Moyer, T. P. & Baldus, W. P. Hemosiderosis in cirrhosis: a study of 447 native livers. Gastroenterology 112, 882–888 (1997).

    CAS  PubMed  Google Scholar 

  170. Bardou-Jacquet, E. et al. Liver transplantation normalizes serum hepcidin level and cures iron metabolism alterations in HFE hemochromatosis. Hepatologyhttps://doi.org/10.1002/hep.26570 (2013). This study is a clinical demonstration that the liver is the key organ in haemochromatosis, not only as a target of iron overload but also as the cause of iron excess through hepcidin deficiency.

    CAS  PubMed  Google Scholar 

  171. Liu, J., Sun, B., Yin, H. & Liu, S. Hepcidin: a promising therapeutic target for iron disorders: a systematic review. Medicine 95, e3150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Vyoral, D. & Jiri, P. Therapeutic potential of hepcidin — the master regulator of iron metabolism. Pharmacol. Res. 115, 242–254 (2017).

    CAS  PubMed  Google Scholar 

  173. Ware, J. E. Jr SF36 health survey update. Spine 25, 3130–3139 (2000).

    PubMed  Google Scholar 

  174. Ware, J. et al. User's Manual for the SF36v2 Health Survey 2nd edn (QualityMetric, Lincoln RI, 2007).

    Google Scholar 

  175. Mainous, A. G. III et al. Elevated transferrin saturation, health-related quality of life and telomere length. Biometals 27, 135–141 (2014).

    CAS  PubMed  Google Scholar 

  176. Allen, K. J. et al. HFE Cys282Tyr homozygotes with serum ferritin concentrations below 1000 microg/L are at low risk of hemochromatosis. Hepatology 52, 925–933 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. de Graaff, B., Neil, A., Sanderson, K., Yee, K. C. & Palmer, A. J. Quality of life utility values for hereditary haemochromatosis in Australia. Health Qual. Life Outcomes 14, 31 (2016).

    PubMed  PubMed Central  Google Scholar 

  178. Adams, P. C. & Speechley, M. The effect of arthritis on the quality of life in hereditary hemochromatosis. J. Rheumatol. 23, 707–710 (1996).

    CAS  PubMed  Google Scholar 

  179. Barg, A., Elsner, A., Hefti, D. & Hintermann, B. Total ankle arthroplasty in patients with hereditary hemochromatosis. Clin. Orthop. Relat. Res. 469, 1427–1435 (2011).

    PubMed  Google Scholar 

  180. Meiser, B., Dunn, S., Dixon, J. & Powell, L. W. Psychological adjustment and knowledge about hereditary hemochromatosis in a clinic-based sample: a prospective study. J. Genet. Counsel. 14, 453–463 (2005).

    Google Scholar 

  181. Drummond, M., Sculpher, M., Torrance, G., O’Brine, B. & Stoddart, G. Methods for the Economic Evaluation of Health Care Programmes 3rd edn (Oxford Univ. Press, 2005).

    Google Scholar 

  182. Rombout-Sestrienkova, E. et al. Erythrocytapheresis versus phlebotomy in the maintenance treatment of HFE hemochromatosis patients: results from a randomized crossover trial. Transfusion 56, 261–270 (2016).

    PubMed  Google Scholar 

  183. Weinberg, E. D. Iron availability and infection. Biochim. Biophys. Acta 1790, 600–605 (2009).

    CAS  PubMed  Google Scholar 

  184. Pietrangelo, A. Pathogens, metabolic adaptation, and human diseasesan iron-thrifty genetic model. Gastroenterology 149, 834–838 (2015).

    PubMed  Google Scholar 

  185. Hollerer, I., Bachmann, A. & Muckenthaler, M. U. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica 102, 809–817 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ellervik, C., Mandrup-Poulsen, T., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Total and cause-specific mortality by elevated transferrin saturation and hemochromatosis genotype in individuals with diabetes: two general population studies. Diabetes Care 37, 444–452 (2014).

    PubMed  Google Scholar 

  187. Steinbicker, A. U. et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood 118, 4224–4230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu, X. G. et al. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood 124, 1335–1343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Schmidt, P. J. & Fleming, M. D. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor2. Am. J. Hematol. 87, 588–595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Goswami, T. & Andrews, N. C. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J. Biol. Chem. 281, 28494–28498 (2006).

    CAS  PubMed  Google Scholar 

  191. Rishi, G., Crampton, E. M., Wallace, D. F. & Subramaniam, V. N. In situ proximity ligation assays indicate that hemochromatosis proteins Hfe and transferrin receptor 2 (Tfr2) do not interact. PLoS ONE 8, e77267 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Waheed, A. et al. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc. Natl Acad. Sci. USA 96, 1579–1584 (1999).

    CAS  PubMed  Google Scholar 

  193. Montosi, G. et al. Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood 96, 1125–1129 (2000).

    CAS  PubMed  Google Scholar 

  194. Drakesmith, H. et al. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc. Natl Acad. Sci. USA 99, 15602–15607 (2002).

    CAS  PubMed  Google Scholar 

  195. Makui, H., Soares, R. J., Jiang, W., Constante, M. & Santos, M. M. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading. Blood 106, 2189–2195 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Garuti, C. et al. Hepcidin expression does not rescue the iron-poor phenotype of Kupffer cells in Hfe-null mice after liver transplantation. Gastroenterology 139, 315–322.e1 (2010).

    CAS  PubMed  Google Scholar 

  197. Vanoaica, L., Darshan, D., Richman, L., Schumann, K. & Kuhn, L. C. Intestinal ferritin h is required for an accurate control of iron absorption. Cell. Metab. 12, 273–282 (2010).

    CAS  PubMed  Google Scholar 

  198. Kato, J. et al. A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am. J. Hum. Genet. 69, 191–197 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Pietrangelo, A. Hemochromatosis: an endocrine liver disease. Hepatology 46, 1291–1301 (2007).

    CAS  PubMed  Google Scholar 

  200. Benyamin, B. et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat. Commun. 5, 4926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. de Tayrac, M. et al. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis. J. Hepatol. 62, 664–672 (2015).

    CAS  PubMed  Google Scholar 

  202. Bardou-Jacquet, E., de Tayrac, M., Mosser, J. & Deugnier, Y. GNPAT variant associated with severe iron overload in HFE hemochromatosis. Hepatology 62, 1917–1918 (2015).

    PubMed  Google Scholar 

  203. Osaki, S., Johnson, D. A. & Frieden, E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem. 241, 2746–2751 (1966).

    CAS  PubMed  Google Scholar 

  204. Zhao, L. et al. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. J. Neurochem. 135, 958–974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Jiang, B. et al. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci. Rep. 6, 39470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bartnikas, T. B. Known and potential roles of transferrin in iron biology. Biometals 25, 677–686 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Iolascon, A. et al. Natural history of recessive inheritance of DMT1 mutations. J. Pediatr. 152, 136–139 (2008).

    CAS  PubMed  Google Scholar 

  208. Bardou-Jacquet, E. et al. A novel N491S mutation in the human SLC11A2 gene impairs protein trafficking and in association with the G212V mutation leads to microcytic anemia and liver iron overload. Blood Cells Mol. Dis. 47, 243–248 (2011).

    CAS  PubMed  Google Scholar 

  209. Doyard, M. et al. Decreased bone formation explains osteoporosis in a genetic mouse model of hemochromatosiss. PLoS ONE 11, e0148292 (2016).

    PubMed  PubMed Central  Google Scholar 

  210. Aslan, D., Crain, K. & Beutler, E. A new case of human atransferrinemia with a previously undescribed mutation in the transferrin gene. Acta Haematol. 118, 244–247 (2007).

    PubMed  Google Scholar 

  211. Guggenbuhl, P., Brissot, P. & Loreal, O. Miscellaneous non-inflammatory musculoskeletal conditions. Haemochromatosis: the bone and the joint. Best Pract. Res. Clin. Rheumatol. 25, 649–664 (2011).

    PubMed  Google Scholar 

  212. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    CAS  PubMed  Google Scholar 

  213. McKie, A. T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).

    CAS  PubMed  Google Scholar 

  214. Vulpe, C. D. et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21, 195–199 (1999).

    CAS  PubMed  Google Scholar 

  215. Harris, Z. L., Durley, A. P., Man, T. K. & Gitlin, J. D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl Acad. Sci. USA 96, 10812–10817 (1999).

    CAS  PubMed  Google Scholar 

  216. Crielaard, B. J. et al. Targeting iron metabolism in drug discovery and delivery. Nat. Rev. Drug Discov. 16, 400–423 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Rausa, M. et al. Bmp6 expression in murine liver non parenchymal cells: a mechanism to control their high iron exporter activity and protect hepatocytes from iron overload? PLoS ONE 10, e0122696 (2015).

    PubMed  PubMed Central  Google Scholar 

  218. Canali, S. et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood 129, 405–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Silvestri, L. et al. Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood 109, 4503–4510 (2007).

    CAS  PubMed  Google Scholar 

  220. Xia, Y., Babitt, J. L., Sidis, Y., Chung, R. T. & Lin, H. Y. Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 111, 5195–5204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, R. H. et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell. Metab. 2, 399–409 (2005).

    CAS  PubMed  Google Scholar 

  222. Casanovas, G., Mleczko-Sanecka, K., Altamura, S., Hentze, M. W. & Muckenthaler, M. U. Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. J. Mol. Med. 87, 471–480 (2009).

    CAS  PubMed  Google Scholar 

  223. Truksa, J., Lee, P. & Beutler, E. Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. Blood 113, 688–695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Verga Falzacappa, M. V., Casanovas, G., Hentze, M. W. & Muckenthaler, M. U. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2mediated hepatic hepcidin expression and its response to IL6 in cultured cells. J. Mol. Med. 86, 531–540 (2008).

    CAS  PubMed  Google Scholar 

  225. Ramey, G., Deschemin, J. C. & Vaulont, S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica 94, 765–772 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.d.G. has received a grant from Haemochromatosis Australia to conduct haemochromatosis research. C.E.M. was supported in part by grant 5R24 DK09984603 from the National Institute of Health and Digestive and Kidney Diseases. The authors thank B. Skikne (University of Kansas Medical Center) for his contributions to the section on Epidemiology.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.B.); Epidemiology (C.E.M.); Mechanisms/pathophysiology (O.L.); Diagnosis, screening and prevention (P.B.); Management (P.C.A.); Quality of life (B.d.G.); Outlook (A.P.); overview of the Primer (P.B.).

Corresponding author

Correspondence to Pierre Brissot.

Ethics declarations

Competing interests

P.B. has received lecture fees from Novartis and consulting fees from Novartis and La Jolla Pharmaceutical Company. A.P. has received lecture fees from Novartis, and consulting fees from Novartis, La Jolla Pharmaceutical Company and Mitsubishi Tanabe Pharma Corporation. O.L. has received a research grant from Novartis. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brissot, P., Pietrangelo, A., Adams, P. et al. Haemochromatosis. Nat Rev Dis Primers 4, 18016 (2018). https://doi.org/10.1038/nrdp.2018.16

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2018.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing